Compare commits

..

101 Commits

Author SHA1 Message Date
Aaron Fenyes
5e117d5877 Merge branch 'main' into app-proto
Incorporate the engine prototype from pull request #13, which just got
merged into `main`.
2024-10-21 00:25:59 -07:00
Aaron Fenyes
517fd327fa Assembly: mark constraints as active or not 2024-10-16 23:22:25 -07:00
Aaron Fenyes
f1690b62e1 Move full interface prototype to top level 2024-10-14 17:08:44 -07:00
Aaron Fenyes
cca5a781c4 Remove standalone display prototype 2024-10-14 16:43:13 -07:00
Aaron Fenyes
abe231126d Display: restore intersection and cusp highlighting
This increases resource use a bit, because we now have to hold two
fragments in memory at once instead of just one. It's still much better
than holding all of the top twelve fragments, though!
2024-10-14 16:36:52 -07:00
Aaron Fenyes
ee1c691787 Display: shade fragments after depth sorting
This reduces register pressure significantly. This stepping stone commit
temporarily removes highlighting of intersections and cusps.
2024-10-14 16:04:56 -07:00
Aaron Fenyes
19907838ce Display: remove redundant depth test 2024-09-30 17:59:48 -07:00
Aaron Fenyes
e3120f7109 Display: remove unused fragment-sorting function 2024-09-30 16:48:36 -07:00
Aaron Fenyes
18ebf3be2c Display: add turntable for benchmarking
Together with 25fa108 and 4f8f360, this lets us do a benchmarking
routine for `full-interface` which is comparable to the one we've been
using for `inversive-display`.
2024-09-30 00:44:13 -07:00
Aaron Fenyes
edace8e4ea Outline: include ID and label in element diff key 2024-09-29 23:41:16 -07:00
Aaron Fenyes
70bd39b9e5 App: remove unused imports 2024-09-29 23:30:35 -07:00
Aaron Fenyes
25fa108e9b AddRemove: add low-curvature test assembly from inversive-display 2024-09-28 19:37:43 -07:00
Aaron Fenyes
7977b11caf AddRemove: switch between pre-made test assemblies 2024-09-28 18:56:33 -07:00
Aaron Fenyes
1c9fec36e5 Display: make scene change flag track element list 2024-09-28 18:51:28 -07:00
Aaron Fenyes
721a8716d4 Assembly: don't track element list when inserting
Calling `try_insert_element` or `insert_new_element` in a responsive
context shouldn't make the context track `elements_by_id`.
2024-09-28 18:49:17 -07:00
Aaron Fenyes
4f8f36053f App: use general test assembly from inversive-display
This moves us toward dropping the separate display prototype.
2024-09-28 14:18:04 -07:00
Aaron Fenyes
28b1ecb8e9 App: use element insertion method in test 2024-09-28 13:29:09 -07:00
Aaron Fenyes
b08dbd6f93 Assembly: factor out element insertion 2024-09-28 13:27:03 -07:00
Aaron Fenyes
bd0982f821 AddRemove: make a button that adds elements
In the process, switch selection storage back to `FxHashSet`, reverting
commit b3afd6f.
2024-09-27 14:33:49 -07:00
Aaron Fenyes
2444649dd1 AddRemove: underscore unused event variables 2024-09-26 19:17:57 -07:00
Aaron Fenyes
b3afd6f555 App: Store selection in BTreeSet
Since we're using `BTreeSet` for element constraint sets now, we might
as well use it for the selection set too. This removes the `rustc-hash`
dependency.
2024-09-26 19:16:41 -07:00
Aaron Fenyes
9b39fe56b8 Outline: include constraints in element diff key
This tells Sycamore that the outline view of an element should update
when the element's constraint set has changed. To make the constraint
set hashable, so we can include it in the diff key, we store it as a
`BTreeSet` instead of an `FxHashSet`.
2024-09-26 19:10:34 -07:00
Aaron Fenyes
f5486fb0dd AddRemove: make a button that adds constraints 2024-09-26 15:02:51 -07:00
Aaron Fenyes
4e3c86fb71 Ignore profiling folders 2024-09-26 13:23:56 -07:00
Aaron Fenyes
7ff1b9cb65 App: rename directory 2024-09-26 13:22:48 -07:00
Aaron Fenyes
e6281cdcc6 Display: shrink canvas to 600px
This makes profiling more comparable with `inversive-display`.
2024-09-25 14:48:58 -07:00
Aaron Fenyes
fc85d15f83 Outline: show constraint details 2024-09-23 00:39:14 -07:00
Aaron Fenyes
7709c61f71 Outline: spruce up styling
Use `details` elements to hide and show constraints.
2024-09-22 23:55:07 -07:00
Aaron Fenyes
edee153e37 App: remove unused import 2024-09-22 23:50:16 -07:00
Aaron Fenyes
4a24a01928 App: insert constraints consistently
Also, write constructors for state objects.
2024-09-22 14:40:31 -07:00
Aaron Fenyes
050e2373a6 App: store constraints
Draft listing of constraints in outline view.
2024-09-22 14:05:40 -07:00
Aaron Fenyes
147e275823 App: don't bother copying key into element
When we access an element, we always have its key, either because the
slab iterator yielded it along side the element or because we used it to
get the element from the slab.
2024-09-22 02:38:17 -07:00
Aaron Fenyes
d121385c18 App: store assembly elements in slab 2024-09-22 02:21:45 -07:00
Aaron Fenyes
78f8ef8215 Outline: switch to single selection 2024-09-19 17:53:07 -07:00
Aaron Fenyes
96f8b6b5f3 App: store selection in hash map
Switch `Assembly.elements` to a hash map too, since that's probably
closer to what we'll want in the future.
2024-09-19 16:08:55 -07:00
Aaron Fenyes
96afad0c97 Display: highlight selected elements 2024-09-16 15:46:45 -07:00
Aaron Fenyes
a60624884a App: add element selection 2024-09-16 11:29:44 -07:00
Aaron Fenyes
93190e99da Display: bring in keyboard navigation code 2024-09-15 11:54:39 -07:00
Aaron Fenyes
e2d3af2867 Display: say "assembly" instead of "construction"
Update variable names and comments in code from the display prototype.
2024-09-15 11:41:16 -07:00
Aaron Fenyes
7cb01bab82 Ray-caster: drop outdated performance comment
The size of the internal fragment arrays is what really matters, as
discussed in the "Display" page on the wiki.
2024-09-15 11:38:32 -07:00
Aaron Fenyes
f47be08d98 Display: get the assembly from the app state 2024-09-15 11:31:22 -07:00
Aaron Fenyes
cd18d594e0 Display: bring in ray-casting code 2024-09-14 11:46:24 -07:00
Aaron Fenyes
49655a8d62 Ray-caster: remove debug code
Remove GPU code and uniforms that were used as scaffolding during
initial development, but have now been replaced by CPU analogues.
2024-09-14 10:58:46 -07:00
Aaron Fenyes
959e4cc8b5 App: pass app state into outline as context 2024-09-13 15:15:55 -07:00
Aaron Fenyes
49170671b4 App: add display canvas 2024-09-13 14:53:12 -07:00
Aaron Fenyes
0c2869d3f3 Outline: improve code formatting 2024-09-13 00:43:19 -07:00
Aaron Fenyes
e6d1e0b865 Outline: encapsulate assembly data 2024-09-13 00:40:34 -07:00
Aaron Fenyes
d481181ef8 Outline: sort elements by ID 2024-09-13 00:07:49 -07:00
Aaron Fenyes
20b96a9764 Outline: switch from "Editor" to "App" 2024-09-12 22:39:21 -07:00
Aaron Fenyes
634e97b659 Outline: switch to user-facing ID 2024-09-12 22:36:54 -07:00
Aaron Fenyes
336b940471 Outline: start on editor state and outline view 2024-09-12 15:24:41 -07:00
Aaron Fenyes
d3c9a08d22 Add zoom to keyboard controls 2024-09-10 04:08:49 -07:00
Aaron Fenyes
aceac5e5c4 Add roll to keyboard controls 2024-09-10 03:14:33 -07:00
Aaron Fenyes
20d072d615 Combine key-down and key-up handlers 2024-09-10 02:29:50 -07:00
Aaron Fenyes
c67f37c934 Implement keyboard navigation 2024-09-09 19:41:15 -07:00
Aaron Fenyes
2efc08d6c0 Enable focus for tabs and display
You can now switch tabs from the keyboard using the usual radio button
interaction.
2024-09-09 02:15:04 -07:00
Aaron Fenyes
69ab888d5b Simplify control labeling 2024-09-09 00:32:29 -07:00
Aaron Fenyes
0173b63e19 Add picture plane to circles in triangle 2024-09-08 23:43:26 -07:00
Aaron Fenyes
b289d2d4c3 Distinguish odd layer counts in debug mode
The low-curvature construction admits odd layer counts.
2024-09-08 23:31:48 -07:00
Aaron Fenyes
163361184b Ray-caster: avoid roundoff error in quadratic equation 2024-09-08 23:00:28 -07:00
Aaron Fenyes
ab830b194e Use circles in triangle as low-curvature construction
In the process, add a way to build a sphere by offset and curvature.
2024-09-06 19:01:18 -07:00
Aaron Fenyes
3493a798d1 Add low-curvature construction
Also add infrastructure for switching between constructions.
2024-09-04 16:27:28 -07:00
Aaron Fenyes
121934c4c3 Encapsulate construction 2024-09-04 12:58:55 -07:00
Aaron Fenyes
a4236a34df Ray-caster: dim the interior layers of spheres
This seems to weaken the intersection disk illusion.
2024-09-02 15:15:18 -07:00
Aaron Fenyes
f148552964 Ray-caster: only draw the top few fragments
This seems to increase graphics pipe use from 50--60% to 55--65%.
2024-08-29 15:01:38 -07:00
Aaron Fenyes
6db9f5be6c Enlarge the test construction to six spheres
In debug mode, assign most of the color scale to even layer counts. Odd
layer counts are topologically prohibited, so we should rarely see bugs
severe enough to produce them.
2024-08-28 17:14:55 -07:00
Aaron Fenyes
3a721a4cc8 Ray-caster: enlarge the construction data uniforms
No noticeable effect on GPU performance.
2024-08-28 16:06:33 -07:00
Aaron Fenyes
8fde202911 Ray-caster: drop unused depth-pair array
This doesn't affect GPU performance noticeably, so benchmarks before and
after the change should be comparable.
2024-08-28 15:52:19 -07:00
Aaron Fenyes
4afc82034b Ray-caster: sort fragments while shading 2024-08-28 14:37:29 -07:00
Aaron Fenyes
e80adf831d Ray-caster: correct hit detection 2024-08-28 01:59:46 -07:00
Aaron Fenyes
3d7ee98dd6 Ray-caster: check layer count
In debug mode, show the layer count instead of the shaded image. This
reveals a bug: testing whether the hit depth is NaN doesn't actually
detect sphere misses, because `sphere_cast` returns -1 rather than NaN
to indicate a miss.
2024-08-28 01:55:46 -07:00
Aaron Fenyes
c04e29f586 Reduce the frame interval sample frequency
At the higher frequency we were using earlier, the overhead from
updating the readout contributed significantly to the frame interval.
2024-08-28 01:47:38 -07:00
Aaron Fenyes
01c2af6615 Rotate and translate construction
In the process, write code to make updates that depend on the time
between frames.
2024-08-27 18:39:58 -07:00
Aaron Fenyes
a40a110788 Ray-caster: only draw when the scene is changed
This is how I typically schedule draw calls in JavaScript applications.
The baseline CPU activity for the display prototype is now in line with
other pages (though perhaps a bit higher), and the profiler shows little
time being spent in draw calls, even when I'm continually moving a
slider. The interface feels pretty responsive overall, although the
sliders seem to be lagging a bit.
2024-08-27 13:55:08 -07:00
Aaron Fenyes
f62f44b5a7 Optimization: decouple internal and uniform SPHERE_MAX 2024-08-27 00:00:48 -07:00
Aaron Fenyes
ec48592ef1 Ray-caster: add a frame time monitor
It's time to start optimizing. Frame time is easy to measure, and we can
use it to gauge responsiveness.
2024-08-26 23:39:51 -07:00
Aaron Fenyes
5e9c5db231 Ray-caster: switch from draw effect to animation loop
This wastes a lot of CPU time, as explained on lines 253--258 of
`main.rs`, but it's better than the previous version, which could block
graphics updates system-wide for seconds on end.
2024-08-26 16:06:37 -07:00
Aaron Fenyes
bf140efaf7 Ray-caster: remove hard-coded test construction 2024-08-26 13:51:01 -07:00
Aaron Fenyes
cbec31f5df Ray-caster: pass colors in through uniforms 2024-08-26 13:41:34 -07:00
Aaron Fenyes
b9370ceb41 Ray-caster: label controls 2024-08-26 01:47:53 -07:00
Aaron Fenyes
85db7b9be0 Ray-caster: pass the sphere count as a uniform
In the process, start exploring array size limits of various kinds.
2024-08-26 00:58:20 -07:00
Aaron Fenyes
c5fe725b1b Ray-caster: automate getting uniform array locations 2024-08-25 22:22:14 -07:00
Aaron Fenyes
5bf23fa789 Ray-caster: pass spheres in through uniforms
Keep the hard-coded spheres for comparison.
2024-08-25 21:40:59 -07:00
Aaron Fenyes
206a2df480 Ray-caster: add a third test sphere
This helps confirm that the generalized depth-sorting is working.
2024-08-25 16:41:31 -07:00
Aaron Fenyes
c18cac642b Ray-caster: generalize depth sorting
Switch from a hard-coded sorting network for four fragments to an
insertion sort, which should work for any number of fragments.
2024-08-25 00:47:36 -07:00
Aaron Fenyes
8798683d25 Ray-caster: store sphere data in arrays
This is a first step toward general depth sorting.
2024-08-25 00:00:28 -07:00
Aaron Fenyes
b9587872d3 Ray-caster: don't bother clearing the screen
The ray-caster triangles cover the whole viewport, so they'll completely
overdraw the previous frame.
2024-08-24 11:31:22 -07:00
Aaron Fenyes
766d56027c Ray-caster: move shaders to separate files
This properly reflects the modularity of the code, and it simplifies
indentation and syntax highlighting.
2024-08-24 11:27:19 -07:00
Aaron Fenyes
25da6ca062 Ray-caster: adjust opacity of highlighting 2024-08-24 11:08:31 -07:00
Aaron Fenyes
e3df765f16 Ray-caster: highlight intersections and cusps 2024-08-24 01:38:06 -07:00
Aaron Fenyes
f1029b3102 Ray-caster: map output into sRGB space
Change the base color and default opacity to keep the picture looking
broadly the same.
2024-08-24 01:05:19 -07:00
Aaron Fenyes
87763fc458 Ray-caster: tidy up sphere shading 2024-08-24 00:29:11 -07:00
Aaron Fenyes
2ef0fdd3e2 Ray-cast two spheres, with hard-coded depth sorting 2024-08-23 12:56:54 -07:00
Aaron Fenyes
d2cecf69db Ray-cast a translucent sphere 2024-08-23 00:16:41 -07:00
Aaron Fenyes
c78a041dc7 Write a ray-caster for inversive spheres 2024-08-22 22:08:34 -07:00
Aaron Fenyes
f274119da6 Enable depth testing
To get the right order, flip the sign of the `z` component in the output
of the projection map.
2024-08-22 18:17:01 -07:00
Aaron Fenyes
1fbeb23194 Add rotation control
In the process, find and correct an error in the --+ vertex, which was
miswritten as ---.
2024-08-22 00:04:58 -07:00
Aaron Fenyes
80b210e667 Make the projection map a uniform 2024-08-21 23:07:14 -07:00
Aaron Fenyes
81f9b8e040 Find vertex attribute indices in advance 2024-08-21 22:36:56 -07:00
Aaron Fenyes
5885189b04 Draw a mesh in perspective, and in color 2024-08-21 17:31:17 -07:00
Aaron Fenyes
fd3cbae1b4 Get a WebGL canvas working in Sycamore 2024-08-21 13:01:33 -07:00
20 changed files with 339 additions and 1800 deletions

