Compare commits

...
Sign in to create a new pull request.

23 commits
gram ... main

Author SHA1 Message Date
0801200210 Add more test assemblies (#103)
This PR helps probe the capabilities of the engine.

Also adjusts the realization triggering system to reduce redundant realizations as we set an assembly's regulators during loading. Specificially, consolidates all calls to `realize()` into a single effect, which is triggered by the `needs_realization` signal.
Also introduces a `keep_realized` signal and use it to pause realization while loading assemblies, but this signal is planned for removal as ultimately we do not want a separate "mode" of interpreting commands during loading, for maximal reproducibility of results (and simplicity of system).

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#103
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-07-22 22:01:37 +00:00
5864017e6f feat: Engine diagnostics (#92)
Adds a `Diagnostics` component that shows the following diagnostics from the last realization:

- Confirmation of success or a short description of what failed.
- The value of the loss function at each step.
- The spectrum of the Hessian at each step.

The loss and spectrum plots are shown on switchable panels.

Also includes some refactoring/renaming of existing code.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#92
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-07-21 04:18:49 +00:00
4cb3262555 chore: Update Sycamore to 0.9.1 (#91)
Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#91
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-06-26 22:11:02 +00:00
e447e7ea96 Dispatch normalization routines correctly (#87)
Addresses issue #86 by correctly dispatching the routine used to normalize spheres during nudging. Adds a test that would have detected the issue.

Since the tests aren't built for WebAssembly, we have to replace `console::log` with `console_log!` in all of the functions used by `assembly::curvature_drift_test`. We'll eventually want to do this replacement everywhere.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#87
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-06-04 21:01:12 +00:00
a671a8273a Introduce ghost mode for elements (#85)
Allows any element to be put in "ghost mode," decreasing its opacity and making it insensitive to click-to-select. Ghost mode is toggled using a checkbox in the outline view.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#85
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-06-02 15:56:06 +00:00
2adf4669f4 Refactor: Use pointers to refer to elements and regulators (#84)
Previously, dyna3 used storage keys to refer to elements, necessitating passing around element containers to various functions so that they could access the relevant elements. These storage keys have been replaced with reference-counted pointers, used for tasks like these:

- Specifying the subjects of regulators.
- Collecting the regulators each element is subject to
- Handling selection.
- Creating interface components.

Also, systematizes the handling of serial numbers for entities, through a Serial trait.
And updates to rust 1.86 and institutes explicit checking of the rust version.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#84
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-05-06 19:17:30 +00:00
a2478febc1 feat: Points (#82)
Replaces the former sole Element entity by two, Sphere and Point, both implementing an Element trait. Adds Point display, uses the former Element display for Sphere. Adds a new "canned" configuration, and the ability to add, select, and nudge Point entities.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#82
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-05-01 19:25:13 +00:00
360ce12d8b feat: Curvature regulators (#80)
Prior to this commit, there's only one kind of regulator: the one that regulates the inversive distance between two spheres (or, more generally, the Lorentz product between two element representation vectors). Adds a new kind of regulator, which regulates the curvature of a sphere (issue #55). In the process, introduces a general framework based on new traits for organizing and sharing code between different kinds of regulators.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#80
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-04-21 23:40:42 +00:00
23ba5acad7 Add a top-level run command to the "play with prototype" in README (#81)
It's convenient to stay in the top-level directory of a project. This change to the README explains how to run the prototype from the top level.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#81
Co-authored-by: glen <glen@studioinfinity.org>
Co-committed-by: glen <glen@studioinfinity.org>
2025-04-18 04:34:30 +00:00
b86f176151 feat: Continuous integration via Forgejo Actions/runners (#75)
Adds a continuous integration workflow to the repository, using the [Forgejo Actions](https://forgejo.org/docs/next/user/actions/) framework.

Concurrently, Aaron added a [wiki page](https://code.studioinfinity.org/glen/dyna3/wiki/Continuous-integration) to document the continuous integration system. In particular, this page explains how to [run continuous integration checks on a development machine](wiki/Continuous-integration#execution), either directly or in a container.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Reviewed-on: StudioInfinity/dyna3#75
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-04-02 20:31:42 +00:00
2c4fd39c1f refactor: Tidy up engine tests (#72)
### `zero_loss_test`
  - Drop the redundant type hint in the definition of `a`.

  ### `tangent_test_three_spheres`
  - Get the dimension from the expected basis, rather than putting it in by hand.

  ### `tangent_test_kaleidocycle`
  - Factor out the realization code, in the same style as `realize_irisawa_hexlet`.
  - Rename the `irisawa` submodule to `examples`.

  ### `frozen_entry_test`
  - Move up into the section for simpler tests, between `zero_loss_test` and `irisawa_hexlet_test`.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#72
Reviewed-by: Glen Whitney <glen@nobody@nowhere.net>
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-03-12 21:54:56 +00:00
da28bc99d2 Generalize constraints to observables (#48)
Unifies the interface elements for measuring and constraining real-valued observables, as proposed in issue #47. The resulting combination is called a "Regulator," at least in the code. They are presented as text inputs in the table view. When a Regulatore is in measurement mode (has no "set point"), the text field displays its value. Entering a desired value into the text field creates a set point, and then the Regulator acts to (attempt to) constrain the value. Setting the desired value to the empty string switches the observable back to measurement mode. If you enter a desired value that can't be parsed as a floating point number, the regulator input is flagged as invalid and it has no effect on the state of the regulator. The set point can in this case be restored to its previous value (or to no set point if that was its prior state) by pressing the "Esc" key.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Co-authored-by: glen <glen@studioinfinity.org>
Reviewed-on: glen/dyna3#48
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-03-10 23:43:24 +00:00
46324fecc6 Use workaround to keep representation coordinates in order (#46)
This fixes #41 by rendering representation vectors with a static list view rather than an `Indexed` view. The Sycamore maintainer has confirmed that `Indexed` is always supposed to display list items in order, so I think #41 is likely caused by a bug in `Indexed`. We should consider reverting this pull request when the bug is fixed.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#46
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-02-08 06:08:36 +00:00
25017176fd Adjust normalization step of nudge routine (#43)
The brach to be merged partially addresses issue #42 by changing the way we normalize element representations after stepping them in a straight line through configuration space during a nudge. On the main branch, we rescale the whole representation vector. On the branch to be merged, we instead contract the representation vector toward the last coordinate axis by rescaling the spatial and curvature components.

### Improvement in leakage

This change reduces the directional leakage described in #42. For a quantitative comparison, I used the [reproduction prodcedure](issues/42#user-content-leakage) from that issue, holding **W** until the second coordinate of Deimos had increased by 4 units (from 0.6 to 4.6). During this motion, the third coordinate changed by 0.158 units on the main branch, but only 0.007 units on the branch to be merged. In other words, this pull request decreased drift by roughly a factor of 20.

### Neutral changes in oscillation and jitter

This change makes oscillation and jitter happen differently during the reproduction procedures from #42, but I wouldn't describe them as being better or worse.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#43
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-02-06 22:53:41 +00:00
817a446fad Switch to Euclidean-invariant projection onto tangent space of solution variety (#34)
This pull request addresses issues #32 and #33 by projecting nudges onto the tangent space of the solution variety using a Euclidean-invariant inner product, which I'm calling the *uniform* inner product.

### Definition of the uniform inner product

For spheres and planes, the uniform inner product is defined on the tangent space of the hyperboloid $\langle v, v \rangle = 1$. For points, it's defined on the tangent space of the paraboloid $\langle v, v \rangle = 0,\; \langle v, I_\infty \rangle = 1$.

The tangent space of an assembly can be expressed as the direct sum of the tangent spaces of the elements. We extend the uniform inner product to assemblies by declaring the tangent spaces of different elements to be orthogonal.

#### For spheres and planes

If $v = [x, y, z, b, c]^\top$ is on the hyperboloid $\langle v, v \rangle = 1$, the vectors
$$\left[ \begin{array}{c} 2b \\ \cdot \\ \cdot \\ \cdot \\ x \end{array} \right],\;\left[ \begin{array}{c} \cdot \\ 2b \\ \cdot \\ \cdot \\ y \end{array} \right],\;\left[ \begin{array}{c} \cdot \\ \cdot \\ 2b \\ \cdot \\ z \end{array} \right],\;\left[ \begin{array}{l} 2bx \\ 2by \\ 2bz \\ 2b^2 \\ 2bc + 1 \end{array} \right]$$
form a basis for the tangent space of hyperboloid at $v$. We declare this basis to be orthonormal with respect to the uniform inner product.

The first three vectors in the basis are unit-speed translations along the coordinate axes. The last vector moves the surface at unit speed along its normal field. For spheres, this increases the radius at unit rate. For planes, this translates the plane parallel to itself at unit speed. This description makes it clear that the uniform inner product is invariant under Euclidean motions.

#### For points

If $v = [x, y, z, b, c]^\top$ is on the paraboloid $\langle v, v \rangle = 0,\; \langle v, I_\infty \rangle = 1$, the vectors
$$\left[ \begin{array}{c} 2b \\ \cdot \\ \cdot \\ \cdot \\ x \end{array} \right],\;\left[ \begin{array}{c} \cdot \\ 2b \\ \cdot \\ \cdot \\ y \end{array} \right],\;\left[ \begin{array}{c} \cdot \\ \cdot \\ 2b \\ \cdot \\ z \end{array} \right]$$
form a basis for the tangent space of paraboloid at $v$. We declare this basis to be orthonormal with respect to the uniform inner product.

The meanings of the basis vectors, and the argument that the uniform inner product is Euclidean-invariant, are the same as for spheres and planes. In the engine, we pad the basis with $[0, 0, 0, 0, 1]^\top$ to keep the number of uniform coordinates consistent across element types.

### Confirmation of intended behavior

Two new tests confirm that we've corrected the misbehaviors described in issues #32 and #33.

Issue | Test
---|---
#32 | `proj_equivar_test`
#33 | `tangent_test_kaleidocycle`

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#34
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-01-31 19:34:33 +00:00
22870342f3 Manipulate the assembly (#29)
feat: Find tangent space of solution variety, use for perturbations

### Tangent space

#### Implementation

The structure `engine::ConfigSubspace` represents a subspace of the configuration vector space $\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^5)$. It holds a basis for the subspace which is orthonormal with respect to the Euclidean inner product. The method `ConfigSubspace::symmetric_kernel` takes an endomorphism of the configuration vector space, which must be symmetric with respect to the Euclidean inner product, and returns its approximate kernel in the form of a `ConfigSubspace`.

At the end of `engine::realize_gram`, we use the computed Hessian to find the tangent space of the solution variety, and we return it alongside the realization. Since altering the constraints can change the tangent space without changing the solution, we compute the tangent space even when the guess passed to the realization routine is already a solution.

After `Assembly::realize` calls `engine::realize_gram`, it saves the returned tangent space in the assembly's `tangent` signal. The basis vectors are stored in configuration matrix format, ordered according to the elements' column indices. To help maintain consistency between the storage layout of the tangent space and the elements' column indices, we switch the column index data type from `usize` to `Option<usize>` and enforce the following invariants:

1. If an element has a column index, its tangent motions can be found in that column of the tangent space basis matrices.
2. If an element is affected by a constraint, it has a column index.

The comments in `assembly.rs` state the invariants and describe how they're enforced.

#### Automated testing

The test `engine::tests::tangent_test` builds a simple assembly with a known tangent space, runs the realization routine, and checks the returned tangent space against a hand-computed basis.

#### Limitations

The method `ConfigSubspace::symmetric_kernel` approximates the kernel by taking all the eigenspaces whose eigenvalues are smaller than a hard-coded threshold size. We may need a more flexible system eventually.

### Deformation

#### Implementation

The main purpose of this implementation is to confirm that deformation works as we'd hoped. The code is messy, and the deformation routine has at least one numerical quirk.

For simplicity, the keyboard commands that manipulate the assembly are handled by the display, just like the keyboard commands that control the camera. Deformation happens at the beginning of the animation loop.

The function `Assembly::deform` works like this:
1. Take a list of element motions
2. Project them onto the tangent space of the solution variety
3. Sum them to get a deformation $v$ of the whole assembly
4. Step the assembly along the "mass shell" geodesic tangent to $v$
   * This step stays on the solution variety to first order
5. Call `realize` to bring the assembly back onto the solution variety

#### Manual testing

To manipulate the assembly:
1. Select a sphere
2. Make sure the display has focus
3. Hold the following keys:
   * **A**/**D** for $x$ translation
   * **W**/**S** for $y$ translation
   * **shift**+**W**/**S** for $z$ translation

#### Limitations

Because the manipulation commands are handled by the display, you can only manipulate the assembly when the display has focus.

