Write a ray-caster for inversive spheres

This commit is contained in:
Aaron Fenyes 2024-08-22 22:08:34 -07:00
parent f274119da6
commit c78a041dc7

View File

@ -8,7 +8,6 @@
//
extern crate js_sys;
use std::f64::consts::PI as PI;
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
use web_sys::{console, WebGl2RenderingContext, WebGlShader};
@ -71,8 +70,8 @@ fn main() {
console_error_panic_hook::set_once();
sycamore::render(|| {
let turn = create_signal(0.0);
let tip = create_signal(0.0);
let ctrl_x = create_signal(0.0);
let ctrl_y = create_signal(0.0);
let display = create_node_ref();
on_mount(move || {
@ -93,18 +92,10 @@ fn main() {
WebGl2RenderingContext::VERTEX_SHADER,
r##"#version 300 es
in vec3 position;
in vec3 color;
out vec4 vertexColor;
uniform mat4 world_to_clip;
uniform mat3 rotation;
in vec4 position;
void main() {
vec3 world_pos = rotation * position - vec3(0., 0., 6.);
gl_Position = world_to_clip * vec4(world_pos, 1.);
vertexColor = vec4(color, 1.);
gl_Position = position;
}
"##,
);
@ -115,12 +106,68 @@ fn main() {
precision highp float;
in vec4 vertexColor;
out vec4 outColor;
uniform vec2 resolution;
uniform float shortdim;
uniform vec2 ctrl;
struct vecInv {
vec3 sp;
vec2 lt;
};
vecInv sphere(vec3 center, float radius) {
return vecInv(
center / radius,
vec2(
0.5 / radius,
0.5 * (dot(center, center) / radius - radius)
)
);
}
const float focal_slope = 0.3;
const vec3 light_dir = normalize(vec3(2., 2., 1.));
void main() {
outColor = vertexColor;
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
vec3 dir = vec3(focal_slope * scr, -1.);
vecInv v = sphere(vec3(ctrl, -5.), 1.);
float a = -v.lt.s * dot(dir, dir);
float b = dot(v.sp, dir);
float c = -v.lt.t;
float scale = -b/(2.*a);
float adjust = 4.*a*c/(b*b);
float offset = sqrt(1. - adjust);
float u_front = scale * (1. - offset);
float u_back = scale * (1. + offset);
vec3 color;
if (adjust < 1. && u_front > 0.) {
// the expression for normal needs to be checked. it's
// supposed to give the negative gradient of the lorentz
// product between the impact point vector and the sphere
// vector with respect to the coordinates of the impact
// point. i calculated it in my head and decided that
// the result looked good enough for now
vec3 pt_front = u_front * dir;
vec3 normal_front = normalize(-v.sp + 2.*v.lt.s*pt_front);
float incidence = dot(normal_front, light_dir);
if (incidence < 0.) {
color = mix(vec3(0.2, 0.0, 0.4), vec3(0.1, 0.0, 0.2), -incidence);
} else {
color = mix(vec3(0.4, 0.0, 0.2), vec3(1., 0.8, 1.), incidence);
}
} else {
color = vec3(0.);
}
outColor = vec4(color, 1.);
}
"##,
);
@ -142,79 +189,38 @@ fn main() {
// find indices of vertex attributes and uniforms
let position_index = ctx.get_attrib_location(&program, "position") as u32;
let color_index = ctx.get_attrib_location(&program, "color") as u32;
let world_to_clip_loc = ctx.get_uniform_location(&program, "world_to_clip");
let rotation_loc = ctx.get_uniform_location(&program, "rotation");
