Manipulate the assembly (#29)

feat: Find tangent space of solution variety, use for perturbations

### Tangent space

#### Implementation

The structure `engine::ConfigSubspace` represents a subspace of the configuration vector space $\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^5)$. It holds a basis for the subspace which is orthonormal with respect to the Euclidean inner product. The method `ConfigSubspace::symmetric_kernel` takes an endomorphism of the configuration vector space, which must be symmetric with respect to the Euclidean inner product, and returns its approximate kernel in the form of a `ConfigSubspace`.

At the end of `engine::realize_gram`, we use the computed Hessian to find the tangent space of the solution variety, and we return it alongside the realization. Since altering the constraints can change the tangent space without changing the solution, we compute the tangent space even when the guess passed to the realization routine is already a solution.

After `Assembly::realize` calls `engine::realize_gram`, it saves the returned tangent space in the assembly's `tangent` signal. The basis vectors are stored in configuration matrix format, ordered according to the elements' column indices. To help maintain consistency between the storage layout of the tangent space and the elements' column indices, we switch the column index data type from `usize` to `Option<usize>` and enforce the following invariants:

1. If an element has a column index, its tangent motions can be found in that column of the tangent space basis matrices.
2. If an element is affected by a constraint, it has a column index.

The comments in `assembly.rs` state the invariants and describe how they're enforced.

#### Automated testing

The test `engine::tests::tangent_test` builds a simple assembly with a known tangent space, runs the realization routine, and checks the returned tangent space against a hand-computed basis.

#### Limitations

The method `ConfigSubspace::symmetric_kernel` approximates the kernel by taking all the eigenspaces whose eigenvalues are smaller than a hard-coded threshold size. We may need a more flexible system eventually.

### Deformation

#### Implementation

The main purpose of this implementation is to confirm that deformation works as we'd hoped. The code is messy, and the deformation routine has at least one numerical quirk.

For simplicity, the keyboard commands that manipulate the assembly are handled by the display, just like the keyboard commands that control the camera. Deformation happens at the beginning of the animation loop.

The function `Assembly::deform` works like this:
1. Take a list of element motions
2. Project them onto the tangent space of the solution variety
3. Sum them to get a deformation $v$ of the whole assembly
4. Step the assembly along the "mass shell" geodesic tangent to $v$
   * This step stays on the solution variety to first order
5. Call `realize` to bring the assembly back onto the solution variety

#### Manual testing

To manipulate the assembly:
1. Select a sphere
2. Make sure the display has focus
3. Hold the following keys:
   * **A**/**D** for $x$ translation
   * **W**/**S** for $y$ translation
   * **shift**+**W**/**S** for $z$ translation

#### Limitations

Because the manipulation commands are handled by the display, you can only manipulate the assembly when the display has focus.

Since our test assemblies only include spheres, we assume in `Assembly::deform` that every element is a sphere.

When the tangent space is zero, `Assembly::deform` does nothing except print "The assembly is rigid" to the console.

During a deformation, the curvature and co-curvature components of a sphere's vector representation can exhibit weird discontinuous "swaps" that don't visibly affect how the sphere is drawn. *[I'll write more about this in an issue.]*

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: #29
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
This commit is contained in:
Vectornaut 2024-12-30 22:53:07 +00:00 committed by Glen Whitney
parent b490c8707f
commit 22870342f3
7 changed files with 374 additions and 34 deletions

View File

@ -2,7 +2,7 @@ use dyna3::engine::{Q, irisawa::realize_irisawa_hexlet};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let (config, success, history) = realize_irisawa_hexlet(SCALED_TOL);
let (config, _, success, history) = realize_irisawa_hexlet(SCALED_TOL);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");

View File

@ -18,7 +18,7 @@ fn main() {
]);
let frozen = [(3, 0)];
println!();
let (config, success, history) = realize_gram(
let (config, _, success, history) = realize_gram(
&gram, guess, &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);

View File

@ -21,7 +21,7 @@ fn main() {
])
};
println!();
let (config, success, history) = realize_gram(
let (config, _, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);