Since our test assemblies only include spheres, we assume in `Assembly::deform` that every element is a sphere.

When the tangent space is zero, `Assembly::deform` does nothing except print "The assembly is rigid" to the console.

During a deformation, the curvature and co-curvature components of a sphere's vector representation can exhibit weird discontinuous "swaps" that don't visibly affect how the sphere is drawn. *[I'll write more about this in an issue.]*

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#29
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-12-30 22:53:07 +00:00
b490c8707f Click the display to select spheres (#25)
On the incoming branch, you can select a sphere by clicking it in the display. Holding *shift* while clicking enables multiple selection. These controls match the ones already implemented in the outline view.

Since the selection routine is now used in multiple places, the incoming branch factors it out into the `AppState::select` method.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#25
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-11-27 05:02:06 +00:00
a8e13b8110 Turn non-automated tests into Cargo examples (#24)
Some of the Cargo tests on the main branch are designed to print output for human inspection, not to verify computations automatically. The incoming branch turns these tests into Cargo examples. It also makes two organizational changes in pursuit of this goal:

- It introduces a dyna3 library target, which the examples use as a dependency. In the future, this target could grow into an officially maintained dyna3 library.
- It puts the code for realizing the Irisawa hexlet into a new conditionally compiled `engine::irisawa` module. This code is shared by a test and an example. Compilation is controlled by the `dev` feature, which is turned on by default in development mode.

I've verified that printed output of the examples hasn't changed between the head (848f7d6) and base (e917272) of the incoming branch.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Reviewed-on: glen/dyna3#24
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-11-26 00:32:50 +00:00
e917272c60 Give each element a serial number (#22)
Give each `Element` a serial number, which identifies it uniquely. The serial number is assigned by the `Element::new` constructor.

Because disallows potentially unsafe global state (at least without explicit `unsafe` blocks), the next serial number is stored in a thread-safe static atomic variable (`assembly::NEXT_ELEMENT_SERIAL`), as suggested in [this StackOverflow answer](https://stackoverflow.com/a/32936288). Since the overhead for keeping track of memory ordering should be minimal, we're using the strongest available ordering: [sequentially consistent](https://marabos.nl/atomics/memory-ordering.html#seqcst).

Resolves #20.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#22
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-11-22 02:25:10 +00:00
65cee1ecc2 Clean up the outline view (#19)
Clean up the source code and interface of the outline view. In addition, [fix a bug](commit/6e42681b719d7ec97c4225ca321225979bf87b56) that could cause `Assembly::realize` to react to itself under certain circumstances. Those circumstances arose, making the bug noticeable, while this branch was being written.

#### Source code

- Modularize the `Outline` component into smaller components.
- Switch from static iteration to dynamic Sycamore lists. This reduces the amount of re-rendering that happens when an element or constraint changes. It also allows constraint details to stay open or closed during constraint updates, rather than resetting to closed.
- Make `Element::index` private, as discussed [here](pulls/15#issuecomment-1816).

#### Interface

- Make constraints editable, updating the assembly realization on input. Flag constraints where the Lorentz product value doesn't parse.
- Round element vector coordinates to prevent the displayed strings from overlapping.

Note that issue #20 was created by this PR, but it will be addressed shortly.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#19
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-11-15 03:32:47 +00:00
707618cdd3 Integrate engine into application prototype (#15)
Port the engine prototype to Rust, integrate it into the application prototype, and use it to enforce the constraints.

### Features

To see the engine in action:

1. Add a constraint by shift-clicking to select two spheres in the outline view and then hitting the 🔗 button
2. Click a summary arrow to see the outline item for the new constraint
2. Set the constraint's Lorentz product by entering a value in the text field at the right end of the outline item
   * *The display should update as soon as you press* Enter *or focus away from the text field*

The checkbox at the left end of a constraint outline item controls whether the constraint is active. Activating a constraint triggers a solution update. (Deactivating a constraint doesn't, since the remaining active constraints are still satisfied.)

### Precision

The Julia prototype of the engine uses a generic scalar type, so you can pass in any type the linear algebra functions are implemented for. The examples use the [adjustable-precision](https://docs.julialang.org/en/v1/base/numbers/#Base.MPFR.setprecision) `BigFloat` type.

In the Rust port of the engine, the scalar type is currently fixed at `f64`. Switching to generic scalars shouldn't be too hard, but I haven't looked into [which other types](https://www.nalgebra.org/docs/user_guide/generic_programming) the linear algebra functions are implemented for.

### Testing

To confirm quantitatively that the Rust port of the engine is working, you can go to the `app-proto` folder and:

* Run some automated tests by calling `cargo test`.
* Inspect the optimization process in a few examples calling the `run-examples` script. The first example that prints is the same as the Irisawa hexlet example from the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then

  ```
  include("irisawa-hexlet.jl")
  for (step, scaled_loss) in enumerate(history_alt.scaled_loss)
    println(rpad(step-1, 4), " | ", scaled_loss)
  end
  ```

  you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show.

### A small engine revision

The Rust port of the engine improves on the Julia prototype in one part of the constraint-solving routine: projecting the Hessian onto the subspace where the frozen entries stay constant. The Julia prototype does this by removing the rows and columns of the Hessian that correspond to the frozen entries, finding the Newton step from the resulting "compressed" Hessian, and then adding zero entries to the Newton step in the appropriate places. The Rust port instead replaces each frozen row and column with its corresponding standard unit vector, avoiding the finicky compressing and decompressing steps.

To confirm that this version of the constraint-solving routine works the same as the original, I implemented it in Julia as `realize_gram_alt_proj`. The solutions we get from this routine match the ones we get from the original `realize_gram` to very high precision, and in the simplest examples (`sphere-in-tetrahedron.jl` and `tetrahedron-radius-ratio.jl`), the descent paths also match to very high precision. In a more complicated example (`irisawa-hexlet.jl`), the descent paths diverge about a quarter of the way into the search, even though they end up in the same place.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#15
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-11-12 00:46:16 +00:00
86fa682b31 feat: Application prototype (#14)
Creates a prototype user interface for dyna3 in the `app-proto` folder. The interface is dynamically constructed using [Sycamore](https://sycamore.dev).

The prototype includes:

  * An application state model (the `AppState` type)
    * A constraint problem model (the `Assembly` type), used in the application state
  * Two views
    * A 3D rendering of the assembly (the `Display` component)
    * A list of elements and constraints (the `Outline` component)

The following features confirm that the views can reflect and send input to the model:

  * You can select elements by clicking and shift-clicking them in the outline. The selected elements are highlighted in the display.
  * You can add elements using a button above the outline. The new elements appear in the display.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: glen/dyna3#14
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-10-21 23:38:27 +00:00
b92be312e8 Engine prototype (#13)
This PR adds code for a Julia-language prototype of a configuration solver, in the `engine-proto` folder. It uses Julia version 1.10.0.

### Approaches
Development of this PR tried two broad approaches to the constraint geometry problem. Each one suggested various solution techniques. The Gram matrix approach, with the low-rank factorization technique, seems the most promising.

- **Algebraic** *(In the `alg-test` subfolder).* Write the constraints as polynomials in the inversive coordinates of the elements, and use computational algebraic geometry techniques to solve the resulting system. We tried the following techniques.
  - **Gröbner bases** *(`Engine.Algebraic.jl`).* Symbolic. Find a Gröbner basis for the ideal generated by the constraint equations. Information about the solution variety, like its codimension, is then relatively easy to extract.
  - **Homotopy continuation** *(`Engine.Numerical.jl`).* Numerical. Cut the solution set along a random hyperplane to get a generic zero-dimensional slice, and then use a fancy homotopy technique to approximate the points in that slice.

  A few notes about our experiences can be found on the [engine prototype](wiki/Engine-prototype) wiki page.
- **Gram matrix** *(in the `gram-test` subfolder).* A construction is described completely, up to conformal transformations, by the Gram matrix of the vectors representing its elements. Express the constraints as fixed entries of the Gram matrix, and use numerical linear algebra techniques to find a list of vectors whose Gram matrix fits the bill. We tried the following techniques.
  - **LDL decomposition** *(`gram-test.sage`, `gram-test.jl`, `overlap-test.jl`).* Find a cluster of up to five elements whose Gram matrix is completely filled in by the constraints. Use LDL decomposition to find a list of vectors with that Gram matrix. This technique can be made algebraic, as seen in `overlap-test.jl`.
  - **Low-rank factorization** *(source files listed in findings section).* Write down a quadratic loss function that says how far a set of vectors is from meeting the Gram matrix constraints. Use a smooth optimization technique like Newton's method or gradient descent to find a zero of the loss function. In addition to the polished prototype described in the results section, we have an early prototype using an off-the-shelf factorization package (`low-rank-test.jl`) and an visualization of the loss function landscape near global minima (`basin-shapes.jl`).

  The [Gram matrix parameterization](wiki/Gram-matrix-parameterization) wiki page contains detailed notes on this approach.

### Findings

With the algebraic approach, we hit a performance wall pretty quickly as our constructions grew. It was often hard to find real solutions of the polynomial system, since the techniques we use work most naturally in the complex world.

With the Gram matrix approach, on the other hand, we could solve interesting problems in acceptably short times using the low-rank factorization technique. We put the optimization routine in its own module (`Engine.jl`) and used it to solve five example problems:
- `overlapping-pyramids.jl`
- `circles-in-triangle.jl`
- `sphere-in-tetrahedron.jl`
- `tetrahedron-radius-ratio.jl`
- `irisawa-hexlet.jl`

We plan to use low-rank factorization of the Gram matrix in our first app prototype.

### Visualizations

We used the visualizer in the `ganja-test` folder to visually check our low-rank factorization results. The visualizer runs [Ganja.js](https://enkimute.github.io/ganja.js/) in an Electron app, made with [Blink](https://github.com/JuliaGizmos/Blink.jl). Although Ganja.js makes beautiful pictures under most circumstances, we found two obstacles to using it in production.

- It seems to have precision problems with low-curvature spheres.
- We couldn't figure out how to customize its clipping and transparency settings, and the default settings often obscure construction details.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Reviewed-on: glen/dyna3#13
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2024-10-21 03:18:47 +00:00
51 changed files with 10876 additions and 28 deletions

View file

@ -0,0 +1,22 @@
# set up the Trunk web build system
#
# https://trunkrs.dev
#
# the `curl` call is based on David Tolnay's `rust-toolchain` action
#
# https://github.com/dtolnay/rust-toolchain
#
runs:
using: "composite"
steps:
- run: rustup target add wasm32-unknown-unknown
# install the Trunk binary to `ci-bin` within the workspace directory, which
# is determined by the `github.workspace` label and reflected in the
# `GITHUB_WORKSPACE` environment variable. then, make the `trunk` command
# available by placing the fully qualified path to `ci-bin` on the
# workflow's search path
- run: mkdir -p ci-bin
- run: curl --output - --proto '=https' --tlsv1.2 --retry 10 --retry-connrefused --location --silent --show-error --fail 'https://github.com/trunk-rs/trunk/releases/download/v0.21.12/trunk-x86_64-unknown-linux-gnu.tar.gz' | tar --gunzip --extract --file -
working-directory: ci-bin
- run: echo "${{ github.workspace }}/ci-bin" >> $GITHUB_PATH

View file

@ -0,0 +1,29 @@
on:
pull_request:
push:
branches: [main]
jobs:
# run the automated tests, reporting success if the tests pass and were built
# without warnings. the examples are run as tests, because we've configured
# each example target with `test = true` and `harness = false` in Cargo.toml.
# Trunk build failures caused by problems outside the Rust source code, like
# missing assets, should be caught by `trunk_build_test`
test:
runs-on: docker
container:
image: cimg/rust:1.86-node
defaults:
run:
# set the default working directory for each `run` step, relative to the
# workspace directory. this default only affects `run` steps (and if we
# tried to set the `working-directory` label for any other kind of step,
# it wouldn't be recognized anyway)
working-directory: app-proto
steps:
# Check out the repository so that its top-level directory is the
# workspace directory (action variable `github.workspace`, environment
# variable `$GITHUB_WORKSPACE`):
- uses: https://code.forgejo.org/actions/checkout@v4
- uses: ./.forgejo/setup-trunk
- run: RUSTFLAGS='-D warnings' cargo test