View File

@ -17,51 +17,3 @@ Note that currently this is just the barest beginnings of the project, more of a
* Able to run in browser (so implemented in WASM-compatible language)
* Produce scalable graphics of 3D diagrams, and maybe STL files (or other fabricatable file format) as well.
## Prototype
The latest prototype is in the folder `app-proto`. It includes both a user interface and a numerical constraint-solving engine.
### Install the prerequisites
1. Install [`rustup`](https://rust-lang.github.io/rustup/): the officially recommended Rust toolchain manager
* It's available on Ubuntu as a [Snap](https://snapcraft.io/rustup)
2. Call `rustup default stable` to "download the latest stable release of Rust and set it as your default toolchain"
* If you forget, the `rustup` [help system](https://github.com/rust-lang/rustup/blob/d9b3601c3feb2e88cf3f8ca4f7ab4fdad71441fd/src/errors.rs#L109-L112) will remind you
3. Call `rustup target add wasm32-unknown-unknown` to add the [most generic 32-bit WebAssembly target](https://doc.rust-lang.org/nightly/rustc/platform-support/wasm32-unknown-unknown.html)
4. Call `cargo install wasm-pack` to install the [WebAssembly toolchain](https://rustwasm.github.io/docs/wasm-pack/)
5. Call `cargo install trunk` to install the [Trunk](https://trunkrs.dev/) web-build tool
6. Add the `.cargo/bin` folder in your home directory to your executable search path
* This lets you call Trunk, and other tools installed by Cargo, without specifying their paths
* On POSIX systems, the search path is stored in the `PATH` environment variable
### Play with the prototype
1. Go into the `app-proto` folder
2. Call `trunk serve --release` to build and serve the prototype
* *The crates the prototype depends on will be downloaded and served automatically*
* *For a faster build, at the expense of a much slower prototype, you can call `trunk serve` without the `--release` flag*
3. In a web browser, visit one of the URLs listed under the message `INFO 📡 server listening at:`
* *Touching any file in the `app-proto` folder will make Trunk rebuild and live-reload the prototype*
4. Press *ctrl+C* in the shell where Trunk is running to stop serving the prototype
### Run the engine on some example problems
1. Go into the `app-proto` folder
2. Call `./run-examples`
* *For each example problem, the engine will print the value of the loss function at each optimization step*
* *The first example that prints is the same as the Irisawa hexlet example from the Julia version of the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then*
```julia
include("irisawa-hexlet.jl")
for (step, scaled_loss) in enumerate(history_alt.scaled_loss)
println(rpad(step-1, 4), " | ", scaled_loss)
end
```
*you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show*
### Run the automated tests
1. Go into the `app-proto` folder
2. Call `cargo test`

View File

@ -1,17 +1,15 @@
[package]
name = "dyna3"
name = "sketch-outline"
version = "0.1.0"
authors = ["Aaron Fenyes", "Glen Whitney"]
authors = ["Aaron"]
edition = "2021"
[features]
default = ["console_error_panic_hook"]
dev = []
[dependencies]
itertools = "0.13.0"
js-sys = "0.3.70"
lazy_static = "1.5.0"
nalgebra = "0.33.0"
rustc-hash = "2.0.0"
slab = "0.4.9"
@ -26,9 +24,7 @@ console_error_panic_hook = { version = "0.1.7", optional = true }
[dependencies.web-sys]
version = "0.3.69"
features = [
'DomRect',
'HtmlCanvasElement',
'HtmlInputElement',
'Performance',
'WebGl2RenderingContext',
'WebGlBuffer',
@ -38,12 +34,7 @@ features = [
'WebGlVertexArrayObject'
]
# the self-dependency specifies features to use for tests and examples
#
# https://github.com/rust-lang/cargo/issues/2911#issuecomment-1483256987
#
[dev-dependencies]
dyna3 = { path = ".", default-features = false, features = ["dev"] }
wasm-bindgen-test = "0.3.34"
[profile.release]

View File

@ -1,25 +0,0 @@
use dyna3::engine::{Q, irisawa::realize_irisawa_hexlet};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let (config, _, success, history) = realize_irisawa_hexlet(SCALED_TOL);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
if success {
println!("\nChain diameters:");
println!(" {} sun (given)", 1.0 / config[(3, 3)]);
for k in 4..9 {
println!(" {} sun", 1.0 / config[(3, k)]);
}
}
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View File

@ -1,38 +0,0 @@
use nalgebra::DMatrix;
use dyna3::engine::{Q, point, realize_gram, sphere, PartialMatrix};
fn main() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..2 {
for k in j..2 {
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
let frozen = [(3, 0)];
println!();
let (config, _, success, history) = realize_gram(
&gram, guess, &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
print!("Configuration:{}", config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View File

@ -1,40 +0,0 @@
use nalgebra::DMatrix;
use dyna3::engine::{Q, realize_gram, sphere, PartialMatrix};
fn main() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..3 {
for k in j..3 {
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
gram_to_be
};
let guess = {
let a: f64 = 0.75_f64.sqrt();
DMatrix::from_columns(&[
sphere(1.0, 0.0, 0.0, 1.0),
sphere(-0.5, a, 0.0, 1.0),
sphere(-0.5, -a, 0.0, 1.0)
])
};
println!();
let (config, _, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View File

@ -2,10 +2,8 @@
<html>
<head>
<meta charset="utf-8"/>
<title>dyna3</title>
<title>Sketch outline</title>
<link data-trunk rel="css" href="main.css"/>
<link href="https://fonts.bunny.net/css?family=fira-sans:ital,wght@0,400;1,400&display=swap" rel="stylesheet">
<link href="https://fonts.bunny.net/css?family=noto-emoji:wght@400&text=%f0%9f%94%97%e2%9a%a0&display=swap" rel="stylesheet">
</head>
<body></body>
</html>