View File

@ -1,11 +1,11 @@
use nalgebra::{DMatrix, DVector, Vector3};
use nalgebra::{DMatrix, DVector, DVectorView, Vector3};
use rustc_hash::FxHashMap;
use slab::Slab;
use std::{collections::BTreeSet, sync::atomic::{AtomicU64, Ordering}};
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
use crate::engine::{realize_gram, PartialMatrix};
use crate::engine::{realize_gram, ConfigSubspace, PartialMatrix, Q};
// the types of the keys we use to access an assembly's elements and constraints
pub type ElementKey = usize;
@ -33,8 +33,9 @@ pub struct Element {
pub serial: u64,
// the configuration matrix column index that was assigned to this element
// last time the assembly was realized
column_index: usize
// last time the assembly was realized, or `None` if the element has never
// been through a realization
column_index: Option<usize>
}
impl Element {
@ -62,7 +63,7 @@ impl Element {
representation: create_signal(representation),
constraints: create_signal(BTreeSet::default()),
serial: serial,
column_index: 0
column_index: None
}
}
@ -109,7 +110,6 @@ impl Element {
}
}
}
#[derive(Clone)]
pub struct Constraint {
@ -120,6 +120,13 @@ pub struct Constraint {
pub active: Signal<bool>
}
pub struct ElementMotion<'a> {
pub key: ElementKey,
pub velocity: DVectorView<'a, f64>
}
type AssemblyMotion<'a> = Vec<ElementMotion<'a>>;
// a complete, view-independent description of an assembly
#[derive(Clone)]
pub struct Assembly {
@ -127,6 +134,18 @@ pub struct Assembly {
pub elements: Signal<Slab<Element>>,
pub constraints: Signal<Slab<Constraint>>,
// solution variety tangent space. the basis vectors are stored in
// configuration matrix format, ordered according to the elements' column
// indices. when you realize the assembly, every element that's present
// during realization gets a column index and is reflected in the tangent
// space. since the methods in this module never assign column indices
// without later realizing the assembly, we get the following invariant:
//
// (1) if an element has a column index, its tangent motions can be found
// in that column of the tangent space basis matrices
//
pub tangent: Signal<ConfigSubspace>,
// indexing
pub elements_by_id: Signal<FxHashMap<String, ElementKey>>
}
@ -136,6 +155,7 @@ impl Assembly {
Assembly {
elements: create_signal(Slab::new()),
constraints: create_signal(Slab::new()),
tangent: create_signal(ConfigSubspace::zero(0)),
elements_by_id: create_signal(FxHashMap::default())
}
}
@ -199,7 +219,7 @@ impl Assembly {
// index the elements
self.elements.update_silent(|elts| {
for (index, (_, elt)) in elts.into_iter().enumerate() {
elt.column_index = index;
elt.column_index = Some(index);
}
});
@ -211,8 +231,8 @@ impl Assembly {
for (_, cst) in csts {
if cst.active.get_untracked() && cst.lorentz_prod_valid.get_untracked() {
let subjects = cst.subjects;
let row = elts[subjects.0].column_index;
let col = elts[subjects.1].column_index;
let row = elts[subjects.0].column_index.unwrap();
let col = elts[subjects.1].column_index.unwrap();
gram_to_be.push_sym(row, col, cst.lorentz_prod.get_untracked());
}
}
@ -222,7 +242,7 @@ impl Assembly {
// Gram matrix
let mut guess_to_be = DMatrix::<f64>::zeros(5, elts.len());
for (_, elt) in elts {
let index = elt.column_index;
let index = elt.column_index.unwrap();
gram_to_be.push_sym(index, index, 1.0);
guess_to_be.set_column(index, &elt.representation.get_clone_untracked());
}
@ -247,7 +267,7 @@ impl Assembly {
}
// look for a configuration with the given Gram matrix
let (config, success, history) = realize_gram(
let (config, tangent, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
@ -263,14 +283,111 @@ impl Assembly {
));
console::log_2(&JsValue::from("Steps:"), &JsValue::from(history.scaled_loss.len() - 1));
console::log_2(&JsValue::from("Loss:"), &JsValue::from(*history.scaled_loss.last().unwrap()));