let resolution_loc = ctx.get_uniform_location(&program, "resolution");
let shortdim_loc = ctx.get_uniform_location(&program, "shortdim");
let ctrl_loc = ctx.get_uniform_location(&program, "ctrl");
// create a vertex array and bind it to the graphics context
let vertex_array = ctx.create_vertex_array().unwrap();
ctx.bind_vertex_array(Some(&vertex_array));
// enable depth testing
ctx.enable(WebGl2RenderingContext::DEPTH_TEST);
// set the projection map
let focal_length = 3.0_f32;
let near_clip = 0.1_f32;
let far_clip = 20_f32;
let depth_inv = 1_f32 / (far_clip - near_clip);
let world_to_clip: [f32; 16] = [
focal_length, 0.0, 0.0, 0.0,
0.0, focal_length, 0.0, 0.0,
0.0, 0.0, -(near_clip + far_clip) * depth_inv, -1.,
0.0, 0.0, -2. * near_clip * far_clip * depth_inv, 0.0
// set the vertex positions
const VERTEX_CNT: usize = 6;
let positions: [f32; 3*VERTEX_CNT] = [
// northwest triangle
-1.0, -1.0, 0.0,
-1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
// southeast triangle
-1.0, -1.0, 0.0,
1.0, 1.0, 0.0,
1.0, -1.0, 0.0
];
ctx.uniform_matrix4fv_with_f32_array(world_to_clip_loc.as_ref(), false, &world_to_clip);
bind_vertex_attrib(&ctx, position_index, 3, &positions);
// set the resolution
let width = canvas.width() as f32;
let height = canvas.height() as f32;
ctx.uniform2f(resolution_loc.as_ref(), width, height);
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// set up a repainting routine
create_effect(move || {
const VERTEX_CNT: usize = 9;
// set the vertex positions
let tip_shift = 4.0/3.0 * tip.get() as f32;
let positions: [f32; 3*VERTEX_CNT] = [
// triangle 1
1.0 - tip_shift, 1.0 - tip_shift, 1.0 - tip_shift,
1.0, -1.0, -1.0,
-1.0, 1.0, -1.0,
// triangle 2
1.0 - tip_shift, 1.0 - tip_shift, 1.0 - tip_shift,
-1.0, 1.0, -1.0,
-1.0, -1.0, 1.0,
// triangle 3
1.0 - tip_shift, 1.0 - tip_shift, 1.0 - tip_shift,
-1.0, -1.0, 1.0,
1.0, -1.0, -1.0
];
bind_vertex_attrib(&ctx, position_index, 3, &positions);
// set the vertex colors
let colors: [f32; 3*VERTEX_CNT] = [
// triangle 1
1.0, 0.0, 0.5,
1.0, 0.0, 0.5,
1.0, 0.0, 0.5,
// triangle 2
0.0, 0.5, 1.0,
0.0, 0.5, 1.0,
0.0, 0.5, 1.0,
// triangle 3
0.5, 0.0, 1.0,
0.5, 0.0, 1.0,
0.5, 0.0, 1.0
];
bind_vertex_attrib(&ctx, color_index, 3, &colors);
// set the rotation
let angle_val = (2.0*PI*turn.get()) as f32;
let angle_cos = angle_val.cos();
let angle_sin = angle_val.sin();
let rotation: [f32; 9] = [
angle_cos, 0.0, angle_sin,
0.0, 1.0, 0.0,
-angle_sin, 0.0, angle_cos,
];
ctx.uniform_matrix3fv_with_f32_array(rotation_loc.as_ref(), false, &rotation);
// pass the control parameters
ctx.uniform2f(ctrl_loc.as_ref(), ctrl_x.get() as f32, ctrl_y.get() as f32);
// clear the screen and draw the scene
ctx.clear_color(0.0, 0.0, 0.0, 1.0);
@ -228,15 +234,17 @@ fn main() {
canvas(ref=display, width="600", height="600")
input(
type="range",
min=-1.0,
max=1.0,
step=0.01,
bind:valueAsNumber=turn
bind:valueAsNumber=ctrl_x
)
input(
type="range",
min=-1.0,
max=1.0,
step=0.01,
bind:valueAsNumber=tip
bind:valueAsNumber=ctrl_y
)
}
}