View File

@ -1,20 +1,7 @@
:root {
--text: #fcfcfc; /* almost white */
--text-bright: white;
--text-invalid: #f58fc2; /* bright pink */
--border: #555; /* light gray */
--border-focus: #aaa; /* bright gray */
--border-invalid: #70495c; /* dusky pink */
--selection-highlight: #444; /* medium gray */
--page-background: #222; /* dark gray */
--display-background: #020202; /* almost black */
}
body {
margin: 0px;
color: var(--text);
background-color: var(--page-background);
font-family: 'Fira Sans', sans-serif;
color: #fcfcfc;
background-color: #222;
}
/* sidebar */
@ -29,7 +16,7 @@ body {
padding: 0px;
border-width: 0px 1px 0px 0px;
border-style: solid;
border-color: var(--border);
border-color: #555;
}
/* add-remove */
@ -46,15 +33,6 @@ body {
font-size: large;
}
/* KLUDGE */
/*
for convenience, we're using emoji as temporary icons for some buttons. these
buttons need to be displayed in an emoji font
*/
#add-remove > button.emoji {
font-family: 'Noto Emoji', sans-serif;
}
/* outline */
#outline {
@ -73,103 +51,74 @@ summary {
}
summary.selected {
color: var(--text-bright);
background-color: var(--selection-highlight);
color: #fff;
background-color: #444;
}
summary > div, .constraint {
summary > div, .cst {
padding-top: 4px;
padding-bottom: 4px;
}
.element, .constraint {
.elt, .cst {
display: flex;
flex-grow: 1;
padding-left: 8px;
padding-right: 8px;
}
.element-switch {
.elt-switch {
width: 18px;
padding-left: 2px;
text-align: center;
}
details:has(li) .element-switch::after {
details:has(li) .elt-switch::after {
content: '▸';
}
details[open]:has(li) .element-switch::after {
details[open]:has(li) .elt-switch::after {
content: '▾';
}
.element-label {
.elt-label {
flex-grow: 1;
}
.constraint-label {
.cst-label {
flex-grow: 1;
}
.element-representation {
.elt-rep {
display: flex;
}
.element-representation > div {
.elt-rep > div, .cst-rep {
padding: 2px 0px 0px 0px;
font-size: 10pt;
font-variant-numeric: tabular-nums;
text-align: right;
text-align: center;
width: 56px;
}
.constraint {
.cst {
font-style: italic;
}
.constraint.invalid {
color: var(--text-invalid);
}
.constraint > input[type=checkbox] {
.cst > input {
margin: 0px 8px 0px 0px;
}
.constraint > input[type=text] {
color: inherit;
background-color: inherit;
border: 1px solid var(--border);
border-radius: 2px;
}
.constraint.invalid > input[type=text] {
border-color: var(--border-invalid);
}
.status {
width: 20px;
padding-left: 4px;
text-align: center;
font-family: 'Noto Emoji';
font-style: normal;
}
.invalid > .status::after, details:has(.invalid):not([open]) .status::after {
content: '⚠';
color: var(--text-invalid);
}
/* display */
canvas {
float: left;
margin-left: 20px;
margin-top: 20px;
background-color: var(--display-background);
border: 1px solid var(--border);
background-color: #020202;
border: 1px solid #555;
border-radius: 16px;
}
canvas:focus {
border-color: var(--border-focus);
border-color: #aaa;
}

View File

@ -1,11 +0,0 @@
#!/bin/sh
# run all Cargo examples, as described here:
#
# Karol Kuczmarski. "Add examples to your Rust libraries"
# http://xion.io/post/code/rust-examples.html
#
cargo run --example irisawa-hexlet
cargo run --example three-spheres
cargo run --example point-on-sphere

View File

@ -1,130 +1,151 @@
use std::collections::BTreeSet; /* DEBUG */
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue};
use crate::{engine, AppState, assembly::{Assembly, Constraint, Element}};
/* DEBUG */
// load an example assembly for testing. this code will be removed once we've
// built a more formal test assembly system
fn load_gen_assemb(assembly: &Assembly) {
let _ = assembly.try_insert_element(
Element::new(
String::from("gemini_a"),
String::from("Castor"),
[1.00_f32, 0.25_f32, 0.00_f32],
engine::sphere(0.5, 0.5, 0.0, 1.0)
)
Element {
id: String::from("gemini_a"),
label: String::from("Castor"),
color: [1.00_f32, 0.25_f32, 0.00_f32],
rep: engine::sphere(0.5, 0.5, 0.0, 1.0),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
String::from("gemini_b"),
String::from("Pollux"),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere(-0.5, -0.5, 0.0, 1.0)
)
Element {
id: String::from("gemini_b"),
label: String::from("Pollux"),
color: [0.00_f32, 0.25_f32, 1.00_f32],
rep: engine::sphere(-0.5, -0.5, 0.0, 1.0),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
String::from("ursa_major"),
String::from("Ursa major"),
[0.25_f32, 0.00_f32, 1.00_f32],
engine::sphere(-0.5, 0.5, 0.0, 0.75)
)
Element {
id: String::from("ursa_major"),
label: String::from("Ursa major"),
color: [0.25_f32, 0.00_f32, 1.00_f32],
rep: engine::sphere(-0.5, 0.5, 0.0, 0.75),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
String::from("ursa_minor"),
String::from("Ursa minor"),
[0.25_f32, 1.00_f32, 0.00_f32],
engine::sphere(0.5, -0.5, 0.0, 0.5)
)
Element {
id: String::from("ursa_minor"),
label: String::from("Ursa minor"),
color: [0.25_f32, 1.00_f32, 0.00_f32],
rep: engine::sphere(0.5, -0.5, 0.0, 0.5),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
String::from("moon_deimos"),
String::from("Deimos"),
[0.75_f32, 0.75_f32, 0.00_f32],
engine::sphere(0.0, 0.15, 1.0, 0.25)
)
Element {
id: String::from("moon_deimos"),
label: String::from("Deimos"),
color: [0.75_f32, 0.75_f32, 0.00_f32],
rep: engine::sphere(0.0, 0.15, 1.0, 0.25),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
String::from("moon_phobos"),
String::from("Phobos"),
[0.00_f32, 0.75_f32, 0.50_f32],
engine::sphere(0.0, -0.15, -1.0, 0.25)
)
Element {
id: String::from("moon_phobos"),
label: String::from("Phobos"),
color: [0.00_f32, 0.75_f32, 0.50_f32],
rep: engine::sphere(0.0, -0.15, -1.0, 0.25),
constraints: BTreeSet::default()
}
);
assembly.insert_constraint(
Constraint {
args: (
assembly.elements_by_id.with_untracked(|elts_by_id| elts_by_id["gemini_a"]),
assembly.elements_by_id.with_untracked(|elts_by_id| elts_by_id["gemini_b"])
),
rep: 0.5,
active: create_signal(true)
}
);
}
/* DEBUG */
// load an example assembly for testing. this code will be removed once we've
// built a more formal test assembly system
fn load_low_curv_assemb(assembly: &Assembly) {
let a = 0.75_f64.sqrt();
let _ = assembly.try_insert_element(
Element::new(
"central".to_string(),
"Central".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
)
Element {
id: "central".to_string(),
label: "Central".to_string(),
color: [0.75_f32, 0.75_f32, 0.75_f32],
rep: engine::sphere(0.0, 0.0, 0.0, 1.0),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
"assemb_plane".to_string(),
"Assembly plane".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0)
)
Element {
id: "assemb_plane".to_string(),
label: "Assembly plane".to_string(),
color: [0.75_f32, 0.75_f32, 0.75_f32],
rep: engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
"side1".to_string(),
"Side 1".to_string(),
[1.00_f32, 0.00_f32, 0.25_f32],
engine::sphere_with_offset(1.0, 0.0, 0.0, 1.0, 0.0)
)
Element {
id: "side1".to_string(),
label: "Side 1".to_string(),
color: [1.00_f32, 0.00_f32, 0.25_f32],
rep: engine::sphere_with_offset(1.0, 0.0, 0.0, 1.0, 0.0),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
"side2".to_string(),
"Side 2".to_string(),
[0.25_f32, 1.00_f32, 0.00_f32],
engine::sphere_with_offset(-0.5, a, 0.0, 1.0, 0.0)
)
Element {
id: "side2".to_string(),
label: "Side 2".to_string(),
color: [0.25_f32, 1.00_f32, 0.00_f32],
rep: engine::sphere_with_offset(-0.5, a, 0.0, 1.0, 0.0),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
"side3".to_string(),
"Side 3".to_string(),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere_with_offset(-0.5, -a, 0.0, 1.0, 0.0)
)
Element {
id: "side3".to_string(),
label: "Side 3".to_string(),
color: [0.00_f32, 0.25_f32, 1.00_f32],
rep: engine::sphere_with_offset(-0.5, -a, 0.0, 1.0, 0.0),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
"corner1".to_string(),
"Corner 1".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0)
)
Element {
id: "corner1".to_string(),
label: "Corner 1".to_string(),
color: [0.75_f32, 0.75_f32, 0.75_f32],
rep: engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
"corner2".to_string(),
"Corner 2".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0)
)
Element {
id: "corner2".to_string(),
label: "Corner 2".to_string(),
color: [0.75_f32, 0.75_f32, 0.75_f32],
rep: engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0),
constraints: BTreeSet::default()
}
);
let _ = assembly.try_insert_element(
Element::new(
String::from("corner3"),
String::from("Corner 3"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0)
)
Element {
id: String::from("corner3"),
label: String::from("Corner 3"),
color: [0.75_f32, 0.75_f32, 0.75_f32],
rep: engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0),
constraints: BTreeSet::default()
}
);
}
@ -177,63 +198,44 @@ pub fn AddRemove() -> View {
}
) { "+" }
button(
class="emoji", /* KLUDGE */ // for convenience, we're using an emoji as a temporary icon for this button
disabled={
let state = use_context::<AppState>();
state.selection.with(|sel| sel.len() != 2)
},
on:click=|_| {
let state = use_context::<AppState>();
let subjects = state.selection.with(
let args = state.selection.with(
|sel| {
let subject_vec: Vec<_> = sel.into_iter().collect();
(subject_vec[0].clone(), subject_vec[1].clone())
let arg_vec: Vec<_> = sel.into_iter().collect();
(arg_vec[0].clone(), arg_vec[1].clone())
}
);
let lorentz_prod = create_signal(0.0);
let lorentz_prod_valid = create_signal(false);
let active = create_signal(true);
state.assembly.insert_constraint(Constraint {
subjects: subjects,
lorentz_prod: lorentz_prod,
lorentz_prod_text: create_signal(String::new()),
lorentz_prod_valid: lorentz_prod_valid,
active: active,
args: args,
rep: 0.0,
active: create_signal(true)
});
state.selection.update(|sel| sel.clear());
/* DEBUG */
// print updated constraint list
console::log_1(&JsValue::from("Constraints:"));
console::log_1(&JsValue::from("constraints:"));
state.assembly.constraints.with(|csts| {
for (_, cst) in csts.into_iter() {
console::log_5(
&JsValue::from(" "),
&JsValue::from(cst.subjects.0),
&JsValue::from(cst.subjects.1),
&JsValue::from(cst.args.0),
&JsValue::from(cst.args.1),
&JsValue::from(":"),
&JsValue::from(cst.lorentz_prod.get_untracked())
&JsValue::from(cst.rep)
);
}
});
// update the realization when the constraint becomes active
// and valid, or is edited while active and valid
create_effect(move || {
console::log_1(&JsValue::from(
format!("Constraint ({}, {}) updated", subjects.0, subjects.1)
));
lorentz_prod.track();
if active.get() && lorentz_prod_valid.get() {
state.assembly.realize();
}
});
}
) { "🔗" }
select(bind:value=assembly_name) { /* DEBUG */ // example assembly chooser
select(bind:value=assembly_name) { /* DEBUG */
option(value="general") { "General" }
option(value="low-curv") { "Low-curvature" }
option(value="empty") { "Empty" }
}
}
}