8
.gitignore vendored
View file

@ -1,8 +1,2 @@
node_modules
site
docbuild
__tests__
coverage
dyna3.zip
tmpproj
ci-bin
*~

View file

@ -17,3 +17,51 @@ Note that currently this is just the barest beginnings of the project, more of a
* Able to run in browser (so implemented in WASM-compatible language)
* Produce scalable graphics of 3D diagrams, and maybe STL files (or other fabricatable file format) as well.
## Prototype
The latest prototype is in the folder `app-proto`. It includes both a user interface and a numerical constraint-solving engine.
### Install the prerequisites
1. Install [`rustup`](https://rust-lang.github.io/rustup/): the officially recommended Rust toolchain manager
* It's available on Ubuntu as a [Snap](https://snapcraft.io/rustup)
2. Call `rustup default stable` to "download the latest stable release of Rust and set it as your default toolchain"
* If you forget, the `rustup` [help system](https://github.com/rust-lang/rustup/blob/d9b3601c3feb2e88cf3f8ca4f7ab4fdad71441fd/src/errors.rs#L109-L112) will remind you
3. Call `rustup target add wasm32-unknown-unknown` to add the [most generic 32-bit WebAssembly target](https://doc.rust-lang.org/nightly/rustc/platform-support/wasm32-unknown-unknown.html)
4. Call `cargo install wasm-pack` to install the [WebAssembly toolchain](https://rustwasm.github.io/docs/wasm-pack/)
5. Call `cargo install trunk` to install the [Trunk](https://trunkrs.dev/) web-build tool
6. Add the `.cargo/bin` folder in your home directory to your executable search path
* This lets you call Trunk, and other tools installed by Cargo, without specifying their paths
* On POSIX systems, the search path is stored in the `PATH` environment variable
### Play with the prototype
1. From the `app-proto` folder, call `trunk serve --release` to build and serve the prototype
* *The crates the prototype depends on will be downloaded and served automatically*
* *For a faster build, at the expense of a much slower prototype, you can call `trunk serve` without the `--release` flag*
* *If you want to stay in the top-level folder, you can call `trunk serve --config app-proto [--release]`* from there instead.
3. In a web browser, visit one of the URLs listed under the message `INFO 📡 server listening at:`
* *Touching any file in the `app-proto` folder will make Trunk rebuild and live-reload the prototype*
4. Press *ctrl+C* in the shell where Trunk is running to stop serving the prototype
### Run the engine on some example problems
1. Go into the `app-proto` folder
2. Call `./run-examples`
* *For each example problem, the engine will print the value of the loss function at each optimization step*
* *The first example that prints is the same as the Irisawa hexlet example from the Julia version of the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then*
```julia
include("irisawa-hexlet.jl")
for (step, scaled_loss) in enumerate(history_alt.scaled_loss)
println(rpad(step-1, 4), " | ", scaled_loss)
end
```
*you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show*
### Run the automated tests
1. Go into the `app-proto` folder
2. Call `cargo test`

4
app-proto/.gitignore vendored Normal file
View file

@ -0,0 +1,4 @@
target
dist
profiling
Cargo.lock

1325
app-proto/Cargo.lock generated Normal file

File diff suppressed because it is too large Load diff

81
app-proto/Cargo.toml Normal file
View file

@ -0,0 +1,81 @@
[package]
name = "dyna3"
version = "0.1.0"
authors = ["Aaron Fenyes", "Glen Whitney"]
edition = "2021"
rust-version = "1.86"
[features]
default = ["console_error_panic_hook"]
dev = []
[dependencies]
itertools = "0.13.0"
js-sys = "0.3.70"
lazy_static = "1.5.0"
nalgebra = "0.33.0"
readonly = "0.2.12"
sycamore = "0.9.1"
# We use Charming to help display engine diagnostics
charming = { version = "0.5.1", features = ["wasm"] }
# The `console_error_panic_hook` crate provides better debugging of panics by
# logging them with `console.error`. This is great for development, but requires
# all the `std::fmt` and `std::panicking` infrastructure, so isn't great for
# code size when deploying.
console_error_panic_hook = { version = "0.1.7", optional = true }
[dependencies.web-sys]
version = "0.3.69"
features = [
'DomRect',
'HtmlCanvasElement',
'HtmlInputElement',
'Performance',
'WebGl2RenderingContext',
'WebGlBuffer',
'WebGlProgram',
'WebGlShader',
'WebGlUniformLocation',
'WebGlVertexArrayObject'
]
# the self-dependency specifies features to use for tests and examples
#
# https://github.com/rust-lang/cargo/issues/2911#issuecomment-1483256987
#
[dev-dependencies]
dyna3 = { path = ".", default-features = false, features = ["dev"] }
wasm-bindgen-test = "0.3.34"
# turn off spurious warnings about the custom config that Sycamore uses
#
# https://sycamore.dev/book/troubleshooting#unexpected-cfg-condition-name--sycamore-force-ssr
#
[lints.rust]
unexpected_cfgs = { level = "warn", check-cfg = ["cfg(sycamore_force_ssr)"] }
[profile.release]
opt-level = "s" # optimize for small code size
debug = true # include debug symbols
[[example]]
name = "irisawa-hexlet"
test = true
harness = false
[[example]]
name = "kaleidocycle"
test = true
harness = false
[[example]]
name = "point-on-sphere"
test = true
harness = false
[[example]]
name = "three-spheres"
test = true
harness = false

View file

@ -0,0 +1,36 @@
#![allow(dead_code)]
use nalgebra::DMatrix;
use dyna3::engine::{Q, DescentHistory, Realization};
pub fn title(title: &str) {
println!("─── {title} ───");
}
pub fn realization_diagnostics(realization: &Realization) {
let Realization { result, history } = realization;
println!();
if let Err(ref message) = result {
println!("❌️ {message}");
} else {
println!("✅️ Target accuracy achieved!");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
}
pub fn gram_matrix(config: &DMatrix<f64>) {
println!("\nCompleted Gram matrix:{}", (config.tr_mul(&*Q) * config).to_string().trim_end());
}
pub fn config(config: &DMatrix<f64>) {
println!("\nConfiguration:{}", config.to_string().trim_end());
}
pub fn loss_history(history: &DescentHistory) {
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View file

@ -0,0 +1,23 @@
#[path = "common/print.rs"]
mod print;
use dyna3::engine::{ConfigNeighborhood, examples::realize_irisawa_hexlet};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let realization = realize_irisawa_hexlet(SCALED_TOL);
print::title("Irisawa hexlet");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood { config, .. }) = realization.result {
// print the diameters of the chain spheres
println!("\nChain diameters:");
println!(" {} sun (given)", 1.0 / config[(3, 3)]);
for k in 4..9 {
println!(" {} sun", 1.0 / config[(3, k)]);
}
// print the completed Gram matrix
print::gram_matrix(&config);
}
print::loss_history(&realization.history);
}

View file

@ -0,0 +1,32 @@
#[path = "common/print.rs"]
mod print;
use nalgebra::{DMatrix, DVector};
use dyna3::engine::{ConfigNeighborhood, examples::realize_kaleidocycle};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let realization = realize_kaleidocycle(SCALED_TOL);
print::title("Kaleidocycle");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood { config, nbhd: tangent }) = realization.result {
// print the completed Gram matrix and the realized configuration
print::gram_matrix(&config);
print::config(&config);
// find the kaleidocycle's twist motion by projecting onto the tangent
// space
const N_POINTS: usize = 12;
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
let down = -&up;
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(
|n| [
tangent.proj(&up.as_view(), n),
tangent.proj(&down.as_view(), n+1)
]
).sum();
let normalization = 5.0 / twist_motion[(2, 0)];
println!("\nTwist motion:{}", (normalization * twist_motion).to_string().trim_end());
}
}

View file

@ -0,0 +1,33 @@
#[path = "common/print.rs"]
mod print;
use dyna3::engine::{
point,
realize_gram,
sphere,
ConfigNeighborhood,
ConstraintProblem
};
fn main() {
let mut problem = ConstraintProblem::from_guess(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
for j in 0..2 {
for k in j..2 {
problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
problem.frozen.push(3, 0, problem.guess[(3, 0)]);
let realization = realize_gram(
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print::title("Point on a sphere");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood{ config, .. }) = realization.result {
print::gram_matrix(&config);
print::config(&config);
}
print::loss_history(&realization.history);
}

View file

@ -0,0 +1,34 @@
#[path = "common/print.rs"]
mod print;
use dyna3::engine::{
realize_gram,
sphere,
ConfigNeighborhood,
ConstraintProblem
};
fn main() {
let mut problem = ConstraintProblem::from_guess({
let a: f64 = 0.75_f64.sqrt();
&[
sphere(1.0, 0.0, 0.0, 1.0),
sphere(-0.5, a, 0.0, 1.0),
sphere(-0.5, -a, 0.0, 1.0)
]
});
for j in 0..3 {
for k in j..3 {
problem.gram.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
let realization = realize_gram(
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print::title("Three spheres");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood{ config, .. }) = realization.result {
print::gram_matrix(&config);
}
print::loss_history(&realization.history);
}

17
app-proto/index.html Normal file
View file

@ -0,0 +1,17 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<title>dyna3</title>
<link data-trunk rel="css" href="main.css"/>
<link href="https://fonts.bunny.net/css?family=fira-sans:ital,wght@0,400;1,400&display=swap" rel="stylesheet">
<link href="https://fonts.bunny.net/css?family=noto-emoji:wght@400&text=%f0%9f%94%97%e2%9a%a0&display=swap" rel="stylesheet">
<!--
the Charming visualization crate, which we use to show engine diagnostics,
depends the ECharts JavaScript package
-->
<script src="https://cdn.jsdelivr.net/npm/echarts@5.5.1/dist/echarts.min.js"></script>
</head>
<body></body>
</html>

240
app-proto/main.css Normal file
View file

@ -0,0 +1,240 @@
:root {
--text: #fcfcfc; /* almost white */
--text-bright: white;
--text-invalid: #f58fc2; /* bright pink */
--border: #555; /* light gray */
--border-focus-dark: #aaa; /* bright gray */
--border-focus-light: white;
--border-invalid: #70495c; /* dusky pink */
--selection-highlight: #444; /* medium gray */
--page-background: #222; /* dark gray */
--display-background: #020202; /* almost black */
}
body {
margin: 0px;
color: var(--text);
background-color: var(--page-background);
font-family: 'Fira Sans', sans-serif;
}
.invalid {
color: var(--text-invalid);
}
.status {
width: 20px;
text-align: center;
font-family: 'Noto Emoji';
font-style: normal;
}
/* sidebar */
#sidebar {
display: flex;
flex-direction: column;
float: left;
width: 500px;
height: 100vh;
margin: 0px;
padding: 0px;
border-width: 0px 1px 0px 0px;
border-style: solid;
border-color: var(--border);
}
/* add-remove */
#add-remove {
display: flex;
gap: 8px;
margin: 8px;
}
#add-remove > button {
height: 32px;
}
/* KLUDGE */
/*
for convenience, we're using emoji as temporary icons for some buttons. these
buttons need to be displayed in an emoji font
*/
#add-remove > button.emoji {
width: 32px;
font-family: 'Noto Emoji', sans-serif;
font-size: large;
}
/* outline */
#outline {
flex-grow: 1;
margin: 0px;
padding: 0px;
overflow-y: scroll;
}
li {
user-select: none;
}
summary {
display: flex;
}
summary.selected {
color: var(--text-bright);
background-color: var(--selection-highlight);
}
summary > div, .regulator {
padding-top: 4px;
padding-bottom: 4px;
}
.element, .regulator {
display: flex;
flex-grow: 1;
padding-left: 8px;
padding-right: 8px;
}
.element > input {
margin-left: 8px;
}
.element-switch {
width: 18px;
padding-left: 2px;
text-align: center;
}
details:has(li) .element-switch::after {
content: '▸';
}
details[open]:has(li) .element-switch::after {
content: '▾';
}
.element-label {
flex-grow: 1;
}
.regulator-label {
flex-grow: 1;
}
.element-representation {
display: flex;
}
.element-representation > div {
padding: 2px 0px 0px 0px;
font-size: 10pt;
font-variant-numeric: tabular-nums;
text-align: right;
width: 56px;
}
.regulator {
font-style: italic;
}
.regulator-type {
padding: 2px 8px 0px 8px;
font-size: 10pt;
}
.regulator-input {
margin-right: 4px;
color: inherit;
background-color: inherit;
border: 1px solid var(--border);
border-radius: 2px;
}
.regulator-input::placeholder {
color: inherit;
opacity: 54%;
font-style: italic;
}
.regulator-input.constraint {
background-color: var(--display-background);
}
.regulator-input.invalid {
color: var(--text-invalid);
border-color: var(--border-invalid);
}
.regulator-input.invalid + .status::after, details:has(.invalid):not([open]) .status::after {
content: '⚠';
color: var(--text-invalid);
}
/* diagnostics */
#diagnostics {
margin: 10px;
}
#diagnostics-bar {
display: flex;
}
#realization-status {
display: flex;
flex-grow: 1;
}
#realization-status .status {
margin-right: 4px;
}
#realization-status :not(.status) {
flex-grow: 1;
}
#realization-status .status::after {
content: '✓';
}
#realization-status.invalid .status::after {
content: '⚠';
}
.diagnostics-panel {
margin-top: 10px;
min-height: 180px;
}
.diagnostics-chart {
background-color: var(--display-background);
border: 1px solid var(--border);
border-radius: 8px;
}
/* display */
#display {
float: left;
margin-left: 20px;
margin-top: 20px;
background-color: var(--display-background);
border: 1px solid var(--border);
border-radius: 16px;
}
#display:focus {
border-color: var(--border-focus-dark);
outline: none;
}
input:focus {
border-color: var(--border-focus-light);
outline: none;
}