console::log_2(&JsValue::from("Tangent dimension:"), &JsValue::from(tangent.dim()));
if success {
// read out the solution
for (_, elt) in self.elements.get_clone_untracked() {
elt.representation.update(
|rep| rep.set_column(0, &config.column(elt.column_index))
|rep| rep.set_column(0, &config.column(elt.column_index.unwrap()))
);
}
// save the tangent space
self.tangent.set_silent(tangent);
}
}
// --- deformation ---
// project the given motion to the tangent space of the solution variety and
// move the assembly along it. the implementation is based on invariant (1)
// from above and the following additional invariant:
//
// (2) if an element is affected by a constraint, it has a column index
//
// we have this invariant because the assembly gets realized each time you
// add a constraint
pub fn deform(&self, motion: AssemblyMotion) {
/* KLUDGE */
// when the tangent space is zero, deformation won't do anything, but
// the attempt to deform should be registered in the UI. this console
// message will do for now
if self.tangent.with(|tan| tan.dim() <= 0 && tan.assembly_dim() > 0) {
console::log_1(&JsValue::from("The assembly is rigid"));
}
// give a column index to each moving element that doesn't have one yet.
// this temporarily breaks invariant (1), but the invariant will be
// restored when we realize the assembly at the end of the deformation.
// in the process, we find out how many matrix columns we'll need to
// hold the deformation
let realized_dim = self.tangent.with(|tan| tan.assembly_dim());
let motion_dim = self.elements.update_silent(|elts| {
let mut next_column_index = realized_dim;
for elt_motion in motion.iter() {
let moving_elt = &mut elts[elt_motion.key];
if moving_elt.column_index.is_none() {
moving_elt.column_index = Some(next_column_index);
next_column_index += 1;
}
}
next_column_index
});
// project the element motions onto the tangent space of the solution
// variety and sum them to get a deformation of the whole assembly. the
// matrix `motion_proj` that holds the deformation has extra columns for
// any moving elements that aren't reflected in the saved tangent space
const ELEMENT_DIM: usize = 5;
let mut motion_proj = DMatrix::zeros(ELEMENT_DIM, motion_dim);
for elt_motion in motion {
// we can unwrap the column index because we know that every moving
// element has one at this point
let column_index = self.elements.with_untracked(
|elts| elts[elt_motion.key].column_index.unwrap()
);
if column_index < realized_dim {
// this element had a column index when we started, so by
// invariant (1), it's reflected in the tangent space
let mut target_columns = motion_proj.columns_mut(0, realized_dim);
target_columns += self.tangent.with(
|tan| tan.proj(&elt_motion.velocity, column_index)
);
} else {
// this element didn't have a column index when we started, so
// by invariant (2), it's unconstrained
let mut target_column = motion_proj.column_mut(column_index);
target_column += elt_motion.velocity;
}
}
// step each element along the mass shell geodesic that matches its
// velocity in the deformation found above
/* KLUDGE */
// since our test assemblies only include spheres, we assume that every
// element is on the 1 mass shell
for (_, elt) in self.elements.get_clone_untracked() {
elt.representation.update_silent(|rep| {
match elt.column_index {
Some(column_index) => {
let rep_next = &*rep + motion_proj.column(column_index);
let normalizer = rep_next.dot(&(&*Q * &rep_next));
rep.set_column(0, &(rep_next / normalizer));
},
None => {
console::log_1(&JsValue::from(
format!("No velocity to unpack for fresh element \"{}\"", elt.id)
))
}
};
});
}
// bring the configuration back onto the solution variety. this also
// gets the elements' column indices and the saved tangent space back in
// sync
self.realize();
}
}