View File

@ -1,132 +1,25 @@
use nalgebra::{DMatrix, DVector, DVectorView, Vector3};
use nalgebra::DVector;
use rustc_hash::FxHashMap;
use slab::Slab;
use std::{collections::BTreeSet, sync::atomic::{AtomicU64, Ordering}};
use std::collections::BTreeSet;
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
use crate::engine::{realize_gram, ConfigSubspace, PartialMatrix, Q};
// the types of the keys we use to access an assembly's elements and constraints
pub type ElementKey = usize;
pub type ConstraintKey = usize;
pub type ElementColor = [f32; 3];
/* KLUDGE */
// we should reconsider this design when we build a system for switching between
// assemblies. at that point, we might want to switch to hierarchical keys,
// where each each element has a key that identifies it within its assembly and
// each assembly has a key that identifies it within the sesssion
static NEXT_ELEMENT_SERIAL: AtomicU64 = AtomicU64::new(0);
#[derive(Clone, PartialEq)]
pub struct Element {
pub id: String,
pub label: String,
pub color: ElementColor,
pub representation: Signal<DVector<f64>>,
pub constraints: Signal<BTreeSet<ConstraintKey>>,
// a serial number, assigned by `Element::new`, that uniquely identifies
// each element
pub serial: u64,
// the configuration matrix column index that was assigned to this element
// last time the assembly was realized, or `None` if the element has never
// been through a realization
column_index: Option<usize>
}
impl Element {
pub fn new(
id: String,
label: String,
color: ElementColor,
representation: DVector<f64>
) -> Element {
// take the next serial number, panicking if that was the last number we
// had left. the technique we use to panic on overflow is taken from
// _Rust Atomics and Locks_, by Mara Bos
//
// https://marabos.nl/atomics/atomics.html#example-handle-overflow
//
let serial = NEXT_ELEMENT_SERIAL.fetch_update(
Ordering::SeqCst, Ordering::SeqCst,
|serial| serial.checked_add(1)
).expect("Out of serial numbers for elements");
Element {
id: id,
label: label,
color: color,
representation: create_signal(representation),
constraints: create_signal(BTreeSet::default()),
serial: serial,
column_index: None
}
}
// the smallest positive depth, represented as a multiple of `dir`, where
// the line generated by `dir` hits the element (which is assumed to be a
// sphere). returns `None` if the line misses the sphere. this function
// should be kept synchronized with `sphere_cast` in `inversive.frag`, which
// does essentially the same thing on the GPU side
pub fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>) -> Option<f64> {
// if `a/b` is less than this threshold, we approximate
// `a*u^2 + b*u + c` by the linear function `b*u + c`
const DEG_THRESHOLD: f64 = 1e-9;
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
let a = -rep[3] * dir.norm_squared();
let b = rep.rows_range(..3).dot(&dir);
let c = -rep[4];
let adjust = 4.0*a*c/(b*b);
if adjust < 1.0 {
// as long as `b` is non-zero, the linear approximation of
//
// a*u^2 + b*u + c
//
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of
// the quadratic adjacent to `u_lin` is stored in `lin_root`. if
// both roots have the same sign, `lin_root` will be the one closer
// to `u = 0`
let square_rect_ratio = 1.0 + (1.0 - adjust).sqrt();
let lin_root = -(2.0*c)/b / square_rect_ratio;
if a.abs() > DEG_THRESHOLD * b.abs() {
if lin_root > 0.0 {
Some(lin_root)
} else {
let other_root = -b/(2.*a) * square_rect_ratio;
(other_root > 0.0).then_some(other_root)
}
} else {
(lin_root > 0.0).then_some(lin_root)
}
} else {
// the line through `dir` misses the sphere completely
None
}
}
pub color: [f32; 3],
pub rep: DVector<f64>,
pub constraints: BTreeSet<usize>
}
#[derive(Clone)]
pub struct Constraint {
pub subjects: (ElementKey, ElementKey),
pub lorentz_prod: Signal<f64>,
pub lorentz_prod_text: Signal<String>,
pub lorentz_prod_valid: Signal<bool>,
pub args: (usize, usize),
pub rep: f64,
pub active: Signal<bool>
}
pub struct ElementMotion<'a> {
pub key: ElementKey,
pub velocity: DVectorView<'a, f64>
}
type AssemblyMotion<'a> = Vec<ElementMotion<'a>>;
// a complete, view-independent description of an assembly
#[derive(Clone)]
pub struct Assembly {
@ -134,20 +27,8 @@ pub struct Assembly {
pub elements: Signal<Slab<Element>>,
pub constraints: Signal<Slab<Constraint>>,
// solution variety tangent space. the basis vectors are stored in
// configuration matrix format, ordered according to the elements' column
// indices. when you realize the assembly, every element that's present
// during realization gets a column index and is reflected in the tangent
// space. since the methods in this module never assign column indices
// without later realizing the assembly, we get the following invariant:
//
// (1) if an element has a column index, its tangent motions can be found
// in that column of the tangent space basis matrices
//
pub tangent: Signal<ConfigSubspace>,
// indexing
pub elements_by_id: Signal<FxHashMap<String, ElementKey>>
pub elements_by_id: Signal<FxHashMap<String, usize>>
}
impl Assembly {
@ -155,13 +36,10 @@ impl Assembly {
Assembly {
elements: create_signal(Slab::new()),
constraints: create_signal(Slab::new()),
tangent: create_signal(ConfigSubspace::zero(0)),
elements_by_id: create_signal(FxHashMap::default())
}
}
// --- inserting elements and constraints ---
// insert an element into the assembly without checking whether we already
// have an element with the same identifier. any element that does have the
// same identifier will get kicked out of the `elements_by_id` index
@ -194,200 +72,22 @@ impl Assembly {
// create and insert a new element
self.insert_element_unchecked(
Element::new(
id,
format!("Sphere {}", id_num),
[0.75_f32, 0.75_f32, 0.75_f32],
DVector::<f64>::from_column_slice(&[0.0, 0.0, 0.0, 0.5, -0.5])
)
Element {
id: id,
label: format!("Sphere {}", id_num),
color: [0.75_f32, 0.75_f32, 0.75_f32],
rep: DVector::<f64>::from_column_slice(&[0.0, 0.0, 0.0, 0.5, -0.5]),
constraints: BTreeSet::default()
}
);
}
pub fn insert_constraint(&self, constraint: Constraint) {
let subjects = constraint.subjects;
let args = constraint.args;
let key = self.constraints.update(|csts| csts.insert(constraint));
let subject_constraints = self.elements.with(
|elts| (elts[subjects.0].constraints, elts[subjects.1].constraints)
);
subject_constraints.0.update(|csts| csts.insert(key));
subject_constraints.1.update(|csts| csts.insert(key));
}
// --- realization ---
pub fn realize(&self) {
// index the elements
self.elements.update_silent(|elts| {
for (index, (_, elt)) in elts.into_iter().enumerate() {
elt.column_index = Some(index);
}
});
// set up the Gram matrix and the initial configuration matrix
let (gram, guess) = self.elements.with_untracked(|elts| {
// set up the off-diagonal part of the Gram matrix
let mut gram_to_be = PartialMatrix::new();
self.constraints.with_untracked(|csts| {
for (_, cst) in csts {
if cst.active.get_untracked() && cst.lorentz_prod_valid.get_untracked() {
let subjects = cst.subjects;
let row = elts[subjects.0].column_index.unwrap();
let col = elts[subjects.1].column_index.unwrap();
gram_to_be.push_sym(row, col, cst.lorentz_prod.get_untracked());
}
}
});
// set up the initial configuration matrix and the diagonal of the
// Gram matrix
let mut guess_to_be = DMatrix::<f64>::zeros(5, elts.len());
for (_, elt) in elts {
let index = elt.column_index.unwrap();
gram_to_be.push_sym(index, index, 1.0);
guess_to_be.set_column(index, &elt.representation.get_clone_untracked());
}
(gram_to_be, guess_to_be)
});
/* DEBUG */
// log the Gram matrix
console::log_1(&JsValue::from("Gram matrix:"));
gram.log_to_console();
/* DEBUG */
// log the initial configuration matrix
console::log_1(&JsValue::from("Old configuration:"));
for j in 0..guess.nrows() {
let mut row_str = String::new();
for k in 0..guess.ncols() {
row_str.push_str(format!(" {:>8.3}", guess[(j, k)]).as_str());
}
console::log_1(&JsValue::from(row_str));
}
// look for a configuration with the given Gram matrix
let (config, tangent, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
/* DEBUG */
// report the outcome of the search
console::log_1(&JsValue::from(
if success {
"Target accuracy achieved!"
} else {
"Failed to reach target accuracy"
}
));
console::log_2(&JsValue::from("Steps:"), &JsValue::from(history.scaled_loss.len() - 1));
console::log_2(&JsValue::from("Loss:"), &JsValue::from(*history.scaled_loss.last().unwrap()));
console::log_2(&JsValue::from("Tangent dimension:"), &JsValue::from(tangent.dim()));
if success {
// read out the solution
for (_, elt) in self.elements.get_clone_untracked() {
elt.representation.update(
|rep| rep.set_column(0, &config.column(elt.column_index.unwrap()))
);
}
// save the tangent space
self.tangent.set_silent(tangent);
}
}
// --- deformation ---
// project the given motion to the tangent space of the solution variety and
// move the assembly along it. the implementation is based on invariant (1)
// from above and the following additional invariant:
//
// (2) if an element is affected by a constraint, it has a column index
//
// we have this invariant because the assembly gets realized each time you
// add a constraint
pub fn deform(&self, motion: AssemblyMotion) {
/* KLUDGE */
// when the tangent space is zero, deformation won't do anything, but
// the attempt to deform should be registered in the UI. this console
// message will do for now
if self.tangent.with(|tan| tan.dim() <= 0 && tan.assembly_dim() > 0) {
console::log_1(&JsValue::from("The assembly is rigid"));
}
// give a column index to each moving element that doesn't have one yet.
// this temporarily breaks invariant (1), but the invariant will be
// restored when we realize the assembly at the end of the deformation.
// in the process, we find out how many matrix columns we'll need to
// hold the deformation
let realized_dim = self.tangent.with(|tan| tan.assembly_dim());
let motion_dim = self.elements.update_silent(|elts| {
let mut next_column_index = realized_dim;
for elt_motion in motion.iter() {
let moving_elt = &mut elts[elt_motion.key];
if moving_elt.column_index.is_none() {
moving_elt.column_index = Some(next_column_index);
next_column_index += 1;
}
}
next_column_index
});
// project the element motions onto the tangent space of the solution
// variety and sum them to get a deformation of the whole assembly. the
// matrix `motion_proj` that holds the deformation has extra columns for
// any moving elements that aren't reflected in the saved tangent space
const ELEMENT_DIM: usize = 5;
let mut motion_proj = DMatrix::zeros(ELEMENT_DIM, motion_dim);
for elt_motion in motion {
// we can unwrap the column index because we know that every moving
// element has one at this point
let column_index = self.elements.with_untracked(
|elts| elts[elt_motion.key].column_index.unwrap()
);
if column_index < realized_dim {
// this element had a column index when we started, so by
// invariant (1), it's reflected in the tangent space
let mut target_columns = motion_proj.columns_mut(0, realized_dim);
target_columns += self.tangent.with(
|tan| tan.proj(&elt_motion.velocity, column_index)
);
} else {
// this element didn't have a column index when we started, so
// by invariant (2), it's unconstrained
let mut target_column = motion_proj.column_mut(column_index);
target_column += elt_motion.velocity;
}
}
// step each element along the mass shell geodesic that matches its
// velocity in the deformation found above
/* KLUDGE */
// since our test assemblies only include spheres, we assume that every
// element is on the 1 mass shell
for (_, elt) in self.elements.get_clone_untracked() {
elt.representation.update_silent(|rep| {
match elt.column_index {
Some(column_index) => {
let rep_next = &*rep + motion_proj.column(column_index);
let normalizer = rep_next.dot(&(&*Q * &rep_next));
rep.set_column(0, &(rep_next / normalizer));
},
None => {
console::log_1(&JsValue::from(
format!("No velocity to unpack for fresh element \"{}\"", elt.id)
))
}
};
});
}
// bring the configuration back onto the solution variety. this also
// gets the elements' column indices and the saved tangent space back in
// sync
self.realize();
self.elements.update(|elts| {
elts[args.0].constraints.insert(key);
elts[args.1].constraints.insert(key);
})
}
}