20
app-proto/run-examples.sh Normal file
View file

@ -0,0 +1,20 @@
# run all Cargo examples, as described here:
#
# Karol Kuczmarski. "Add examples to your Rust libraries"
# http://xion.io/post/code/rust-examples.html
#
# you should invoke this script by calling `sh` or another interpreter, rather
# than calling `souce`, to ensure that the script can find the manifest file for
# the application prototype
# find the manifest file for the application prototype
MANIFEST="$(dirname -- $0)/Cargo.toml"
# set up the command that runs each example
RUN_EXAMPLE="cargo run --manifest-path $MANIFEST --example"
# run the examples
$RUN_EXAMPLE irisawa-hexlet; echo
$RUN_EXAMPLE three-spheres; echo
$RUN_EXAMPLE point-on-sphere; echo
$RUN_EXAMPLE kaleidocycle

935
app-proto/src/assembly.rs Normal file
View file

@ -0,0 +1,935 @@
use nalgebra::{DMatrix, DVector, DVectorView};
use std::{
cell::Cell,
collections::{BTreeMap, BTreeSet},
cmp::Ordering,
fmt,
fmt::{Debug, Formatter},
hash::{Hash, Hasher},
rc::Rc,
sync::{atomic, atomic::AtomicU64}
};
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
use crate::{
components::{display::DisplayItem, outline::OutlineItem},
engine::{
Q,
change_half_curvature,
local_unif_to_std,
point,
project_point_to_normalized,
project_sphere_to_normalized,
realize_gram,
sphere,
ConfigNeighborhood,
ConfigSubspace,
ConstraintProblem,
DescentHistory,
Realization
},
specified::SpecifiedValue
};
pub type ElementColor = [f32; 3];
/* KLUDGE */
// we should reconsider this design when we build a system for switching between
// assemblies. at that point, we might want to switch to hierarchical keys,
// where each each item has a key that identifies it within its assembly and
// each assembly has a key that identifies it within the sesssion
static NEXT_SERIAL: AtomicU64 = AtomicU64::new(0);
pub trait Serial {
// a serial number that uniquely identifies this element
fn serial(&self) -> u64;
// take the next serial number, panicking if that was the last one left
fn next_serial() -> u64 where Self: Sized {
// the technique we use to panic on overflow is taken from _Rust Atomics
// and Locks_, by Mara Bos
//
// https://marabos.nl/atomics/atomics.html#example-handle-overflow
//
NEXT_SERIAL.fetch_update(
atomic::Ordering::SeqCst, atomic::Ordering::SeqCst,
|serial| serial.checked_add(1)
).expect("Out of serial numbers for elements")
}
}
impl Hash for dyn Serial {
fn hash<H: Hasher>(&self, state: &mut H) {
self.serial().hash(state)
}
}
impl PartialEq for dyn Serial {
fn eq(&self, other: &Self) -> bool {
self.serial() == other.serial()
}
}
impl Eq for dyn Serial {}
impl PartialOrd for dyn Serial {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for dyn Serial {
fn cmp(&self, other: &Self) -> Ordering {
self.serial().cmp(&other.serial())
}
}
pub trait ProblemPoser {
fn pose(&self, problem: &mut ConstraintProblem);
}
pub trait Element: Serial + ProblemPoser + DisplayItem {
// the default identifier for an element of this type
fn default_id() -> String where Self: Sized;
// the default example of an element of this type
fn default(id: String, id_num: u64) -> Self where Self: Sized;
// the default regulators that come with this element
fn default_regulators(self: Rc<Self>) -> Vec<Rc<dyn Regulator>> {
Vec::new()
}
fn id(&self) -> &String;
fn label(&self) -> &String;
fn representation(&self) -> Signal<DVector<f64>>;
fn ghost(&self) -> Signal<bool>;
// the regulators the element is subject to. the assembly that owns the
// element is responsible for keeping this set up to date
fn regulators(&self) -> Signal<BTreeSet<Rc<dyn Regulator>>>;
// project a representation vector for this kind of element onto its
// normalization variety
fn project_to_normalized(&self, rep: &mut DVector<f64>);
// the configuration matrix column index that was assigned to the element
// last time the assembly was realized, or `None` if the element has never
// been through a realization
fn column_index(&self) -> Option<usize>;
// assign the element a configuration matrix column index. this method must
// be used carefully to preserve invariant (1), described in the comment on
// the `tangent` field of the `Assembly` structure
fn set_column_index(&self, index: usize);
}
impl Debug for dyn Element {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
self.id().fmt(f)
}
}
impl Hash for dyn Element {
fn hash<H: Hasher>(&self, state: &mut H) {
<dyn Serial>::hash(self, state)
}
}
impl PartialEq for dyn Element {
fn eq(&self, other: &Self) -> bool {
<dyn Serial>::eq(self, other)
}
}
impl Eq for dyn Element {}
impl PartialOrd for dyn Element {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
<dyn Serial>::partial_cmp(self, other)
}
}
impl Ord for dyn Element {
fn cmp(&self, other: &Self) -> Ordering {
<dyn Serial>::cmp(self, other)
}
}
pub struct Sphere {
pub id: String,
pub label: String,
pub color: ElementColor,
pub representation: Signal<DVector<f64>>,
pub ghost: Signal<bool>,
pub regulators: Signal<BTreeSet<Rc<dyn Regulator>>>,
serial: u64,
column_index: Cell<Option<usize>>
}
impl Sphere {
const CURVATURE_COMPONENT: usize = 3;
pub fn new(
id: String,
label: String,
color: ElementColor,
representation: DVector<f64>
) -> Sphere {
Sphere {
id: id,
label: label,
color: color,
representation: create_signal(representation),
ghost: create_signal(false),
regulators: create_signal(BTreeSet::new()),
serial: Self::next_serial(),
column_index: None.into()
}
}
}
impl Element for Sphere {
fn default_id() -> String {
"sphere".to_string()
}
fn default(id: String, id_num: u64) -> Sphere {
Sphere::new(
id,
format!("Sphere {id_num}"),
[0.75_f32, 0.75_f32, 0.75_f32],
sphere(0.0, 0.0, 0.0, 1.0)
)
}
fn default_regulators(self: Rc<Self>) -> Vec<Rc<dyn Regulator>> {
vec![Rc::new(HalfCurvatureRegulator::new(self))]
}
fn id(&self) -> &String {
&self.id
}
fn label(&self) -> &String {
&self.label
}
fn representation(&self) -> Signal<DVector<f64>> {
self.representation
}
fn ghost(&self) -> Signal<bool> {
self.ghost
}
fn regulators(&self) -> Signal<BTreeSet<Rc<dyn Regulator>>> {
self.regulators
}
fn project_to_normalized(&self, rep: &mut DVector<f64>) {
project_sphere_to_normalized(rep);
}
fn column_index(&self) -> Option<usize> {
self.column_index.get()
}
fn set_column_index(&self, index: usize) {
self.column_index.set(Some(index));
}
}
impl Serial for Sphere {
fn serial(&self) -> u64 {
self.serial
}
}
impl ProblemPoser for Sphere {
fn pose(&self, problem: &mut ConstraintProblem) {
let index = self.column_index().expect(
format!("Sphere \"{}\" should be indexed before writing problem data", self.id).as_str()
);
problem.gram.push_sym(index, index, 1.0);
problem.guess.set_column(index, &self.representation.get_clone_untracked());
}
}
pub struct Point {
pub id: String,
pub label: String,
pub color: ElementColor,
pub representation: Signal<DVector<f64>>,
pub ghost: Signal<bool>,
pub regulators: Signal<BTreeSet<Rc<dyn Regulator>>>,
serial: u64,
column_index: Cell<Option<usize>>
}
impl Point {
const WEIGHT_COMPONENT: usize = 3;
pub fn new(
id: String,
label: String,
color: ElementColor,
representation: DVector<f64>
) -> Point {
Point {
id,
label,
color,
representation: create_signal(representation),
ghost: create_signal(false),
regulators: create_signal(BTreeSet::new()),
serial: Self::next_serial(),
column_index: None.into()
}
}
}
impl Element for Point {
fn default_id() -> String {
"point".to_string()
}
fn default(id: String, id_num: u64) -> Point {
Point::new(
id,
format!("Point {id_num}"),
[0.75_f32, 0.75_f32, 0.75_f32],
point(0.0, 0.0, 0.0)
)
}
fn id(&self) -> &String {
&self.id
}
fn label(&self) -> &String {
&self.label
}
fn representation(&self) -> Signal<DVector<f64>> {
self.representation
}
fn ghost(&self) -> Signal<bool> {
self.ghost
}
fn regulators(&self) -> Signal<BTreeSet<Rc<dyn Regulator>>> {
self.regulators
}
fn project_to_normalized(&self, rep: &mut DVector<f64>) {
project_point_to_normalized(rep);
}
fn column_index(&self) -> Option<usize> {
self.column_index.get()
}
fn set_column_index(&self, index: usize) {
self.column_index.set(Some(index));
}
}
impl Serial for Point {
fn serial(&self) -> u64 {
self.serial
}
}
impl ProblemPoser for Point {
fn pose(&self, problem: &mut ConstraintProblem) {
let index = self.column_index().expect(
format!("Point \"{}\" should be indexed before writing problem data", self.id).as_str()
);
problem.gram.push_sym(index, index, 0.0);
problem.frozen.push(Point::WEIGHT_COMPONENT, index, 0.5);
problem.guess.set_column(index, &self.representation.get_clone_untracked());
}
}
pub trait Regulator: Serial + ProblemPoser + OutlineItem {
fn subjects(&self) -> Vec<Rc<dyn Element>>;
fn measurement(&self) -> ReadSignal<f64>;
fn set_point(&self) -> Signal<SpecifiedValue>;
// this method is used to responsively precondition the assembly for
// realization when the regulator becomes a constraint, or is edited while
// acting as a constraint. it should track the set point, do any desired
// preconditioning when the set point is present, and use its return value
// to report whether the set is present. the default implementation does no
// preconditioning
fn try_activate(&self) -> bool {
self.set_point().with(|set_pt| set_pt.is_present())
}
}
impl Hash for dyn Regulator {
fn hash<H: Hasher>(&self, state: &mut H) {
<dyn Serial>::hash(self, state)
}
}
impl PartialEq for dyn Regulator {
fn eq(&self, other: &Self) -> bool {
<dyn Serial>::eq(self, other)
}
}
impl Eq for dyn Regulator {}
impl PartialOrd for dyn Regulator {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
<dyn Serial>::partial_cmp(self, other)
}
}
impl Ord for dyn Regulator {
fn cmp(&self, other: &Self) -> Ordering {
<dyn Serial>::cmp(self, other)
}
}
pub struct InversiveDistanceRegulator {
pub subjects: [Rc<dyn Element>; 2],
pub measurement: ReadSignal<f64>,
pub set_point: Signal<SpecifiedValue>,
serial: u64
}
impl InversiveDistanceRegulator {
pub fn new(subjects: [Rc<dyn Element>; 2]) -> InversiveDistanceRegulator {
let representations = subjects.each_ref().map(|subj| subj.representation());
let measurement = create_memo(move || {
representations[0].with(|rep_0|
representations[1].with(|rep_1|
rep_0.dot(&(&*Q * rep_1))
)
)
});
let set_point = create_signal(SpecifiedValue::from_empty_spec());
let serial = Self::next_serial();
InversiveDistanceRegulator { subjects, measurement, set_point, serial }
}
}
impl Regulator for InversiveDistanceRegulator {
fn subjects(&self) -> Vec<Rc<dyn Element>> {
self.subjects.clone().into()
}
fn measurement(&self) -> ReadSignal<f64> {
self.measurement
}
fn set_point(&self) -> Signal<SpecifiedValue> {
self.set_point
}
}
impl Serial for InversiveDistanceRegulator {
fn serial(&self) -> u64 {
self.serial
}
}
impl ProblemPoser for InversiveDistanceRegulator {
fn pose(&self, problem: &mut ConstraintProblem) {
self.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let [row, col] = self.subjects.each_ref().map(
|subj| subj.column_index().expect(
"Subjects should be indexed before inversive distance regulator writes problem data"
)
);
problem.gram.push_sym(row, col, val);
}
});
}
}
pub struct HalfCurvatureRegulator {
pub subject: Rc<dyn Element>,
pub measurement: ReadSignal<f64>,
pub set_point: Signal<SpecifiedValue>,
serial: u64
}
impl HalfCurvatureRegulator {
pub fn new(subject: Rc<dyn Element>) -> HalfCurvatureRegulator {
let measurement = subject.representation().map(
|rep| rep[Sphere::CURVATURE_COMPONENT]
);
let set_point = create_signal(SpecifiedValue::from_empty_spec());
let serial = Self::next_serial();
HalfCurvatureRegulator { subject, measurement, set_point, serial }
}
}
impl Regulator for HalfCurvatureRegulator {
fn subjects(&self) -> Vec<Rc<dyn Element>> {
vec![self.subject.clone()]
}
fn measurement(&self) -> ReadSignal<f64> {
self.measurement
}
fn set_point(&self) -> Signal<SpecifiedValue> {
self.set_point
}
fn try_activate(&self) -> bool {
match self.set_point.with(|set_pt| set_pt.value) {
Some(half_curv) => {
self.subject.representation().update(
|rep| change_half_curvature(rep, half_curv)
);
true
}
None => false
}
}
}
impl Serial for HalfCurvatureRegulator {
fn serial(&self) -> u64 {
self.serial
}
}
impl ProblemPoser for HalfCurvatureRegulator {
fn pose(&self, problem: &mut ConstraintProblem) {
self.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let col = self.subject.column_index().expect(
"Subject should be indexed before half-curvature regulator writes problem data"