View File

@ -1,5 +1,5 @@
use core::array;
use nalgebra::{DMatrix, Rotation3, Vector3};
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
use sycamore::{prelude::*, motion::create_raf};
use web_sys::{
console,
@ -14,7 +14,7 @@ use web_sys::{
wasm_bindgen::{JsCast, JsValue}
};
use crate::{AppState, assembly::ElementKey};
use crate::{AppState, assembly::{ElementKey, ElementMotion}};
fn compile_shader(
context: &WebGl2RenderingContext,
@ -123,6 +123,14 @@ pub fn Display() -> View {
let zoom_out = create_signal(0.0);
let turntable = create_signal(false); /* BENCHMARKING */
// manipulation
let translate_neg_x = create_signal(0.0);
let translate_pos_x = create_signal(0.0);
let translate_neg_y = create_signal(0.0);
let translate_pos_y = create_signal(0.0);
let translate_neg_z = create_signal(0.0);
let translate_pos_z = create_signal(0.0);
// change listener
let scene_changed = create_signal(true);
create_effect(move || {
@ -141,6 +149,7 @@ pub fn Display() -> View {
let mut frames_since_last_sample = 0;
let mean_frame_interval = create_signal(0.0);
let assembly_for_raf = state.assembly.clone();
on_mount(move || {
// timing
let mut last_time = 0.0;
@ -153,6 +162,9 @@ pub fn Display() -> View {
let mut rotation = DMatrix::<f64>::identity(5, 5);
let mut location_z: f64 = 5.0;
// manipulation
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
// display parameters
const OPACITY: f32 = 0.5; /* SCAFFOLDING */
const HIGHLIGHT: f32 = 0.2; /* SCAFFOLDING */
@ -273,6 +285,14 @@ pub fn Display() -> View {
let zoom_out_val = zoom_out.get();
let turntable_val = turntable.get(); /* BENCHMARKING */
// get the manipulation state
let translate_neg_x_val = translate_neg_x.get();
let translate_pos_x_val = translate_pos_x.get();
let translate_neg_y_val = translate_neg_y.get();
let translate_pos_y_val = translate_pos_y.get();
let translate_neg_z_val = translate_neg_z.get();
let translate_pos_z_val = translate_pos_z.get();
// update the assembly's orientation
let ang_vel = {
let pitch = pitch_up_val - pitch_down_val;
@ -298,6 +318,41 @@ pub fn Display() -> View {
let zoom = zoom_out_val - zoom_in_val;
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
// manipulate the assembly
if state.selection.with(|sel| sel.len() == 1) {
let sel = state.selection.with(
|sel| *sel.into_iter().next().unwrap()
);
let rep = state.assembly.elements.with_untracked(
|elts| elts[sel].representation.get_clone_untracked()
);
let translate_x = translate_pos_x_val - translate_neg_x_val;
let translate_y = translate_pos_y_val - translate_neg_y_val;
let translate_z = translate_pos_z_val - translate_neg_z_val;
if translate_x != 0.0 || translate_y != 0.0 || translate_z != 0.0 {
let vel_field = {
let u = Vector3::new(translate_x, translate_y, translate_z).normalize();
DMatrix::from_column_slice(5, 5, &[
0.0, 0.0, 0.0, 0.0, u[0],
0.0, 0.0, 0.0, 0.0, u[1],
0.0, 0.0, 0.0, 0.0, u[2],
2.0*u[0], 2.0*u[1], 2.0*u[2], 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0
])
};
let elt_motion: DVector<f64> = time_step * TRANSLATION_SPEED * vel_field * rep;
assembly_for_raf.deform(
vec![
ElementMotion {
key: sel,
velocity: elt_motion.as_view()
}
]
);
scene_changed.set(true);
}
}
if scene_changed.get() {
/* INSTRUMENTS */
// measure mean frame interval
@ -416,7 +471,7 @@ pub fn Display() -> View {
start_animation_loop();
});
let set_nav_signal = move |event: KeyboardEvent, value: f64| {
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
let mut navigating = true;
let shift = event.shift_key();
match event.key().as_str() {
@ -436,6 +491,23 @@ pub fn Display() -> View {
}
};
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
let mut manipulating = true;
let shift = event.shift_key();
match event.key().as_str() {
"d" | "D" => translate_pos_x.set(value),
"a" | "A" => translate_neg_x.set(value),
"w" | "W" if shift => translate_neg_z.set(value),
"s" | "S" if shift => translate_pos_z.set(value),
"w" | "W" => translate_pos_y.set(value),
"s" | "S" => translate_neg_y.set(value),
_ => manipulating = false
};
if manipulating {
event.prevent_default();
}
};
view! {
/* TO DO */
// switch back to integer-valued parameters when that becomes possible
@ -447,6 +519,7 @@ pub fn Display() -> View {
tabindex="0",
on:keydown=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
roll_cw.set(yaw_right.get());
roll_ccw.set(yaw_left.get());
zoom_in.set(pitch_up.get());
@ -455,16 +528,24 @@ pub fn Display() -> View {
yaw_left.set(0.0);
pitch_up.set(0.0);
pitch_down.set(0.0);
// swap manipulation inputs
translate_pos_z.set(translate_neg_y.get());
translate_neg_z.set(translate_pos_y.get());
translate_pos_y.set(0.0);
translate_neg_y.set(0.0);
} else {
if event.key() == "Enter" { /* BENCHMARKING */
turntable.set_fn(|turn| !turn);
scene_changed.set(true);
}
set_nav_signal(event, 1.0);
set_nav_signal(&event, 1.0);
set_manip_signal(&event, 1.0);
}
},
on:keyup=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
yaw_right.set(roll_cw.get());
yaw_left.set(roll_ccw.get());
pitch_up.set(zoom_in.get());
@ -473,8 +554,15 @@ pub fn Display() -> View {
roll_ccw.set(0.0);
zoom_in.set(0.0);
zoom_out.set(0.0);
// swap manipulation inputs
translate_pos_y.set(translate_neg_z.get());
translate_neg_y.set(translate_pos_z.get());
translate_pos_z.set(0.0);
translate_neg_z.set(0.0);
} else {
set_nav_signal(event, 0.0);
set_nav_signal(&event, 0.0);
set_manip_signal(&event, 0.0);
}
},
on:blur=move |_| {