View File

@ -1,12 +1,10 @@
use core::array;
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
use nalgebra::{DMatrix, Rotation3, Vector3};
use sycamore::{prelude::*, motion::create_raf};
use web_sys::{
console,
window,
Element,
KeyboardEvent,
MouseEvent,
WebGl2RenderingContext,
WebGlProgram,
WebGlShader,
@ -14,7 +12,7 @@ use web_sys::{
wasm_bindgen::{JsCast, JsValue}
};
use crate::{AppState, assembly::{ElementKey, ElementMotion}};
use crate::AppState;
fn compile_shader(
context: &WebGl2RenderingContext,
@ -84,24 +82,6 @@ fn bind_vertex_attrib(
);
}
// the direction in camera space that a mouse event is pointing along
fn event_dir(event: &MouseEvent) -> Vector3<f64> {
let target: Element = event.target().unwrap().unchecked_into();
let rect = target.get_bounding_client_rect();
let width = rect.width();
let height = rect.height();
let shortdim = width.min(height);
// this constant should be kept synchronized with `inversive.frag`
const FOCAL_SLOPE: f64 = 0.3;
Vector3::new(
FOCAL_SLOPE * (2.0*(f64::from(event.client_x()) - rect.left()) - width) / shortdim,
FOCAL_SLOPE * (2.0*(rect.bottom() - f64::from(event.client_y())) - height) / shortdim,
-1.0
)
}
#[component]
pub fn Display() -> View {
let state = use_context::<AppState>();
@ -109,9 +89,6 @@ pub fn Display() -> View {
// canvas
let display = create_node_ref();
// viewpoint
let assembly_to_world = create_signal(DMatrix::<f64>::identity(5, 5));
// navigation
let pitch_up = create_signal(0.0);
let pitch_down = create_signal(0.0);
@ -123,22 +100,10 @@ pub fn Display() -> View {
let zoom_out = create_signal(0.0);
let turntable = create_signal(false); /* BENCHMARKING */
// manipulation
let translate_neg_x = create_signal(0.0);
let translate_pos_x = create_signal(0.0);
let translate_neg_y = create_signal(0.0);
let translate_pos_y = create_signal(0.0);
let translate_neg_z = create_signal(0.0);
let translate_pos_z = create_signal(0.0);
// change listener
let scene_changed = create_signal(true);
create_effect(move || {
state.assembly.elements.with(|elts| {
for (_, elt) in elts {
elt.representation.track();
}
});
state.assembly.elements.track();
state.selection.track();
scene_changed.set(true);
});
@ -149,7 +114,6 @@ pub fn Display() -> View {
let mut frames_since_last_sample = 0;
let mean_frame_interval = create_signal(0.0);
let assembly_for_raf = state.assembly.clone();
on_mount(move || {
// timing
let mut last_time = 0.0;
@ -162,9 +126,6 @@ pub fn Display() -> View {
let mut rotation = DMatrix::<f64>::identity(5, 5);
let mut location_z: f64 = 5.0;
// manipulation
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
// display parameters
const OPACITY: f32 = 0.5; /* SCAFFOLDING */
const HIGHLIGHT: f32 = 0.2; /* SCAFFOLDING */
@ -285,14 +246,6 @@ pub fn Display() -> View {
let zoom_out_val = zoom_out.get();
let turntable_val = turntable.get(); /* BENCHMARKING */
// get the manipulation state
let translate_neg_x_val = translate_neg_x.get();
let translate_pos_x_val = translate_pos_x.get();
let translate_neg_y_val = translate_neg_y.get();
let translate_pos_y_val = translate_pos_y.get();
let translate_neg_z_val = translate_neg_z.get();
let translate_pos_z_val = translate_pos_z.get();
// update the assembly's orientation
let ang_vel = {
let pitch = pitch_up_val - pitch_down_val;
@ -318,41 +271,6 @@ pub fn Display() -> View {
let zoom = zoom_out_val - zoom_in_val;
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
// manipulate the assembly
if state.selection.with(|sel| sel.len() == 1) {
let sel = state.selection.with(
|sel| *sel.into_iter().next().unwrap()
);
let rep = state.assembly.elements.with_untracked(
|elts| elts[sel].representation.get_clone_untracked()
);
let translate_x = translate_pos_x_val - translate_neg_x_val;
let translate_y = translate_pos_y_val - translate_neg_y_val;
let translate_z = translate_pos_z_val - translate_neg_z_val;
if translate_x != 0.0 || translate_y != 0.0 || translate_z != 0.0 {
let vel_field = {
let u = Vector3::new(translate_x, translate_y, translate_z).normalize();
DMatrix::from_column_slice(5, 5, &[
0.0, 0.0, 0.0, 0.0, u[0],
0.0, 0.0, 0.0, 0.0, u[1],
0.0, 0.0, 0.0, 0.0, u[2],
2.0*u[0], 2.0*u[1], 2.0*u[2], 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0
])
};
let elt_motion: DVector<f64> = time_step * TRANSLATION_SPEED * vel_field * rep;
assembly_for_raf.deform(
vec![
ElementMotion {
key: sel,
velocity: elt_motion.as_view()
}
]
);
scene_changed.set(true);
}
}
if scene_changed.get() {
/* INSTRUMENTS */
// measure mean frame interval
@ -374,43 +292,26 @@ pub fn Display() -> View {
0.0, 0.0, 0.0, 0.0, 1.0
])
};
let asm_to_world = &location * &orientation;
let assembly_to_world = &location * &orientation;
// get the assembly
let (
elt_cnt,
reps_world,
colors,
highlights
) = state.assembly.elements.with(|elts| {
(
// number of elements
elts.len() as i32,
// representation vectors in world coordinates
elts.iter().map(
|(_, elt)| elt.representation.with(|rep| &asm_to_world * rep)
).collect::<Vec<_>>(),
// colors
elts.iter().map(|(key, elt)| {
if state.selection.with(|sel| sel.contains(&key)) {
elt.color.map(|ch| 0.2 + 0.8*ch)
} else {
elt.color
}
}).collect::<Vec<_>>(),
// highlight levels
elts.iter().map(|(key, _)| {
if state.selection.with(|sel| sel.contains(&key)) {
1.0_f32
} else {
HIGHLIGHT
}
}).collect::<Vec<_>>()
)
});
let elements = state.assembly.elements.get_clone();
let element_iter = (&elements).into_iter();
let reps_world: Vec<_> = element_iter.clone().map(|(_, elt)| &assembly_to_world * &elt.rep).collect();
let colors: Vec<_> = element_iter.clone().map(|(key, elt)|
if state.selection.with(|sel| sel.contains(&key)) {
elt.color.map(|ch| 0.2 + 0.8*ch)
} else {
elt.color
}
).collect();
let highlights: Vec<_> = element_iter.map(|(key, _)|
if state.selection.with(|sel| sel.contains(&key)) {
1.0_f32
} else {
HIGHLIGHT
}
).collect();
// set the resolution
let width = canvas.width() as f32;
@ -419,7 +320,7 @@ pub fn Display() -> View {
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// pass the assembly
ctx.uniform1i(sphere_cnt_loc.as_ref(), elt_cnt);
ctx.uniform1i(sphere_cnt_loc.as_ref(), elements.len() as i32);
for n in 0..reps_world.len() {
let v = &reps_world[n];
ctx.uniform3f(
@ -448,9 +349,6 @@ pub fn Display() -> View {
// draw the scene
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
// update the viewpoint
assembly_to_world.set(asm_to_world);
// clear the scene change flag
scene_changed.set(
pitch_up_val != 0.0
@ -471,7 +369,7 @@ pub fn Display() -> View {
start_animation_loop();
});
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
let set_nav_signal = move |event: KeyboardEvent, value: f64| {
let mut navigating = true;
let shift = event.shift_key();
match event.key().as_str() {
@ -491,23 +389,6 @@ pub fn Display() -> View {
}
};
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
let mut manipulating = true;
let shift = event.shift_key();
match event.key().as_str() {
"d" | "D" => translate_pos_x.set(value),
"a" | "A" => translate_neg_x.set(value),
"w" | "W" if shift => translate_neg_z.set(value),
"s" | "S" if shift => translate_pos_z.set(value),
"w" | "W" => translate_pos_y.set(value),
"s" | "S" => translate_neg_y.set(value),
_ => manipulating = false
};
if manipulating {
event.prevent_default();
}
};
view! {
/* TO DO */
// switch back to integer-valued parameters when that becomes possible
@ -519,7 +400,6 @@ pub fn Display() -> View {
tabindex="0",
on:keydown=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
roll_cw.set(yaw_right.get());
roll_ccw.set(yaw_left.get());
zoom_in.set(pitch_up.get());
@ -528,24 +408,16 @@ pub fn Display() -> View {
yaw_left.set(0.0);
pitch_up.set(0.0);
pitch_down.set(0.0);
// swap manipulation inputs
translate_pos_z.set(translate_neg_y.get());
translate_neg_z.set(translate_pos_y.get());
translate_pos_y.set(0.0);
translate_neg_y.set(0.0);
} else {
if event.key() == "Enter" { /* BENCHMARKING */
turntable.set_fn(|turn| !turn);
scene_changed.set(true);
}
set_nav_signal(&event, 1.0);
set_manip_signal(&event, 1.0);
set_nav_signal(event, 1.0);
}
},
on:keyup=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
yaw_right.set(roll_cw.get());
yaw_left.set(roll_ccw.get());
pitch_up.set(zoom_in.get());
@ -554,15 +426,8 @@ pub fn Display() -> View {
roll_ccw.set(0.0);
zoom_in.set(0.0);
zoom_out.set(0.0);
// swap manipulation inputs
translate_pos_y.set(translate_neg_z.get());
translate_neg_y.set(translate_pos_z.get());
translate_pos_z.set(0.0);
translate_neg_z.set(0.0);
} else {
set_nav_signal(&event, 0.0);
set_manip_signal(&event, 0.0);
set_nav_signal(event, 0.0);
}
},
on:blur=move |_| {
@ -572,31 +437,6 @@ pub fn Display() -> View {
yaw_left.set(0.0);
roll_ccw.set(0.0);
roll_cw.set(0.0);
},
on:click=move |event: MouseEvent| {
// find the nearest element along the pointer direction
let dir = event_dir(&event);
console::log_1(&JsValue::from(dir.to_string()));
let mut clicked: Option<(ElementKey, f64)> = None;
for (key, elt) in state.assembly.elements.get_clone_untracked() {
match assembly_to_world.with(|asm_to_world| elt.cast(dir, asm_to_world)) {
Some(depth) => match clicked {
Some((_, best_depth)) => {
if depth < best_depth {
clicked = Some((key, depth))
}
},
None => clicked = Some((key, depth))
}
None => ()
};
}
// if we clicked something, select it
match clicked {
Some((key, _)) => state.select(key, event.shift_key()),
None => state.selection.update(|sel| sel.clear())
};
}
)
}