);
problem.frozen.push(Sphere::CURVATURE_COMPONENT, col, val);
}
});
}
}
// the velocity is expressed in uniform coordinates
pub struct ElementMotion<'a> {
pub element: Rc<dyn Element>,
pub velocity: DVectorView<'a, f64>
}
type AssemblyMotion<'a> = Vec<ElementMotion<'a>>;
// a complete, view-independent description of an assembly
#[derive(Clone)]
pub struct Assembly {
// elements and regulators
pub elements: Signal<BTreeSet<Rc<dyn Element>>>,
pub regulators: Signal<BTreeSet<Rc<dyn Regulator>>>,
// solution variety tangent space. the basis vectors are stored in
// configuration matrix format, ordered according to the elements' column
// indices. when you realize the assembly, every element that's present
// during realization gets a column index and is reflected in the tangent
// space. since the methods in this module never assign column indices
// without later realizing the assembly, we get the following invariant:
//
// (1) if an element has a column index, its tangent motions can be found
// in that column of the tangent space basis matrices
//
pub tangent: Signal<ConfigSubspace>,
// indexing
pub elements_by_id: Signal<BTreeMap<String, Rc<dyn Element>>>,
// realization control
pub keep_realized: Signal<bool>,
pub needs_realization: Signal<bool>,
// realization diagnostics
pub realization_status: Signal<Result<(), String>>,
pub descent_history: Signal<DescentHistory>
}
impl Assembly {
pub fn new() -> Assembly {
// create an assembly
let assembly = Assembly {
elements: create_signal(BTreeSet::new()),
regulators: create_signal(BTreeSet::new()),
tangent: create_signal(ConfigSubspace::zero(0)),
elements_by_id: create_signal(BTreeMap::default()),
keep_realized: create_signal(true),
needs_realization: create_signal(false),
realization_status: create_signal(Ok(())),
descent_history: create_signal(DescentHistory::new())
};
// realize the assembly whenever it becomes simultaneously true that
// we're trying to keep it realized and it needs realization
let assembly_for_effect = assembly.clone();
create_effect(move || {
let should_realize = assembly_for_effect.keep_realized.get()
&& assembly_for_effect.needs_realization.get();
if should_realize {
assembly_for_effect.realize();
}
});
assembly
}
// --- inserting elements and regulators ---
// insert an element into the assembly without checking whether we already
// have an element with the same identifier. any element that does have the
// same identifier will get kicked out of the `elements_by_id` index
fn insert_element_unchecked(&self, elt: impl Element + 'static) {
// insert the element
let id = elt.id().clone();
let elt_rc = Rc::new(elt);
self.elements.update(|elts| elts.insert(elt_rc.clone()));
self.elements_by_id.update(|elts_by_id| elts_by_id.insert(id, elt_rc.clone()));
// create and insert the element's default regulators
for reg in elt_rc.default_regulators() {
self.insert_regulator(reg);
}
}
pub fn try_insert_element(&self, elt: impl Element + 'static) -> bool {
let can_insert = self.elements_by_id.with_untracked(
|elts_by_id| !elts_by_id.contains_key(elt.id())
);
if can_insert {
self.insert_element_unchecked(elt);
}
can_insert
}
pub fn insert_element_default<T: Element + 'static>(&self) {
// find the next unused identifier in the default sequence
let default_id = T::default_id();
let mut id_num = 1;
let mut id = format!("{default_id}{id_num}");
while self.elements_by_id.with_untracked(
|elts_by_id| elts_by_id.contains_key(&id)
) {
id_num += 1;
id = format!("{default_id}{id_num}");
}
// create and insert the default example of `T`
let _ = self.insert_element_unchecked(T::default(id, id_num));
}
pub fn insert_regulator(&self, regulator: Rc<dyn Regulator>) {
// add the regulator to the assembly's regulator list
self.regulators.update(
|regs| regs.insert(regulator.clone())
);
// add the regulator to each subject's regulator list
let subject_regulators: Vec<_> = regulator.subjects().into_iter().map(
|subj| subj.regulators()
).collect();
for regulators in subject_regulators {
regulators.update(|regs| regs.insert(regulator.clone()));
}
// request a realization when the regulator becomes a constraint, or is
// edited while acting as a constraint
let self_for_effect = self.clone();
create_effect(move || {
/* DEBUG */
// log the regulator update
console_log!("Updated regulator with subjects {:?}", regulator.subjects());
if regulator.try_activate() {
self_for_effect.needs_realization.set(true);
}
});
/* DEBUG */
// print an updated list of regulators
console_log!("Regulators:");
self.regulators.with_untracked(|regs| {
for reg in regs.into_iter() {
console_log!(
" {:?}: {}",
reg.subjects(),
reg.set_point().with_untracked(
|set_pt| {
let spec = &set_pt.spec;
if spec.is_empty() {
"__".to_string()
} else {
spec.clone()
}
}
)
);
}
});
}
// --- realization ---
pub fn realize(&self) {
// index the elements
self.elements.update_silent(|elts| {
for (index, elt) in elts.iter().enumerate() {
elt.set_column_index(index);
}
});
// set up the constraint problem
let problem = self.elements.with_untracked(|elts| {
let mut problem = ConstraintProblem::new(elts.len());
for elt in elts {
elt.pose(&mut problem);
}
self.regulators.with_untracked(|regs| {
for reg in regs {
reg.pose(&mut problem);
}
});
problem
});
/* DEBUG */
// log the Gram matrix
console_log!("Gram matrix:\n{}", problem.gram);
/* DEBUG */
// log the initial configuration matrix
console_log!("Old configuration:{:>8.3}", problem.guess);
// look for a configuration with the given Gram matrix
let Realization { result, history } = realize_gram(
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
/* DEBUG */
// report the outcome of the search in the browser console
if let Err(ref message) = result {
console_log!("❌️ {message}");
} else {
console_log!("✅️ Target accuracy achieved!");
}
console_log!("Steps: {}", history.scaled_loss.len() - 1);
console_log!("Loss: {}", history.scaled_loss.last().unwrap());
// report the loss history
self.descent_history.set(history);
match result {
Ok(ConfigNeighborhood { config, nbhd: tangent }) => {
/* DEBUG */
// report the tangent dimension
console_log!("Tangent dimension: {}", tangent.dim());
// report the realization status
self.realization_status.set(Ok(()));
// read out the solution
for elt in self.elements.get_clone_untracked() {
elt.representation().update(
|rep| rep.set_column(0, &config.column(elt.column_index().unwrap()))
);
}
// save the tangent space
self.tangent.set_silent(tangent);
// clear the realization request flag
self.needs_realization.set(false);
},
Err(message) => {
// report the realization status. the `Err(message)` we're
// setting the status to has a different type than the
// `Err(message)` we received from the match: we're changing the
// `Ok` type from `Realization` to `()`
self.realization_status.set(Err(message))
}
}
}
// --- deformation ---
// project the given motion to the tangent space of the solution variety and
// move the assembly along it. the implementation is based on invariant (1)
// from above and the following additional invariant:
//
// (2) if an element is affected by a constraint, it has a column index
//
// we have this invariant because the assembly gets realized each time you
// add a constraint
pub fn deform(&self, motion: AssemblyMotion) {
/* KLUDGE */
// when the tangent space is zero, deformation won't do anything, but
// the attempt to deform should be registered in the UI. this console
// message will do for now
if self.tangent.with(|tan| tan.dim() <= 0 && tan.assembly_dim() > 0) {
console::log_1(&JsValue::from("The assembly is rigid"));
}
// give a column index to each moving element that doesn't have one yet.
// this temporarily breaks invariant (1), but the invariant will be
// restored when we realize the assembly at the end of the deformation.
// in the process, we find out how many matrix columns we'll need to
// hold the deformation
let realized_dim = self.tangent.with(|tan| tan.assembly_dim());
let motion_dim = {
let mut next_column_index = realized_dim;
for elt_motion in motion.iter() {
let moving_elt = &elt_motion.element;
if moving_elt.column_index().is_none() {
moving_elt.set_column_index(next_column_index);
next_column_index += 1;
}
}
next_column_index
};
// project the element motions onto the tangent space of the solution
// variety and sum them to get a deformation of the whole assembly. the
// matrix `motion_proj` that holds the deformation has extra columns for
// any moving elements that aren't reflected in the saved tangent space
const ELEMENT_DIM: usize = 5;
let mut motion_proj = DMatrix::zeros(ELEMENT_DIM, motion_dim);
for elt_motion in motion {
// we can unwrap the column index because we know that every moving
// element has one at this point
let column_index = elt_motion.element.column_index().unwrap();
if column_index < realized_dim {
// this element had a column index when we started, so by
// invariant (1), it's reflected in the tangent space
let mut target_columns = motion_proj.columns_mut(0, realized_dim);
target_columns += self.tangent.with(
|tan| tan.proj(&elt_motion.velocity, column_index)
);
} else {
// this element didn't have a column index when we started, so
// by invariant (2), it's unconstrained
let mut target_column = motion_proj.column_mut(column_index);
let unif_to_std = elt_motion.element.representation().with_untracked(
|rep| local_unif_to_std(rep.as_view())
);
target_column += unif_to_std * elt_motion.velocity;
}
}
// step the assembly along the deformation. this changes the elements'
// normalizations, so we restore those afterward
for elt in self.elements.get_clone_untracked() {
elt.representation().update_silent(|rep| {
match elt.column_index() {
Some(column_index) => {
// step the element along the deformation and then
// restore its normalization
*rep += motion_proj.column(column_index);
elt.project_to_normalized(rep);
},
None => {
console_log!("No velocity to unpack for fresh element \"{}\"", elt.id())
}
};
});
}
// request a realization to bring the configuration back onto the
// solution variety. this also gets the elements' column indices and the
// saved tangent space back in sync
self.needs_realization.set(true);
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::engine;
#[test]
#[should_panic(expected = "Sphere \"sphere\" should be indexed before writing problem data")]
fn unindexed_element_test() {
let _ = create_root(|| {
let elt = Sphere::default("sphere".to_string(), 0);
elt.pose(&mut ConstraintProblem::new(1));
});
}
#[test]
#[should_panic(expected = "Subjects should be indexed before inversive distance regulator writes problem data")]
fn unindexed_subject_test_inversive_distance() {
let _ = create_root(|| {
let subjects = [0, 1].map(
|k| Rc::new(Sphere::default(format!("sphere{k}"), k)) as Rc<dyn Element>
);
subjects[0].set_column_index(0);
InversiveDistanceRegulator {
subjects: subjects,
measurement: create_memo(|| 0.0),
set_point: create_signal(SpecifiedValue::try_from("0.0".to_string()).unwrap()),
serial: InversiveDistanceRegulator::next_serial()
}.pose(&mut ConstraintProblem::new(2));
});
}
#[test]
fn curvature_drift_test() {
const INITIAL_RADIUS: f64 = 0.25;
let _ = create_root(|| {
// set up an assembly containing a single sphere centered at the
// origin
let assembly = Assembly::new();
let sphere_id = "sphere0";
let _ = assembly.try_insert_element(
// we create the sphere by hand for two reasons: to choose the
// curvature (which can affect drift rate) and to make the test
// independent of `Sphere::default`
Sphere::new(
String::from(sphere_id),
String::from("Sphere 0"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, INITIAL_RADIUS)
)
);
// nudge the sphere repeatedly along the `z` axis
const STEP_SIZE: f64 = 0.0025;
const STEP_CNT: usize = 400;
let sphere = assembly.elements_by_id.with(|elts_by_id| elts_by_id[sphere_id].clone());
let velocity = DVector::from_column_slice(&[0.0, 0.0, STEP_SIZE, 0.0]);
for _ in 0..STEP_CNT {
assembly.deform(
vec![
ElementMotion {
element: sphere.clone(),
velocity: velocity.as_view()
}
]
);
}
// check how much the sphere's curvature has drifted
const INITIAL_HALF_CURV: f64 = 0.5 / INITIAL_RADIUS;
const DRIFT_TOL: f64 = 0.015;
let final_half_curv = sphere.representation().with_untracked(
|rep| rep[Sphere::CURVATURE_COMPONENT]
);
assert!((final_half_curv / INITIAL_HALF_CURV - 1.0).abs() < DRIFT_TOL);
});
}
}

