Ray-cast two spheres, with hard-coded depth sorting

This commit is contained in:
Aaron Fenyes 2024-08-23 12:56:54 -07:00
parent d2cecf69db
commit 2ef0fdd3e2

View File

@ -73,6 +73,7 @@ fn main() {
let ctrl_x = create_signal(0.0);
let ctrl_y = create_signal(0.0);
let opacity = create_signal(0.6);
let layer_threshold = create_signal(0.0);
let display = create_node_ref();
on_mount(move || {
@ -116,11 +117,14 @@ fn main() {
// controls
uniform vec2 ctrl;
uniform float opacity;
uniform int layer_threshold;
// light and camera
const float focal_slope = 0.3;
const vec3 light_dir = normalize(vec3(2., 2., 1.));
// --- inversive geometry ---
struct vecInv {
vec3 sp;
vec2 lt;
@ -136,7 +140,26 @@ fn main() {
);
}
vec4 shade_sphere(vecInv v, vec3 pt) {
// --- shading ---
struct taggedFrag {
vec4 color;
float depth;
};
taggedFrag[2] sort(taggedFrag a, taggedFrag b) {
taggedFrag[2] result;
if (a.depth < b.depth) {
result[0] = a;
result[1] = b;
} else {
result[0] = b;
result[1] = a;
}
return result;
}
taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color) {
// the expression for normal needs to be checked. it's
// supposed to give the negative gradient of the lorentz
// product between the impact point vector and the sphere
@ -147,20 +170,13 @@ fn main() {
vec3 color;
float incidence = dot(normal_front, light_dir);
if (incidence < 0.) {
color = mix(vec3(0.2, 0.0, 0.4), vec3(0.1, 0.0, 0.2), -incidence);
} else {
color = mix(vec3(0.4, 0.0, 0.2), vec3(1.0, 0.8, 1.0), incidence);
}
return vec4(color, opacity);
float illum = mix(0.4, 1.0, max(incidence, 0.0));
return taggedFrag(vec4(illum * base_color, opacity), -pt.z);
}
void main() {
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
vec3 dir = vec3(focal_slope * scr, -1.);
vecInv v = sphere(vec3(ctrl, -5.), 1.);
// --- ray-casting ---
vec2 sphere_cast(vecInv v, vec3 dir) {
float a = -v.lt.s * dot(dir, dir);
float b = dot(v.sp, dir);
float c = -v.lt.t;
@ -168,18 +184,57 @@ fn main() {
float scale = -b/(2.*a);
float adjust = 4.*a*c/(b*b);
vec3 color = vec3(0.);
if (adjust < 1.) {
float offset = sqrt(1. - adjust);
float u_front = scale * (1. - offset);
float u_back = scale * (1. + offset);
if (u_back > 0.) {
vec4 sphere_color = shade_sphere(v, u_back * dir);
color = mix(color, sphere_color.rgb, sphere_color.a);
}
if (u_front > 0.) {
vec4 sphere_color = shade_sphere(v, u_front * dir);
color = mix(color, sphere_color.rgb, sphere_color.a);
return vec2(
scale * (1. - offset),
scale * (1. + offset)
);
} else {
// these parameters describe points behind the camera,
// so the corresponding fragments won't be drawn
return vec2(-1., -1.);
}
}
void main() {
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
vec3 dir = vec3(focal_slope * scr, -1.);
// initialize two spheres
vecInv v0 = sphere(vec3(0.5, 0.5, -5. + ctrl.x), 1.);
vecInv v1 = sphere(vec3(-0.5, -0.5, -5. + ctrl.y), 1.);
vec3 color0 = vec3(1.0, 0.5, 0.0);
vec3 color1 = vec3(0.0, 0.5, 1.0);
// cast rays through the spheres
vec2 u0 = sphere_cast(v0, dir);
vec2 u1 = sphere_cast(v1, dir);
// shade and depth-sort the impact points
taggedFrag front_hits[2] = sort(
sphere_shading(v0, u0[0] * dir, color0),
sphere_shading(v1, u1[0] * dir, color1)
);
taggedFrag back_hits[2] = sort(
sphere_shading(v0, u0[1] * dir, color0),
sphere_shading(v1, u1[1] * dir, color1)
);
taggedFrag middle_frags[2] = sort(front_hits[1], back_hits[0]);
// finish depth sorting
taggedFrag frags_by_depth[4];
frags_by_depth[0] = front_hits[0];
frags_by_depth[1] = middle_frags[0];
frags_by_depth[2] = middle_frags[1];
frags_by_depth[3] = back_hits[1];
// composite the sphere fragments
vec3 color = vec3(0.);
for (int i = 3; i >= layer_threshold; --i) {
if (frags_by_depth[i].depth > 0.) {
vec4 frag_color = frags_by_depth[i].color;
color = mix(color, frag_color.rgb, frag_color.a);
}
}
outColor = vec4(color, 1.);
@ -208,6 +263,7 @@ fn main() {
let shortdim_loc = ctx.get_uniform_location(&program, "shortdim");
let ctrl_loc = ctx.get_uniform_location(&program, "ctrl");
let opacity_loc = ctx.get_uniform_location(&program, "opacity");
let layer_threshold_loc = ctx.get_uniform_location(&program, "layer_threshold");
// create a vertex array and bind it to the graphics context
let vertex_array = ctx.create_vertex_array().unwrap();
@ -238,6 +294,7 @@ fn main() {
// pass the control parameters
ctx.uniform2f(ctrl_loc.as_ref(), ctrl_x.get() as f32, ctrl_y.get() as f32);
ctx.uniform1f(opacity_loc.as_ref(), opacity.get() as f32);
ctx.uniform1i(layer_threshold_loc.as_ref(), layer_threshold.get() as i32);
// clear the screen and draw the scene
ctx.clear_color(0.0, 0.0, 0.0, 1.0);
@ -253,22 +310,28 @@ fn main() {
type="range",
min=-1.0,
max=1.0,
step=0.01,
step=0.001,
bind:valueAsNumber=ctrl_x
)
input(
type="range",
min=-1.0,
max=1.0,
step=0.01,
step=0.001,
bind:valueAsNumber=ctrl_y
)
input(
type="range",
max=1.0,
step=0.01,
step=0.001,
bind:valueAsNumber=opacity
)
input(
type="range",
max=3.0,
step=1.0,
bind:valueAsNumber=layer_threshold
)
}
}
});