View File

@ -1,13 +1,4 @@
use lazy_static::lazy_static;
use nalgebra::{Const, DMatrix, DVector, DVectorView, Dyn, SymmetricEigen};
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
// --- elements ---
#[cfg(feature = "dev")]
pub fn point(x: f64, y: f64, z: f64) -> DVector<f64> {
DVector::from_column_slice(&[x, y, z, 0.5, 0.5*(x*x + y*y + z*z)])
}
use nalgebra::DVector;
// the sphere with the given center and radius, with inward-pointing normals
pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVector<f64> {
@ -33,544 +24,4 @@ pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f6
0.5 * curv,
off * (1.0 + 0.5 * off * curv)
])
}
// --- partial matrices ---
struct MatrixEntry {
index: (usize, usize),
value: f64
}
pub struct PartialMatrix(Vec<MatrixEntry>);
impl PartialMatrix {
pub fn new() -> PartialMatrix {
PartialMatrix(Vec::<MatrixEntry>::new())
}
pub fn push_sym(&mut self, row: usize, col: usize, value: f64) {
let PartialMatrix(entries) = self;
entries.push(MatrixEntry { index: (row, col), value: value });
if row != col {
entries.push(MatrixEntry { index: (col, row), value: value });
}
}
/* DEBUG */
pub fn log_to_console(&self) {
let PartialMatrix(entries) = self;
for ent in entries {
let ent_str = format!(" {} {} {}", ent.index.0, ent.index.1, ent.value);
console::log_1(&JsValue::from(ent_str.as_str()));
}
}
fn proj(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(a.nrows(), a.ncols());
let PartialMatrix(entries) = self;
for ent in entries {
result[ent.index] = a[ent.index];
}
result
}
fn sub_proj(&self, rhs: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
let PartialMatrix(entries) = self;
for ent in entries {
result[ent.index] = ent.value - rhs[ent.index];
}
result
}
}
// --- configuration subspaces ---
#[derive(Clone)]
pub struct ConfigSubspace {
assembly_dim: usize,
basis: Vec<DMatrix<f64>>
}
impl ConfigSubspace {
pub fn zero(assembly_dim: usize) -> ConfigSubspace {
ConfigSubspace {
assembly_dim: assembly_dim,
basis: Vec::new()
}
}
// approximate the kernel of a symmetric endomorphism of the configuration
// space for `assembly_dim` elements. we consider an eigenvector to be part
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
fn symmetric_kernel(a: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
const ELEMENT_DIM: usize = 5;
const THRESHOLD: f64 = 1.0e-4;
let eig = SymmetricEigen::new(a);
let eig_vecs = eig.eigenvectors.column_iter();
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
let basis = eig_pairs.filter_map(
|(λ, v)| (λ.abs() < THRESHOLD).then_some(
Into::<DMatrix<f64>>::into(
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
)
)
);
/* DEBUG */
// print the eigenvalues
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
console::log_1(&JsValue::from(
format!("Eigenvalues used to find kernel:{}", eig.eigenvalues)
));
ConfigSubspace {
assembly_dim: assembly_dim,
basis: basis.collect()
}
}
pub fn dim(&self) -> usize {
self.basis.len()
}
pub fn assembly_dim(&self) -> usize {
self.assembly_dim
}
// find the projection onto this subspace, with respect to the Euclidean
// inner product, of the motion where the element with the given column
// index has velocity `v`
pub fn proj(&self, v: &DVectorView<f64>, column_index: usize) -> DMatrix<f64> {
if self.dim() == 0 {
const ELEMENT_DIM: usize = 5;
DMatrix::zeros(ELEMENT_DIM, self.assembly_dim)
} else {
self.basis.iter().map(
|b| b.column(column_index).dot(&v) * b
).sum()
}
}
}
// --- descent history ---
pub struct DescentHistory {
pub config: Vec<DMatrix<f64>>,
pub scaled_loss: Vec<f64>,
pub neg_grad: Vec<DMatrix<f64>>,
pub min_eigval: Vec<f64>,
pub base_step: Vec<DMatrix<f64>>,
pub backoff_steps: Vec<i32>
}
impl DescentHistory {
fn new() -> DescentHistory {
DescentHistory {
config: Vec::<DMatrix<f64>>::new(),
scaled_loss: Vec::<f64>::new(),
neg_grad: Vec::<DMatrix<f64>>::new(),
min_eigval: Vec::<f64>::new(),
base_step: Vec::<DMatrix<f64>>::new(),
backoff_steps: Vec::<i32>::new(),
}
}
}
// --- gram matrix realization ---
// the Lorentz form
lazy_static! {
pub static ref Q: DMatrix<f64> = DMatrix::from_row_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, -2.0,
0.0, 0.0, 0.0, -2.0, 0.0
]);
}
struct SearchState {
config: DMatrix<f64>,
err_proj: DMatrix<f64>,
loss: f64
}
impl SearchState {
fn from_config(gram: &PartialMatrix, config: DMatrix<f64>) -> SearchState {
let err_proj = gram.sub_proj(&(config.tr_mul(&*Q) * &config));
let loss = err_proj.norm_squared();
SearchState {
config: config,
err_proj: err_proj,
loss: loss
}
}
}
fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(nrows, ncols);
result[index] = 1.0;
result
}
// use backtracking line search to find a better configuration
fn seek_better_config(
gram: &PartialMatrix,
state: &SearchState,
base_step: &DMatrix<f64>,
base_target_improvement: f64,
min_efficiency: f64,
backoff: f64,
max_backoff_steps: i32
) -> Option<(SearchState, i32)> {
let mut rate = 1.0;
for backoff_steps in 0..max_backoff_steps {
let trial_config = &state.config + rate * base_step;
let trial_state = SearchState::from_config(gram, trial_config);
let improvement = state.loss - trial_state.loss;
if improvement >= min_efficiency * rate * base_target_improvement {
return Some((trial_state, backoff_steps));
}
rate *= backoff;
}
None
}
// seek a matrix `config` for which `config' * Q * config` matches the partial
// matrix `gram`. use gradient descent starting from `guess`
pub fn realize_gram(
gram: &PartialMatrix,
guess: DMatrix<f64>,
frozen: &[(usize, usize)],
scaled_tol: f64,
min_efficiency: f64,
backoff: f64,
reg_scale: f64,
max_descent_steps: i32,
max_backoff_steps: i32
) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
// start the descent history
let mut history = DescentHistory::new();
// find the dimension of the search space
let element_dim = guess.nrows();
let assembly_dim = guess.ncols();
let total_dim = element_dim * assembly_dim;
// scale the tolerance
let scale_adjustment = (gram.0.len() as f64).sqrt();
let tol = scale_adjustment * scaled_tol;
// convert the frozen indices to stacked format
let frozen_stacked: Vec<usize> = frozen.into_iter().map(
|index| index.1*element_dim + index.0
).collect();
// use Newton's method with backtracking and gradient descent backup
let mut state = SearchState::from_config(gram, guess);
let mut hess = DMatrix::zeros(element_dim, assembly_dim);
for _ in 0..max_descent_steps {
// find the negative gradient of the loss function
let neg_grad = 4.0 * &*Q * &state.config * &state.err_proj;
let mut neg_grad_stacked = neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
history.neg_grad.push(neg_grad.clone());
// find the negative Hessian of the loss function
let mut hess_cols = Vec::<DVector<f64>>::with_capacity(total_dim);
for col in 0..assembly_dim {
for row in 0..element_dim {
let index = (row, col);
let basis_mat = basis_matrix(index, element_dim, assembly_dim);
let neg_d_err =
basis_mat.tr_mul(&*Q) * &state.config
+ state.config.tr_mul(&*Q) * &basis_mat;
let neg_d_err_proj = gram.proj(&neg_d_err);
let deriv_grad = 4.0 * &*Q * (
-&basis_mat * &state.err_proj
+ &state.config * &neg_d_err_proj
);
hess_cols.push(deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
}
}
hess = DMatrix::from_columns(hess_cols.as_slice());
// regularize the Hessian
let min_eigval = hess.symmetric_eigenvalues().min();
if min_eigval <= 0.0 {
hess -= reg_scale * min_eigval * DMatrix::identity(total_dim, total_dim);
}
history.min_eigval.push(min_eigval);
// project the negative gradient and negative Hessian onto the
// orthogonal complement of the frozen subspace
let zero_col = DVector::zeros(total_dim);
let zero_row = zero_col.transpose();
for &k in &frozen_stacked {
neg_grad_stacked[k] = 0.0;
hess.set_row(k, &zero_row);
hess.set_column(k, &zero_col);
hess[(k, k)] = 1.0;
}
// stop if the loss is tolerably low
history.config.push(state.config.clone());
history.scaled_loss.push(state.loss / scale_adjustment);
if state.loss < tol { break; }
// compute the Newton step
/*
we need to either handle or eliminate the case where the minimum
eigenvalue of the Hessian is zero, so the regularized Hessian is
singular. right now, this causes the Cholesky decomposition to return
`None`, leading to a panic when we unrap
*/
let base_step_stacked = hess.clone().cholesky().unwrap().solve(&neg_grad_stacked);
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
history.base_step.push(base_step.clone());
// use backtracking line search to find a better configuration
match seek_better_config(
gram, &state, &base_step, neg_grad.dot(&base_step),
min_efficiency, backoff, max_backoff_steps
) {
Some((better_state, backoff_steps)) => {
state = better_state;
history.backoff_steps.push(backoff_steps);
},
None => return (state.config, ConfigSubspace::zero(assembly_dim), false, history)
};
}
let success = state.loss < tol;
let tangent = if success {
ConfigSubspace::symmetric_kernel(hess, assembly_dim)
} else {
ConfigSubspace::zero(assembly_dim)
};
(state.config, tangent, success, history)
}
// --- tests ---
// this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article
// below includes a nice translation of the problem statement, which was
// recorded in Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and
// Present_)
//
// "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
// https://www.nippon.com/en/japan-topics/c12801/
//
#[cfg(feature = "dev")]
pub mod irisawa {
use std::{array, f64::consts::PI};
use super::*;
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for s in 0..9 {
// each sphere is represented by a spacelike vector
gram_to_be.push_sym(s, s, 1.0);
// the circumscribing sphere is tangent to all of the other
// spheres, with matching orientation
if s > 0 {
gram_to_be.push_sym(0, s, 1.0);
}
if s > 2 {
// each chain sphere is tangent to the "sun" and "moon"
// spheres, with opposing orientation
for n in 1..3 {
gram_to_be.push_sym(s, n, -1.0);
}
// each chain sphere is tangent to the next chain sphere,
// with opposing orientation
let s_next = 3 + (s-2) % 6;
gram_to_be.push_sym(s, s_next, -1.0);
}
}
gram_to_be
};
let guess = DMatrix::from_columns(
[
sphere(0.0, 0.0, 0.0, 15.0),
sphere(0.0, 0.0, -9.0, 5.0),
sphere(0.0, 0.0, 11.0, 3.0)
].into_iter().chain(
(1..=6).map(
|k| {
let ang = (k as f64) * PI/3.0;
sphere(9.0 * ang.cos(), 9.0 * ang.sin(), 0.0, 2.5)
}
)
).collect::<Vec<_>>().as_slice()
);
// the frozen entries fix the radii of the circumscribing sphere, the
// "sun" and "moon" spheres, and one of the chain spheres
let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k));
realize_gram(
&gram, guess, &frozen,
scaled_tol, 0.5, 0.9, 1.1, 200, 110
)
}
}
#[cfg(test)]
mod tests {
use super::{*, irisawa::realize_irisawa_hexlet};
#[test]
fn sub_proj_test() {
let target = PartialMatrix(vec![
MatrixEntry { index: (0, 0), value: 19.0 },
MatrixEntry { index: (0, 2), value: 39.0 },
MatrixEntry { index: (1, 1), value: 59.0 },
MatrixEntry { index: (1, 2), value: 69.0 }
]);
let attempt = DMatrix::<f64>::from_row_slice(2, 3, &[
1.0, 2.0, 3.0,
4.0, 5.0, 6.0
]);
let expected_result = DMatrix::<f64>::from_row_slice(2, 3, &[
18.0, 0.0, 36.0,
0.0, 54.0, 63.0
]);
assert_eq!(target.sub_proj(&attempt), expected_result);
}
#[test]
fn zero_loss_test() {
let gram = PartialMatrix({
let mut entries = Vec::<MatrixEntry>::new();
for j in 0..3 {
for k in 0..3 {
entries.push(MatrixEntry {
index: (j, k),
value: if j == k { 1.0 } else { -1.0 }
});
}
}
entries
});
let config = {
let a: f64 = 0.75_f64.sqrt();
DMatrix::from_columns(&[
sphere(1.0, 0.0, 0.0, a),
sphere(-0.5, a, 0.0, a),
sphere(-0.5, -a, 0.0, a)
])
};
let state = SearchState::from_config(&gram, config);
assert!(state.loss.abs() < f64::EPSILON);
}
#[test]
fn irisawa_hexlet_test() {
// solve Irisawa's problem
const SCALED_TOL: f64 = 1.0e-12;
let (config, _, _, _) = realize_irisawa_hexlet(SCALED_TOL);
// check against Irisawa's solution
let entry_tol = SCALED_TOL.sqrt();
let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0];
for (k, diam) in solution_diams.into_iter().enumerate() {
assert!((config[(3, k)] - 1.0 / diam).abs() < entry_tol);
}
}
#[test]
fn tangent_test() {
const SCALED_TOL: f64 = 1.0e-12;
const ELEMENT_DIM: usize = 5;
const ASSEMBLY_DIM: usize = 3;
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..3 {
for k in j..3 {
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
sphere(0.0, 0.0, 0.0, -2.0),
sphere(0.0, 0.0, 1.0, 1.0),
sphere(0.0, 0.0, -1.0, 1.0)
]);
let frozen: [_; 5] = std::array::from_fn(|k| (k, 0));
let (config, tangent, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(config, guess);
assert_eq!(success, true);
assert_eq!(history.scaled_loss.len(), 1);
// confirm that the tangent space has dimension five or less
let ConfigSubspace(ref tangent_basis) = tangent;
assert_eq!(tangent_basis.len(), 5);
// confirm that the tangent space contains all the motions we expect it
// to. since we've already bounded the dimension of the tangent space,
// this confirms that the tangent space is what we expect it to be
let tangent_motions = vec![
basis_matrix((0, 1), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((1, 1), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((0, 2), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((1, 2), ELEMENT_DIM, ASSEMBLY_DIM),
DMatrix::<f64>::from_column_slice(ELEMENT_DIM, 3, &[
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, -1.0, -0.25, -1.0,
0.0, 0.0, -1.0, 0.25, 1.0
])
];
let tol_sq = ((ELEMENT_DIM * ASSEMBLY_DIM) as f64) * SCALED_TOL * SCALED_TOL;
for motion in tangent_motions {
let motion_proj: DMatrix<_> = motion.column_iter().enumerate().map(
|(k, v)| tangent.proj(&v, k)
).sum();
assert!((motion - motion_proj).norm_squared() < tol_sq);
}
}
// at the frozen indices, the optimization steps should have exact zeros,
// and the realized configuration should match the initial guess
#[test]
fn frozen_entry_test() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..2 {
for k in j..2 {
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
let frozen = [(3, 0), (3, 1)];
println!();
let (config, _, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(success, true);
for base_step in history.base_step.into_iter() {
for index in frozen {
assert_eq!(base_step[index], 0.0);
}
}
for index in frozen {
assert_eq!(config[index], guess[index]);
}
}
}