View file

@ -0,0 +1,5 @@
pub mod add_remove;
pub mod diagnostics;
pub mod display;
pub mod outline;
pub mod test_assembly_chooser;

View file

@ -0,0 +1,54 @@
use std::rc::Rc;
use sycamore::prelude::*;
use super::test_assembly_chooser::TestAssemblyChooser;
use crate::{
AppState,
assembly::{InversiveDistanceRegulator, Point, Sphere}
};
#[component]
pub fn AddRemove() -> View {
view! {
div(id="add-remove") {
button(
on:click=|_| {
let state = use_context::<AppState>();
state.assembly.insert_element_default::<Sphere>();
}
) { "Add sphere" }
button(
on:click=|_| {
let state = use_context::<AppState>();
state.assembly.insert_element_default::<Point>();
}
) { "Add point" }
button(
class="emoji", /* KLUDGE */ // for convenience, we're using an emoji as a temporary icon for this button
disabled={
let state = use_context::<AppState>();
state.selection.with(|sel| sel.len() != 2)
},
on:click=|_| {
let state = use_context::<AppState>();
let subjects: [_; 2] = state.selection.with(
// the button is only enabled when two elements are
// selected, so we know the cast to a two-element array
// will succeed
|sel| sel
.clone()
.into_iter()
.collect::<Vec<_>>()
.try_into()
.unwrap()
);
state.assembly.insert_regulator(
Rc::new(InversiveDistanceRegulator::new(subjects))
);
state.selection.update(|sel| sel.clear());
}
) { "🔗" }
TestAssemblyChooser {}
}
}
}

View file

@ -0,0 +1,258 @@
use charming::{
Chart,
WasmRenderer,
component::{Axis, DataZoom, Grid},
element::{AxisType, Symbol},
series::{Line, Scatter},
};
use sycamore::prelude::*;
use crate::AppState;
#[derive(Clone)]
struct DiagnosticsState {
active_tab: Signal<String>
}
impl DiagnosticsState {
fn new(initial_tab: String) -> DiagnosticsState {
DiagnosticsState {
active_tab: create_signal(initial_tab)
}
}
}
// a realization status indicator
#[component]
fn RealizationStatus() -> View {
let state = use_context::<AppState>();
let realization_status = state.assembly.realization_status;
view! {
div(
id="realization-status",
class=realization_status.with(
|status| match status {
Ok(_) => "",
Err(_) => "invalid"
}
)
) {
div(class="status")
div {
(realization_status.with(
|status| match status {
Ok(_) => "Target accuracy achieved".to_string(),
Err(message) => message.clone()
}
))
}
}
}
}
fn into_log10_time_point((step, value): (usize, f64)) -> Vec<Option<f64>> {
vec![
Some(step as f64),
if value == 0.0 { None } else { Some(value.abs().log10()) }
]
}
// the loss history from the last realization
#[component]
fn LossHistory() -> View {
const CONTAINER_ID: &str = "loss-history";
let state = use_context::<AppState>();
let renderer = WasmRenderer::new_opt(None, Some(178));
on_mount(move || {
create_effect(move || {
// get the loss history
let scaled_loss: Vec<_> = state.assembly.descent_history.with(
|history| history.scaled_loss
.iter()
.enumerate()
.map(|(step, &loss)| (step, loss))
.map(into_log10_time_point)
.collect()
);
// initialize the chart axes
let step_axis = Axis::new()
.type_(AxisType::Category)
.boundary_gap(false);
let scaled_loss_axis = Axis::new();
// load the chart data. when there's no history, we load the data
// point (0, None) to clear the chart. it would feel more natural to
// load empty data vectors, but that turns out not to clear the
// chart: it instead leads to previous data being re-used
let scaled_loss_series = Line::new().data(
if scaled_loss.len() > 0 {
scaled_loss
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let chart = Chart::new()
.animation(false)
.data_zoom(DataZoom::new().y_axis_index(0).right(40))
.x_axis(step_axis)
.y_axis(scaled_loss_axis)
.grid(Grid::new().top(20).right(80).bottom(30).left(60))
.series(scaled_loss_series);
renderer.render(CONTAINER_ID, &chart).unwrap();
});
});
view! {
div(id=CONTAINER_ID, class="diagnostics-chart")
}
}
// the spectrum of the Hessian during the last realization
#[component]
fn SpectrumHistory() -> View {
const CONTAINER_ID: &str = "spectrum-history";
let state = use_context::<AppState>();
let renderer = WasmRenderer::new(478, 178);
on_mount(move || {
create_effect(move || {
// get the spectrum of the Hessian at each step, split into its
// positive, negative, and strictly-zero parts
let (
hess_eigvals_zero,
hess_eigvals_nonzero
): (Vec<_>, Vec<_>) = state.assembly.descent_history.with(
|history| history.hess_eigvals
.iter()
.enumerate()
.map(
|(step, eigvals)| eigvals.iter().map(
move |&val| (step, val)
)
)
.flatten()
.partition(|&(_, val)| val == 0.0)
);
let zero_level = hess_eigvals_nonzero
.iter()
.map(|(_, val)| val.abs())
.reduce(f64::min)
.map(|val| 0.1 * val)
.unwrap_or(1.0);
let (
hess_eigvals_pos,
hess_eigvals_neg
): (Vec<_>, Vec<_>) = hess_eigvals_nonzero
.into_iter()
.partition(|&(_, val)| val > 0.0);
// initialize the chart axes
let step_axis = Axis::new()
.type_(AxisType::Category)
.boundary_gap(false);
let eigval_axis = Axis::new();
// load the chart data. when there's no history, we load the data
// point (0, None) to clear the chart. it would feel more natural to
// load empty data vectors, but that turns out not to clear the
// chart: it instead leads to previous data being re-used
let eigval_series_pos = Scatter::new()
.symbol_size(4.5)
.data(
if hess_eigvals_pos.len() > 0 {
hess_eigvals_pos
.into_iter()
.map(into_log10_time_point)
.collect()
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let eigval_series_neg = Scatter::new()
.symbol(Symbol::Diamond)
.symbol_size(6.0)
.data(
if hess_eigvals_neg.len() > 0 {
hess_eigvals_neg
.into_iter()
.map(into_log10_time_point)
.collect()
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let eigval_series_zero = Scatter::new()
.symbol(Symbol::Triangle)
.symbol_size(5.0)
.data(
if hess_eigvals_zero.len() > 0 {
hess_eigvals_zero
.into_iter()
.map(|(step, _)| (step, zero_level))
.map(into_log10_time_point)
.collect()
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let chart = Chart::new()
.animation(false)
.data_zoom(DataZoom::new().y_axis_index(0).right(40))
.x_axis(step_axis)
.y_axis(eigval_axis)
.grid(Grid::new().top(20).right(80).bottom(30).left(60))
.series(eigval_series_pos)
.series(eigval_series_neg)
.series(eigval_series_zero);
renderer.render(CONTAINER_ID, &chart).unwrap();
});
});
view! {
div(id=CONTAINER_ID, class="diagnostics-chart")
}
}
#[component(inline_props)]
fn DiagnosticsPanel(name: &'static str, children: Children) -> View {
let diagnostics_state = use_context::<DiagnosticsState>();
view! {
div(
class="diagnostics-panel",
"hidden"=diagnostics_state.active_tab.with(
|active_tab| {
if active_tab == name {
None
} else {
Some("")
}
}
)
) {
(children)
}
}
}
#[component]
pub fn Diagnostics() -> View {
let diagnostics_state = DiagnosticsState::new("loss".to_string());
let active_tab = diagnostics_state.active_tab.clone();
provide_context(diagnostics_state);
view! {
div(id="diagnostics") {
div(id="diagnostics-bar") {
RealizationStatus {}
select(bind:value=active_tab) {
option(value="loss") { "Loss" }
option(value="spectrum") { "Spectrum" }
}
}
DiagnosticsPanel(name="loss") { LossHistory {} }
DiagnosticsPanel(name="spectrum") { SpectrumHistory {} }
}
}
}