View File

@ -1,5 +1,5 @@
use lazy_static::lazy_static;
use nalgebra::{Const, DMatrix, DVector, Dyn};
use nalgebra::{Const, DMatrix, DVector, DVectorView, Dyn, SymmetricEigen};
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
// --- elements ---
@ -85,6 +85,75 @@ impl PartialMatrix {
}
}
// --- configuration subspaces ---
#[derive(Clone)]
pub struct ConfigSubspace {
assembly_dim: usize,
basis: Vec<DMatrix<f64>>
}
impl ConfigSubspace {
pub fn zero(assembly_dim: usize) -> ConfigSubspace {
ConfigSubspace {
assembly_dim: assembly_dim,
basis: Vec::new()
}
}
// approximate the kernel of a symmetric endomorphism of the configuration
// space for `assembly_dim` elements. we consider an eigenvector to be part
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
fn symmetric_kernel(a: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
const ELEMENT_DIM: usize = 5;
const THRESHOLD: f64 = 1.0e-4;
let eig = SymmetricEigen::new(a);
let eig_vecs = eig.eigenvectors.column_iter();
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
let basis = eig_pairs.filter_map(
|(λ, v)| (λ.abs() < THRESHOLD).then_some(
Into::<DMatrix<f64>>::into(
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
)
)
);
/* DEBUG */
// print the eigenvalues
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
console::log_1(&JsValue::from(
format!("Eigenvalues used to find kernel:{}", eig.eigenvalues)
));
ConfigSubspace {
assembly_dim: assembly_dim,
basis: basis.collect()
}
}
pub fn dim(&self) -> usize {
self.basis.len()
}
pub fn assembly_dim(&self) -> usize {
self.assembly_dim
}
// find the projection onto this subspace, with respect to the Euclidean
// inner product, of the motion where the element with the given column
// index has velocity `v`
pub fn proj(&self, v: &DVectorView<f64>, column_index: usize) -> DMatrix<f64> {
if self.dim() == 0 {
const ELEMENT_DIM: usize = 5;
DMatrix::zeros(ELEMENT_DIM, self.assembly_dim)
} else {
self.basis.iter().map(
|b| b.column(column_index).dot(&v) * b
).sum()
}
}
}
// --- descent history ---
pub struct DescentHistory {
@ -181,7 +250,7 @@ pub fn realize_gram(
reg_scale: f64,
max_descent_steps: i32,
max_backoff_steps: i32
) -> (DMatrix<f64>, bool, DescentHistory) {
) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
// start the descent history
let mut history = DescentHistory::new();
@ -201,12 +270,8 @@ pub fn realize_gram(
// use Newton's method with backtracking and gradient descent backup
let mut state = SearchState::from_config(gram, guess);
let mut hess = DMatrix::zeros(element_dim, assembly_dim);
for _ in 0..max_descent_steps {
// stop if the loss is tolerably low
history.config.push(state.config.clone());
history.scaled_loss.push(state.loss / scale_adjustment);
if state.loss < tol { break; }
// find the negative gradient of the loss function
let neg_grad = 4.0 * &*Q * &state.config * &state.err_proj;
let mut neg_grad_stacked = neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
@ -229,7 +294,7 @@ pub fn realize_gram(
hess_cols.push(deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
}
}
let mut hess = DMatrix::from_columns(hess_cols.as_slice());
hess = DMatrix::from_columns(hess_cols.as_slice());
// regularize the Hessian
let min_eigval = hess.symmetric_eigenvalues().min();
@ -249,6 +314,11 @@ pub fn realize_gram(
hess[(k, k)] = 1.0;
}
// stop if the loss is tolerably low
history.config.push(state.config.clone());
history.scaled_loss.push(state.loss / scale_adjustment);
if state.loss < tol { break; }
// compute the Newton step
/*
we need to either handle or eliminate the case where the minimum