View File

@ -1 +0,0 @@
pub mod engine;

View File

@ -8,14 +8,14 @@ use rustc_hash::FxHashSet;
use sycamore::prelude::*;
use add_remove::AddRemove;
use assembly::{Assembly, ElementKey};
use assembly::Assembly;
use display::Display;
use outline::Outline;
#[derive(Clone)]
struct AppState {
assembly: Assembly,
selection: Signal<FxHashSet<ElementKey>>
selection: Signal<FxHashSet<usize>>
}
impl AppState {
@ -25,31 +25,9 @@ impl AppState {
selection: create_signal(FxHashSet::default())
}
}
// in single-selection mode, select the element with the given key. in
// multiple-selection mode, toggle whether the element with the given key
// is selected
fn select(&self, key: ElementKey, multi: bool) {
if multi {
self.selection.update(|sel| {
if !sel.remove(&key) {
sel.insert(key);
}
});
} else {
self.selection.update(|sel| {
sel.clear();
sel.insert(key);
});
}
}
}
fn main() {
// set the console error panic hook
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| {
provide_context(AppState::new());

View File

@ -1,180 +1,26 @@
use itertools::Itertools;
use sycamore::prelude::*;
use web_sys::{
Event,
HtmlInputElement,
KeyboardEvent,
MouseEvent,
wasm_bindgen::JsCast
};
use sycamore::{prelude::*, web::tags::div};
use web_sys::{Element, KeyboardEvent, MouseEvent, wasm_bindgen::JsCast};
use crate::{AppState, assembly, assembly::{Constraint, ConstraintKey, ElementKey}};
use crate::AppState;
// an editable view of the Lorentz product representing a constraint
#[component(inline_props)]
fn LorentzProductInput(constraint: Constraint) -> View {
view! {
input(
r#type="text",
bind:value=constraint.lorentz_prod_text,
on:change=move |event: Event| {
let target: HtmlInputElement = event.target().unwrap().unchecked_into();
match target.value().parse::<f64>() {
Ok(lorentz_prod) => batch(|| {
constraint.lorentz_prod.set(lorentz_prod);
constraint.lorentz_prod_valid.set(true);
}),
Err(_) => constraint.lorentz_prod_valid.set(false)
};
}
)
}
}
// a list item that shows a constraint in an outline view of an element
#[component(inline_props)]
fn ConstraintOutlineItem(constraint_key: ConstraintKey, element_key: ElementKey) -> View {
let state = use_context::<AppState>();
let assembly = &state.assembly;
let constraint = assembly.constraints.with(|csts| csts[constraint_key].clone());
let other_subject = if constraint.subjects.0 == element_key {
constraint.subjects.1
} else {
constraint.subjects.0
};
let other_subject_label = assembly.elements.with(|elts| elts[other_subject].label.clone());
let class = constraint.lorentz_prod_valid.map(
|&lorentz_prod_valid| if lorentz_prod_valid { "constraint" } else { "constraint invalid" }
);
view! {
li(class=class.get()) {
input(r#type="checkbox", bind:checked=constraint.active)
div(class="constraint-label") { (other_subject_label) }
LorentzProductInput(constraint=constraint)
div(class="status")
}
}
}
// a list item that shows an element in an outline view of an assembly
#[component(inline_props)]
fn ElementOutlineItem(key: ElementKey, element: assembly::Element) -> View {
let state = use_context::<AppState>();
let class = state.selection.map(
move |sel| if sel.contains(&key) { "selected" } else { "" }
);
let label = element.label.clone();
let rep_components = element.representation.map(
|rep| rep.iter().map(
|u| format!("{:.3}", u).replace("-", "\u{2212}")
).collect()
);
let constrained = element.constraints.map(|csts| csts.len() > 0);
let constraint_list = element.constraints.map(
|csts| csts.clone().into_iter().collect()
);
let details_node = create_node_ref();
view! {
li {
details(ref=details_node) {
summary(
class=class.get(),
on:keydown={
move |event: KeyboardEvent| {
match event.key().as_str() {
"Enter" => {
state.select(key, event.shift_key());
event.prevent_default();
},
"ArrowRight" if constrained.get() => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.set_attribute("open", "");
},
"ArrowLeft" => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.remove_attribute("open");
},
_ => ()
}
}
}
) {
div(
class="element-switch",
on:click=|event: MouseEvent| event.stop_propagation()
)
div(
class="element",
on:click={
move |event: MouseEvent| {
if event.shift_key() {
state.selection.update(|sel| {
if !sel.remove(&key) {
sel.insert(key);
}
});
} else {
state.selection.update(|sel| {
sel.clear();
sel.insert(key);
});
}
event.stop_propagation();
event.prevent_default();
}
}
) {
div(class="element-label") { (label) }
div(class="element-representation") {
Indexed(
list=rep_components,
view=|coord_str| view! {
div { (coord_str) }
}
)
}
div(class="status")
}
}
ul(class="constraints") {
Keyed(
list=constraint_list,
view=move |cst_key| view! {
ConstraintOutlineItem(
constraint_key=cst_key,
element_key=key
)
},
key=|cst_key| cst_key.clone()
)
}
}
}
}
}
// a component that lists the elements of the current assembly, showing the
// constraints on each element as a collapsible sub-list. its implementation
// is based on Kate Morley's HTML + CSS tree views:
// this component lists the elements of the assembly, showing the constraints
// on each element as a collapsible sub-list. its implementation is based on
// Kate Morley's HTML + CSS tree views:
//
// https://iamkate.com/code/tree-views/
//
#[component]
pub fn Outline() -> View {
let state = use_context::<AppState>();
// list the elements alphabetically by ID
let element_list = state.assembly.elements.map(
|elts| elts
.clone()
// sort the elements alphabetically by ID
let elements_sorted = create_memo(|| {
let state = use_context::<AppState>();
state.assembly.elements
.get_clone()
.into_iter()
.sorted_by_key(|(_, elt)| elt.id.clone())
.collect()
);
});
view! {
ul(
@ -185,11 +31,130 @@ pub fn Outline() -> View {
}
) {
Keyed(
list=element_list,
view=|(key, elt)| view! {
ElementOutlineItem(key=key, element=elt)
list=elements_sorted,
view=|(key, elt)| {
let state = use_context::<AppState>();
let class = create_memo({
move || {
if state.selection.with(|sel| sel.contains(&key)) {
"selected"
} else {
""
}
}
});
let label = elt.label.clone();
let rep_components = elt.rep.iter().map(|u| {
let u_coord = u.to_string().replace("-", "\u{2212}");
View::from(div().children(u_coord))
}).collect::<Vec<_>>();
let constrained = elt.constraints.len() > 0;
let details_node = create_node_ref();
view! {
/* [TO DO] switch to integer-valued parameters whenever
that becomes possible again */
li {
details(ref=details_node) {
summary(
class=class.get(),
on:keydown={
move |event: KeyboardEvent| {
match event.key().as_str() {
"Enter" => {
if event.shift_key() {
state.selection.update(|sel| {
if !sel.remove(&key) {
sel.insert(key);
}
});
} else {
state.selection.update(|sel| {
sel.clear();
sel.insert(key);
});
}
event.prevent_default();
},
"ArrowRight" if constrained => {
let _ = details_node
.get()
.unchecked_into::<Element>()
.set_attribute("open", "");
},
"ArrowLeft" => {
let _ = details_node
.get()
.unchecked_into::<Element>()
.remove_attribute("open");
},
_ => ()
}
}
}
) {
div(
class="elt-switch",
on:click=|event: MouseEvent| event.stop_propagation()
)
div(
class="elt",
on:click={
move |event: MouseEvent| {
if event.shift_key() {
state.selection.update(|sel| {
if !sel.remove(&key) {
sel.insert(key);
}
});
} else {
state.selection.update(|sel| {
sel.clear();
sel.insert(key);
});
}
event.stop_propagation();
event.prevent_default();
}
}
) {
div(class="elt-label") { (label) }
div(class="elt-rep") { (rep_components) }
}
}
ul(class="constraints") {
Keyed(
list=elt.constraints.into_iter().collect::<Vec<_>>(),
view=move |c_key: usize| {
let c_state = use_context::<AppState>();
let assembly = &c_state.assembly;
let cst = assembly.constraints.with(|csts| csts[c_key].clone());
let other_arg = if cst.args.0 == key {
cst.args.1
} else {
cst.args.0
};
let other_arg_label = assembly.elements.with(|elts| elts[other_arg].label.clone());
view! {
li(class="cst") {
input(r#type="checkbox", bind:checked=cst.active)
div(class="cst-label") { (other_arg_label) }
div(class="cst-rep") { (cst.rep) }
}
}
},
key=|c_key| c_key.clone()
)
}
}
}
}
},
key=|(_, elt)| elt.serial
key=|(key, elt)| (
key.clone(),
elt.id.clone(),
elt.label.clone(),
elt.constraints.clone()
)
)
}
}