View file

@ -0,0 +1,900 @@
use core::array;
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
use std::rc::Rc;
use sycamore::{prelude::*, motion::create_raf};
use web_sys::{
console,
window,
KeyboardEvent,
MouseEvent,
WebGl2RenderingContext,
WebGlBuffer,
WebGlProgram,
WebGlShader,
WebGlUniformLocation,
wasm_bindgen::{JsCast, JsValue}
};
use crate::{
AppState,
assembly::{Element, ElementColor, ElementMotion, Point, Sphere}
};
// --- color ---
const COLOR_SIZE: usize = 3;
type ColorWithOpacity = [f32; COLOR_SIZE + 1];
fn combine_channels(color: ElementColor, opacity: f32) -> ColorWithOpacity {
let mut color_with_opacity = [0.0; COLOR_SIZE + 1];
color_with_opacity[..COLOR_SIZE].copy_from_slice(&color);
color_with_opacity[COLOR_SIZE] = opacity;
color_with_opacity
}
// --- scene data ---
struct SceneSpheres {
representations: Vec<DVector<f64>>,
colors_with_opacity: Vec<ColorWithOpacity>,
highlights: Vec<f32>
}
impl SceneSpheres {
fn new() -> SceneSpheres{
SceneSpheres {
representations: Vec::new(),
colors_with_opacity: Vec::new(),
highlights: Vec::new()
}
}
fn len_i32(&self) -> i32 {
self.representations.len().try_into().expect("Number of spheres must fit in a 32-bit integer")
}
fn push(&mut self, representation: DVector<f64>, color: ElementColor, opacity: f32, highlight: f32) {
self.representations.push(representation);
self.colors_with_opacity.push(combine_channels(color, opacity));
self.highlights.push(highlight);
}
}
struct ScenePoints {
representations: Vec<DVector<f64>>,
colors_with_opacity: Vec<ColorWithOpacity>,
highlights: Vec<f32>,
selections: Vec<f32>
}
impl ScenePoints {
fn new() -> ScenePoints {
ScenePoints {
representations: Vec::new(),
colors_with_opacity: Vec::new(),
highlights: Vec::new(),
selections: Vec::new()
}
}
fn push(&mut self, representation: DVector<f64>, color: ElementColor, opacity: f32, highlight: f32, selected: bool) {
self.representations.push(representation);
self.colors_with_opacity.push(combine_channels(color, opacity));
self.highlights.push(highlight);
self.selections.push(if selected { 1.0 } else { 0.0 });
}
}
pub struct Scene {
spheres: SceneSpheres,
points: ScenePoints
}
impl Scene {
fn new() -> Scene {
Scene {
spheres: SceneSpheres::new(),
points: ScenePoints::new()
}
}
}
pub trait DisplayItem {
fn show(&self, scene: &mut Scene, selected: bool);
// the smallest positive depth, represented as a multiple of `dir`, where
// the line generated by `dir` hits the element. returns `None` if the line
// misses the element
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, pixel_size: f64) -> Option<f64>;
}
impl DisplayItem for Sphere {
fn show(&self, scene: &mut Scene, selected: bool) {
/* SCAFFOLDING */
const DEFAULT_OPACITY: f32 = 0.5;
const GHOST_OPACITY: f32 = 0.2;
const HIGHLIGHT: f32 = 0.2;
let representation = self.representation.get_clone_untracked();
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
let opacity = if self.ghost.get() { GHOST_OPACITY } else { DEFAULT_OPACITY };
let highlight = if selected { 1.0 } else { HIGHLIGHT };
scene.spheres.push(representation, color, opacity, highlight);
}
// this method should be kept synchronized with `sphere_cast` in
// `spheres.frag`, which does essentially the same thing on the GPU side
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, _pixel_size: f64) -> Option<f64> {
// if `a/b` is less than this threshold, we approximate
// `a*u^2 + b*u + c` by the linear function `b*u + c`
const DEG_THRESHOLD: f64 = 1e-9;
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
let a = -rep[3] * dir.norm_squared();
let b = rep.rows_range(..3).dot(&dir);
let c = -rep[4];
let adjust = 4.0*a*c/(b*b);
if adjust < 1.0 {
// as long as `b` is non-zero, the linear approximation of
//
// a*u^2 + b*u + c
//
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of
// the quadratic adjacent to `u_lin` is stored in `lin_root`. if
// both roots have the same sign, `lin_root` will be the one closer
// to `u = 0`
let square_rect_ratio = 1.0 + (1.0 - adjust).sqrt();
let lin_root = -(2.0*c)/b / square_rect_ratio;
if a.abs() > DEG_THRESHOLD * b.abs() {
if lin_root > 0.0 {
Some(lin_root)
} else {
let other_root = -b/(2.*a) * square_rect_ratio;
(other_root > 0.0).then_some(other_root)
}
} else {
(lin_root > 0.0).then_some(lin_root)
}
} else {
// the line through `dir` misses the sphere completely
None
}
}
}
impl DisplayItem for Point {
fn show(&self, scene: &mut Scene, selected: bool) {
/* SCAFFOLDING */
const GHOST_OPACITY: f32 = 0.4;
const HIGHLIGHT: f32 = 0.5;
let representation = self.representation.get_clone_untracked();
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
let opacity = if self.ghost.get() { GHOST_OPACITY } else { 1.0 };
let highlight = if selected { 1.0 } else { HIGHLIGHT };
scene.points.push(representation, color, opacity, highlight, selected);
}
/* SCAFFOLDING */
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, pixel_size: f64) -> Option<f64> {
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
if rep[2] < 0.0 {
// this constant should be kept synchronized with `point.frag`
const POINT_RADIUS_PX: f64 = 4.0;
// find the radius of the point in screen projection units
let point_radius_proj = POINT_RADIUS_PX * pixel_size;
// find the squared distance between the screen projections of the
// ray and the point
let dir_proj = -dir.fixed_rows::<2>(0) / dir[2];
let rep_proj = -rep.fixed_rows::<2>(0) / rep[2];
let dist_sq = (dir_proj - rep_proj).norm_squared();
// if the ray hits the point, return its depth
if dist_sq < point_radius_proj * point_radius_proj {
Some(rep[2] / dir[2])
} else {
None
}
} else {
None
}
}
}
// --- WebGL utilities ---
fn compile_shader(
context: &WebGl2RenderingContext,
shader_type: u32,
source: &str,
) -> WebGlShader {
let shader = context.create_shader(shader_type).unwrap();
context.shader_source(&shader, source);
context.compile_shader(&shader);
shader
}
fn set_up_program(
context: &WebGl2RenderingContext,
vertex_shader_source: &str,
fragment_shader_source: &str
) -> WebGlProgram {
// compile the shaders
let vertex_shader = compile_shader(
&context,
WebGl2RenderingContext::VERTEX_SHADER,
vertex_shader_source,
);
let fragment_shader = compile_shader(
&context,
WebGl2RenderingContext::FRAGMENT_SHADER,
fragment_shader_source,
);
// create the program and attach the shaders
let program = context.create_program().unwrap();
context.attach_shader(&program, &vertex_shader);
context.attach_shader(&program, &fragment_shader);
context.link_program(&program);
/* DEBUG */
// report whether linking succeeded
let link_status = context
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
.as_bool()
.unwrap();
let link_msg = if link_status {
"Linked successfully"
} else {
"Linking failed"
};
console::log_1(&JsValue::from(link_msg));
program
}
fn get_uniform_array_locations<const N: usize>(
context: &WebGl2RenderingContext,
program: &WebGlProgram,
var_name: &str,
member_name_opt: Option<&str>
) -> [Option<WebGlUniformLocation>; N] {
array::from_fn(|n| {
let name = match member_name_opt {
Some(member_name) => format!("{var_name}[{n}].{member_name}"),
None => format!("{var_name}[{n}]")
};
context.get_uniform_location(&program, name.as_str())
})
}
// bind the given vertex buffer object to the given vertex attribute
fn bind_to_attribute(
context: &WebGl2RenderingContext,
attr_index: u32,
attr_size: i32,
buffer: &Option<WebGlBuffer>
) {
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
context.vertex_attrib_pointer_with_i32(
attr_index,
attr_size,
WebGl2RenderingContext::FLOAT,
false, // don't normalize
0, // zero stride
0, // zero offset
);
}
// load the given data into a new vertex buffer object
fn load_new_buffer(
context: &WebGl2RenderingContext,
data: &[f32]
) -> Option<WebGlBuffer> {
// create a buffer and bind it to ARRAY_BUFFER
let buffer = context.create_buffer();
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
// load the given data into the buffer. this block is unsafe because
// `Float32Array::view` creates a raw view into our module's
// `WebAssembly.Memory` buffer. allocating more memory will change the
// buffer, invalidating the view, so we have to make sure we don't allocate
// any memory until the view is dropped. we're okay here because the view is
// used as soon as it's created
unsafe {
context.buffer_data_with_array_buffer_view(
WebGl2RenderingContext::ARRAY_BUFFER,
&js_sys::Float32Array::view(&data),
WebGl2RenderingContext::STATIC_DRAW,
);
}
buffer
}
fn bind_new_buffer_to_attribute(
context: &WebGl2RenderingContext,
attr_index: u32,
attr_size: i32,
data: &[f32]
) {
let buffer = load_new_buffer(context, data);
bind_to_attribute(context, attr_index, attr_size, &buffer);
}
// the direction in camera space that a mouse event is pointing along
fn event_dir(event: &MouseEvent) -> (Vector3<f64>, f64) {
let target: web_sys::Element = event.target().unwrap().unchecked_into();
let rect = target.get_bounding_client_rect();
let width = rect.width();
let height = rect.height();
let shortdim = width.min(height);
// this constant should be kept synchronized with `spheres.frag` and
// `point.vert`
const FOCAL_SLOPE: f64 = 0.3;
(
Vector3::new(
FOCAL_SLOPE * (2.0*(f64::from(event.client_x()) - rect.left()) - width) / shortdim,
FOCAL_SLOPE * (2.0*(rect.bottom() - f64::from(event.client_y())) - height) / shortdim,
-1.0
),
FOCAL_SLOPE * 2.0 / shortdim
)
}
// --- display component ---
#[component]
pub fn Display() -> View {
let state = use_context::<AppState>();
// canvas
let display = create_node_ref();
// viewpoint
let assembly_to_world = create_signal(DMatrix::<f64>::identity(5, 5));
// navigation
let pitch_up = create_signal(0.0);
let pitch_down = create_signal(0.0);
let yaw_right = create_signal(0.0);
let yaw_left = create_signal(0.0);
let roll_ccw = create_signal(0.0);
let roll_cw = create_signal(0.0);
let zoom_in = create_signal(0.0);
let zoom_out = create_signal(0.0);
let turntable = create_signal(false); /* BENCHMARKING */
// manipulation
let translate_neg_x = create_signal(0.0);
let translate_pos_x = create_signal(0.0);
let translate_neg_y = create_signal(0.0);
let translate_pos_y = create_signal(0.0);
let translate_neg_z = create_signal(0.0);
let translate_pos_z = create_signal(0.0);
let shrink_neg = create_signal(0.0);
let shrink_pos = create_signal(0.0);
// change listener
let scene_changed = create_signal(true);
create_effect(move || {
state.assembly.elements.with(|elts| {
for elt in elts {
elt.representation().track();
elt.ghost().track();
}
});
state.selection.track();
scene_changed.set(true);
});
/* INSTRUMENTS */
const SAMPLE_PERIOD: i32 = 60;
let mut last_sample_time = 0.0;
let mut frames_since_last_sample = 0;
let mean_frame_interval = create_signal(0.0);
let assembly_for_raf = state.assembly.clone();
on_mount(move || {
// timing
let mut last_time = 0.0;
// viewpoint
const ROT_SPEED: f64 = 0.4; // in radians per second
const ZOOM_SPEED: f64 = 0.15; // multiplicative rate per second
const TURNTABLE_SPEED: f64 = 0.1; /* BENCHMARKING */
let mut orientation = DMatrix::<f64>::identity(5, 5);
let mut rotation = DMatrix::<f64>::identity(5, 5);
let mut location_z: f64 = 5.0;
// manipulation
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
const SHRINKING_SPEED: f64 = 0.15; // in length units per second
// display parameters
const LAYER_THRESHOLD: i32 = 0; /* DEBUG */
const DEBUG_MODE: i32 = 0; /* DEBUG */
/* INSTRUMENTS */
let performance = window().unwrap().performance().unwrap();
// get the display canvas
let canvas = display.get().unchecked_into::<web_sys::HtmlCanvasElement>();
let ctx = canvas
.get_context("webgl2")
.unwrap()
.unwrap()
.dyn_into::<WebGl2RenderingContext>()
.unwrap();
// disable depth testing
ctx.disable(WebGl2RenderingContext::DEPTH_TEST);
// set blend mode
ctx.enable(WebGl2RenderingContext::BLEND);
ctx.blend_func(WebGl2RenderingContext::SRC_ALPHA, WebGl2RenderingContext::ONE_MINUS_SRC_ALPHA);
// set up the sphere rendering program
let sphere_program = set_up_program(
&ctx,
include_str!("identity.vert"),
include_str!("spheres.frag")
);