@ -256,7 +326,7 @@ pub fn realize_gram(
singular. right now, this causes the Cholesky decomposition to return
`None`, leading to a panic when we unrap
*/
let base_step_stacked = hess.cholesky().unwrap().solve(&neg_grad_stacked);
let base_step_stacked = hess.clone().cholesky().unwrap().solve(&neg_grad_stacked);
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
history.base_step.push(base_step.clone());
@ -269,10 +339,16 @@ pub fn realize_gram(
state = better_state;
history.backoff_steps.push(backoff_steps);
},
None => return (state.config, false, history)
None => return (state.config, ConfigSubspace::zero(assembly_dim), false, history)
};
}
(state.config, state.loss < tol, history)
let success = state.loss < tol;
let tangent = if success {
ConfigSubspace::symmetric_kernel(hess, assembly_dim)
} else {
ConfigSubspace::zero(assembly_dim)
};
(state.config, tangent, success, history)
}
// --- tests ---
@ -291,7 +367,7 @@ pub mod irisawa {
use super::*;
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, bool, DescentHistory) {
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for s in 0..9 {
@ -399,7 +475,7 @@ mod tests {
fn irisawa_hexlet_test() {
// solve Irisawa's problem
const SCALED_TOL: f64 = 1.0e-12;
let (config, _, _) = realize_irisawa_hexlet(SCALED_TOL);
let (config, _, _, _) = realize_irisawa_hexlet(SCALED_TOL);
// check against Irisawa's solution
let entry_tol = SCALED_TOL.sqrt();
@ -409,6 +485,61 @@ mod tests {
}
}
#[test]
fn tangent_test() {
const SCALED_TOL: f64 = 1.0e-12;
const ELEMENT_DIM: usize = 5;
const ASSEMBLY_DIM: usize = 3;
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..3 {
for k in j..3 {
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
sphere(0.0, 0.0, 0.0, -2.0),
sphere(0.0, 0.0, 1.0, 1.0),
sphere(0.0, 0.0, -1.0, 1.0)
]);
let frozen: [_; 5] = std::array::from_fn(|k| (k, 0));
let (config, tangent, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(config, guess);
assert_eq!(success, true);
assert_eq!(history.scaled_loss.len(), 1);
// confirm that the tangent space has dimension five or less
let ConfigSubspace(ref tangent_basis) = tangent;
assert_eq!(tangent_basis.len(), 5);
// confirm that the tangent space contains all the motions we expect it
// to. since we've already bounded the dimension of the tangent space,
// this confirms that the tangent space is what we expect it to be
let tangent_motions = vec![
basis_matrix((0, 1), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((1, 1), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((0, 2), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((1, 2), ELEMENT_DIM, ASSEMBLY_DIM),
DMatrix::<f64>::from_column_slice(ELEMENT_DIM, 3, &[
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, -1.0, -0.25, -1.0,
0.0, 0.0, -1.0, 0.25, 1.0
])
];
let tol_sq = ((ELEMENT_DIM * ASSEMBLY_DIM) as f64) * SCALED_TOL * SCALED_TOL;
for motion in tangent_motions {
let motion_proj: DMatrix<_> = motion.column_iter().enumerate().map(
|(k, v)| tangent.proj(&v, k)
).sum();
assert!((motion - motion_proj).norm_squared() < tol_sq);
}
}
// at the frozen indices, the optimization steps should have exact zeros,
// and the realized configuration should match the initial guess
#[test]
@ -428,7 +559,7 @@ mod tests {
]);
let frozen = [(3, 0), (3, 1)];
println!();
let (config, success, history) = realize_gram(
let (config, _, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);

View File

@ -46,6 +46,10 @@ impl AppState {
}
fn main() {
// set the console error panic hook
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| {
provide_context(AppState::new());