View File

@ -8,8 +8,7 @@ using Optim
export
rand_on_shell, Q, DescentHistory,
realize_gram_gradient, realize_gram_newton, realize_gram_optim,
realize_gram_alt_proj, realize_gram
realize_gram_gradient, realize_gram_newton, realize_gram_optim, realize_gram
# === guessing ===
@ -144,7 +143,7 @@ function realize_gram_gradient(
break
end
# find the negative gradient of the loss function
# find negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
slope = norm(neg_grad)
dir = neg_grad / slope
@ -233,7 +232,7 @@ function realize_gram_newton(
break
end
# find the negative gradient of the loss function
# find the negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
@ -314,129 +313,6 @@ function realize_gram_optim(
)
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`, with an
# alternate technique for finding the projected base step from the unprojected
# Hessian
function realize_gram_alt_proj(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T},
frozen = CartesianIndex[];
scaled_tol = 1e-30,
min_efficiency = 0.5,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# convert the frozen indices to stacked format
frozen_stacked = [(index[2]-1)*element_dim + index[1] for index in frozen]
# initialize search state
L = copy(guess)
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# use Newton's method with backtracking and gradient descent backup
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess_sym = Hermitian(hess)
push!(history.hess, hess_sym)
# regularize the Hessian
min_eigval = minimum(eigvals(hess_sym))
push!(history.positive, min_eigval > 0)
if min_eigval <= 0
hess -= reg_scale * min_eigval * I
end
# compute the Newton step
neg_grad_stacked = reshape(neg_grad, total_dim)
for k in frozen_stacked
neg_grad_stacked[k] = 0
hess[k, :] .= 0
hess[:, k] .= 0
hess[k, k] = 1
end
base_step_stacked = Hermitian(hess) \ neg_grad_stacked
base_step = reshape(base_step_stacked, dims)
push!(history.base_step, base_step)
# store the current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, norm(neg_grad))
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
rate = one(T)
step_success = false
base_target_improvement = dot(neg_grad, base_step)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * base_target_improvement
history.backoff_steps[end] = backoff_steps
step_success = true
break
end
rate *= backoff
end
# if we've hit a wall, quit
if !step_success
return L_last, false, history
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, loss < tol, history
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`
function realize_gram(
@ -445,6 +321,7 @@ function realize_gram(
frozen = nothing;
scaled_tol = 1e-30,
min_efficiency = 0.5,
init_rate = 1.0,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
@ -475,19 +352,20 @@ function realize_gram(
unfrozen_stacked = reshape(is_unfrozen, total_dim)
end
# initialize search state
# initialize variables
grad_rate = init_rate
L = copy(guess)
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# use Newton's method with backtracking and gradient descent backup
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of the loss function
# find the negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
@ -542,7 +420,6 @@ function realize_gram(
empty!(history.last_line_loss)
rate = one(T)
step_success = false
base_target_improvement = dot(neg_grad, base_step)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
@ -551,7 +428,7 @@ function realize_gram(
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * base_target_improvement
if improvement >= min_efficiency * rate * dot(neg_grad, base_step)
history.backoff_steps[end] = backoff_steps
step_success = true
break

View File

@ -74,13 +74,4 @@ if success
for k in 5:9
println(" ", 1 / L[4,k], " sun")
end
end
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
end

View File

@ -64,13 +64,4 @@ else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
println("Loss: ", history.scaled_loss[end], "\n")

View File

@ -93,13 +93,4 @@ if success
infty = BigFloat[0, 0, 0, 0, 1]
radius_ratio = dot(infty, Engine.Q * L[:,5]) / dot(infty, Engine.Q * L[:,6])
println("\nCircumradius / inradius: ", radius_ratio)
end
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
end

View File

@ -41,25 +41,3 @@ I will have to work out formulas for the Euclidean distance between two entities
In this vein, it seems as though if J1 and J2 are the reps of two points, then Q(J1,J2) = d^2/2. So then the sphere centered at J1 through J2 is (J1-(2Q(J1,J2),0,0,0,0))/sqrt(2Q(J1,J2)). Ugh has a sqrt in it. Similarly for sphere centered at J3 through J2, (J3-(2Q(J3,J2),0000))/sqrt(2Q(J3,J2)). J1,J2,J3 are collinear if these spheres are tangent, i.e. if those vectors have Q-inner-product 1, which is to say Q(J1,J3) - Q(J1,J2) - Q(J3,J2) = 2sqrt(Q(J1,J2)Q(J2,J3)). But maybe that's not the simplest way of putting it. After all, we can just say that the cross-product of the two differences is 0; that has no square roots in it.
One conceivable way to canonicalize lines is to use the *perpendicular* plane that goes through the origin, that's uniquely defined, and anyway just amounts to I = (0,0,d) where d is the ordinary direction vector of the line; and a point J in that plane that the line goes through, which just amounts to J=(r^2,1,E) with Q(I,J) = 0, i.e. E\dot d = 0. It's also the point on the line closest to the origin. The reason that we don't usually use that point as the companion to the direction vector is that the resulting set of six coordinates is not homogeneous. But here that's not an issue, since we have our standard point coordinates and plane coordinates; and for a plane through the origin, only two of the direction coordinates are really free, and then we have the one dot-product relation, so only two of the point coordinates are really free, giving us the correct dimensionality of 4 for the set of lines. So in some sense this says that we could take naively as coordinates for a line the projection of the unit direction vector to the xy plane and the projection of the line's closest point to the origin to the xy plane. That doesn't seem to have any weird gimbal locks or discontinuities or anything. And with these coordinates, you can test if the point E=x,y,z is on the line (dx,dy,cx,cy) by extending (dx,dy) to d via dz = sqrt(1-dx^2 - dy^2), extending (cx,cy) to c by determining cz via d\dot c = 0, and then checking if d\cross(E-c) = 0. And you can see if two lines are parallel just by checking if they have the same direction vector, and if not, you can see if they are coplanar by projecting both of their closest points perpendicularly onto the line in the direction of the cross product of their directions, and if the projections match they are coplanar.
#### Engine Conventions
The coordinate conventions used in the engine are different from the ones used in these notes. Marking the engine vectors and coordinates with $'$, we have
$$I' = (x', y', z', b', c'),$$
where
$$
\begin{align*}
x' & = x & b' & = b/2 \\
y' & = y & c' & = c/2. \\
z' & = z
\end{align*}
$$
The engine uses the quadratic form $Q' = -Q$, which is expressed in engine coordinates as
$$Q'(I'_1, I'_2) = x'_1 x'_2 + y'_1 y'_2 + z'_1 z'_2 - 2(b'_1c'_2 + c'_1 b'_2).$$
In the `engine` module, the matrix of $Q'$ is encoded in the lazy static variable `Q`.
In the engine's coordinate conventions, a sphere with radius $r > 0$ centered on $P = (P_x, P_y, P_z)$ is represented by the vector
$$I'_s = \left(\frac{P_x}{r}, \frac{P_y}{r}, \frac{P_z}{r}, \frac1{2r}, \frac{\|P\|^2 - r^2}{2r}\right),$$
which has the normalization $Q'(I'_s, I'_s) = 1$. The point $P$ is represented by the vector
$$I'_P = \left(P_x, P_y, P_z, \frac{1}{2}, \frac{\|P\|^2}{2}\right).$$
In the `engine` module, these formulas are encoded in the `sphere` and `point` functions.