// set up the point rendering program
let point_program = set_up_program(
&ctx,
include_str!("point.vert"),
include_str!("point.frag")
);
/* DEBUG */
// print the maximum number of vectors that can be passed as
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
// requires this maximum to be at least 224, as discussed in the
// documentation of the GL_MAX_FRAGMENT_UNIFORM_VECTORS parameter
// here:
//
// https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glGet.xhtml
//
// there are also other size limits. for example, on Aaron's
// machine, the the length of a float or genType array seems to be
// capped at 1024 elements
console::log_2(
&ctx.get_parameter(WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
&JsValue::from("uniform vectors available")
);
// find the sphere program's vertex attribute
let viewport_position_attr = ctx.get_attrib_location(&sphere_program, "position") as u32;
// find the sphere program's uniforms
const SPHERE_MAX: usize = 200;
let sphere_cnt_loc = ctx.get_uniform_location(&sphere_program, "sphere_cnt");
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "sphere_list", Some("sp")
);
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "sphere_list", Some("lt")
);
let sphere_color_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "color_list", None
);
let sphere_highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "highlight_list", None
);
let resolution_loc = ctx.get_uniform_location(&sphere_program, "resolution");
let shortdim_loc = ctx.get_uniform_location(&sphere_program, "shortdim");
let layer_threshold_loc = ctx.get_uniform_location(&sphere_program, "layer_threshold");
let debug_mode_loc = ctx.get_uniform_location(&sphere_program, "debug_mode");
// load the viewport vertex positions into a new vertex buffer object
const VERTEX_CNT: usize = 6;
let viewport_positions: [f32; 3*VERTEX_CNT] = [
// northwest triangle
-1.0, -1.0, 0.0,
-1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
// southeast triangle
-1.0, -1.0, 0.0,
1.0, 1.0, 0.0,
1.0, -1.0, 0.0
];
let viewport_position_buffer = load_new_buffer(&ctx, &viewport_positions);
// find the point program's vertex attributes
let point_position_attr = ctx.get_attrib_location(&point_program, "position") as u32;
let point_color_attr = ctx.get_attrib_location(&point_program, "color") as u32;
let point_highlight_attr = ctx.get_attrib_location(&point_program, "highlight") as u32;
let point_selection_attr = ctx.get_attrib_location(&point_program, "selected") as u32;
// set up a repainting routine
let (_, start_animation_loop, _) = create_raf(move || {
// get the time step
let time = performance.now();
let time_step = 0.001*(time - last_time);
last_time = time;
// get the navigation state
let pitch_up_val = pitch_up.get();
let pitch_down_val = pitch_down.get();
let yaw_right_val = yaw_right.get();
let yaw_left_val = yaw_left.get();
let roll_ccw_val = roll_ccw.get();
let roll_cw_val = roll_cw.get();
let zoom_in_val = zoom_in.get();
let zoom_out_val = zoom_out.get();
let turntable_val = turntable.get(); /* BENCHMARKING */
// get the manipulation state
let translate_neg_x_val = translate_neg_x.get();
let translate_pos_x_val = translate_pos_x.get();
let translate_neg_y_val = translate_neg_y.get();
let translate_pos_y_val = translate_pos_y.get();
let translate_neg_z_val = translate_neg_z.get();
let translate_pos_z_val = translate_pos_z.get();
let shrink_neg_val = shrink_neg.get();
let shrink_pos_val = shrink_pos.get();
// update the assembly's orientation
let ang_vel = {
let pitch = pitch_up_val - pitch_down_val;
let yaw = yaw_right_val - yaw_left_val;
let roll = roll_ccw_val - roll_cw_val;
if pitch != 0.0 || yaw != 0.0 || roll != 0.0 {
ROT_SPEED * Vector3::new(-pitch, yaw, roll).normalize()
} else {
Vector3::zeros()
}
} /* BENCHMARKING */ + if turntable_val {
Vector3::new(0.0, TURNTABLE_SPEED, 0.0)
} else {
Vector3::zeros()
};
let mut rotation_sp = rotation.fixed_view_mut::<3, 3>(0, 0);
rotation_sp.copy_from(
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
);
orientation = &rotation * &orientation;
// update the assembly's location
let zoom = zoom_out_val - zoom_in_val;
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
// manipulate the assembly
if state.selection.with(|sel| sel.len() == 1) {
let sel = state.selection.with(
|sel| sel.into_iter().next().unwrap().clone()
);
let translate_x = translate_pos_x_val - translate_neg_x_val;
let translate_y = translate_pos_y_val - translate_neg_y_val;
let translate_z = translate_pos_z_val - translate_neg_z_val;
let shrink = shrink_pos_val - shrink_neg_val;
let translating =
translate_x != 0.0
|| translate_y != 0.0
|| translate_z != 0.0;
if translating || shrink != 0.0 {
let elt_motion = {
let u = if translating {
TRANSLATION_SPEED * Vector3::new(
translate_x, translate_y, translate_z
).normalize()
} else {
Vector3::zeros()
};
time_step * DVector::from_column_slice(
&[u[0], u[1], u[2], SHRINKING_SPEED * shrink]
)
};
assembly_for_raf.deform(
vec![
ElementMotion {
element: sel,
velocity: elt_motion.as_view()
}
]
);
scene_changed.set(true);
}
}
if scene_changed.get() {
const SPACE_DIM: usize = 3;
const COLOR_SIZE: usize = 3;
/* INSTRUMENTS */
// measure mean frame interval
frames_since_last_sample += 1;
if frames_since_last_sample >= SAMPLE_PERIOD {
mean_frame_interval.set((time - last_sample_time) / (SAMPLE_PERIOD as f64));
last_sample_time = time;
frames_since_last_sample = 0;
}
// --- get the assembly ---
let mut scene = Scene::new();
// find the map from assembly space to world space
let location = {
let u = -location_z;
DMatrix::from_column_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, u,
0.0, 0.0, 2.0*u, 1.0, u*u,
0.0, 0.0, 0.0, 0.0, 1.0
])
};
let asm_to_world = &location * &orientation;
// set up the scene
state.assembly.elements.with_untracked(
|elts| for elt in elts {
let selected = state.selection.with(|sel| sel.contains(elt));
elt.show(&mut scene, selected);
}
);
let sphere_cnt = scene.spheres.len_i32();
// --- draw the spheres ---
// use the sphere rendering program
ctx.use_program(Some(&sphere_program));
// enable the sphere program's vertex attribute
ctx.enable_vertex_attrib_array(viewport_position_attr);
// write the spheres in world coordinates
let sphere_reps_world: Vec<_> = scene.spheres.representations.into_iter().map(
|rep| (&asm_to_world * rep).cast::<f32>()
).collect();
// set the resolution
let width = canvas.width() as f32;
let height = canvas.height() as f32;
ctx.uniform2f(resolution_loc.as_ref(), width, height);
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// pass the scene data
ctx.uniform1i(sphere_cnt_loc.as_ref(), sphere_cnt);
for n in 0..sphere_reps_world.len() {
let v = &sphere_reps_world[n];
ctx.uniform3fv_with_f32_array(
sphere_sp_locs[n].as_ref(),
v.rows(0, 3).as_slice()
);
ctx.uniform2fv_with_f32_array(
sphere_lt_locs[n].as_ref(),
v.rows(3, 2).as_slice()
);
ctx.uniform4fv_with_f32_array(
sphere_color_locs[n].as_ref(),
&scene.spheres.colors_with_opacity[n]
);
ctx.uniform1f(
sphere_highlight_locs[n].as_ref(),
scene.spheres.highlights[n]
);
}
// pass the display parameters
ctx.uniform1i(layer_threshold_loc.as_ref(), LAYER_THRESHOLD);
ctx.uniform1i(debug_mode_loc.as_ref(), DEBUG_MODE);
// bind the viewport vertex position buffer to the position
// attribute in the vertex shader
bind_to_attribute(&ctx, viewport_position_attr, SPACE_DIM as i32, &viewport_position_buffer);
// draw the scene
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
// disable the sphere program's vertex attribute
ctx.disable_vertex_attrib_array(viewport_position_attr);
// --- draw the points ---
if !scene.points.representations.is_empty() {
// use the point rendering program
ctx.use_program(Some(&point_program));
// enable the point program's vertex attributes
ctx.enable_vertex_attrib_array(point_position_attr);
ctx.enable_vertex_attrib_array(point_color_attr);
ctx.enable_vertex_attrib_array(point_highlight_attr);
ctx.enable_vertex_attrib_array(point_selection_attr);
// write the points in world coordinates
let asm_to_world_sp = asm_to_world.rows(0, SPACE_DIM);
let point_positions = DMatrix::from_columns(
&scene.points.representations.into_iter().map(
|rep| &asm_to_world_sp * rep
).collect::<Vec<_>>().as_slice()
).cast::<f32>();
// load the point positions and colors into new buffers and
// bind them to the corresponding attributes in the vertex
// shader
bind_new_buffer_to_attribute(&ctx, point_position_attr, SPACE_DIM as i32, point_positions.as_slice());
bind_new_buffer_to_attribute(&ctx, point_color_attr, (COLOR_SIZE + 1) as i32, scene.points.colors_with_opacity.concat().as_slice());
bind_new_buffer_to_attribute(&ctx, point_highlight_attr, 1 as i32, scene.points.highlights.as_slice());
bind_new_buffer_to_attribute(&ctx, point_selection_attr, 1 as i32, scene.points.selections.as_slice());
// draw the scene
ctx.draw_arrays(WebGl2RenderingContext::POINTS, 0, point_positions.ncols() as i32);
// disable the point program's vertex attributes
ctx.disable_vertex_attrib_array(point_position_attr);
ctx.disable_vertex_attrib_array(point_color_attr);
ctx.disable_vertex_attrib_array(point_highlight_attr);
ctx.disable_vertex_attrib_array(point_selection_attr);
}
// --- update the display state ---
// update the viewpoint
assembly_to_world.set(asm_to_world);
// clear the scene change flag
scene_changed.set(
pitch_up_val != 0.0
|| pitch_down_val != 0.0
|| yaw_left_val != 0.0
|| yaw_right_val != 0.0
|| roll_cw_val != 0.0
|| roll_ccw_val != 0.0
|| zoom_in_val != 0.0
|| zoom_out_val != 0.0
|| turntable_val /* BENCHMARKING */
);
} else {
frames_since_last_sample = 0;
mean_frame_interval.set(-1.0);
}
});
start_animation_loop();
});
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
let mut navigating = true;
let shift = event.shift_key();
match event.key().as_str() {
"ArrowUp" if shift => zoom_in.set(value),
"ArrowDown" if shift => zoom_out.set(value),
"ArrowUp" => pitch_up.set(value),
"ArrowDown" => pitch_down.set(value),
"ArrowRight" if shift => roll_cw.set(value),
"ArrowLeft" if shift => roll_ccw.set(value),
"ArrowRight" => yaw_right.set(value),
"ArrowLeft" => yaw_left.set(value),
_ => navigating = false
};
if navigating {
scene_changed.set(true);
event.prevent_default();
}
};
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
let mut manipulating = true;
let shift = event.shift_key();
match event.key().as_str() {
"d" | "D" => translate_pos_x.set(value),
"a" | "A" => translate_neg_x.set(value),
"w" | "W" if shift => translate_neg_z.set(value),
"s" | "S" if shift => translate_pos_z.set(value),
"w" | "W" => translate_pos_y.set(value),
"s" | "S" => translate_neg_y.set(value),
"]" | "}" => shrink_neg.set(value),
"[" | "{" => shrink_pos.set(value),
_ => manipulating = false
};
if manipulating {
event.prevent_default();
}
};
view! {
/* TO DO */
// switch back to integer-valued parameters when that becomes possible
// again
canvas(
ref=display,
id="display",
width="600",
height="600",
tabindex="0",
on:keydown=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
roll_cw.set(yaw_right.get());
roll_ccw.set(yaw_left.get());
zoom_in.set(pitch_up.get());
zoom_out.set(pitch_down.get());
yaw_right.set(0.0);
yaw_left.set(0.0);
pitch_up.set(0.0);
pitch_down.set(0.0);
// swap manipulation inputs
translate_pos_z.set(translate_neg_y.get());
translate_neg_z.set(translate_pos_y.get());
translate_pos_y.set(0.0);
translate_neg_y.set(0.0);
} else {
if event.key() == "Enter" { /* BENCHMARKING */
turntable.set_fn(|turn| !turn);
scene_changed.set(true);
}
set_nav_signal(&event, 1.0);
set_manip_signal(&event, 1.0);
}
},
on:keyup=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
yaw_right.set(roll_cw.get());
yaw_left.set(roll_ccw.get());
pitch_up.set(zoom_in.get());
pitch_down.set(zoom_out.get());
roll_cw.set(0.0);
roll_ccw.set(0.0);
zoom_in.set(0.0);
zoom_out.set(0.0);
// swap manipulation inputs
translate_pos_y.set(translate_neg_z.get());
translate_neg_y.set(translate_pos_z.get());
translate_pos_z.set(0.0);
translate_neg_z.set(0.0);
} else {
set_nav_signal(&event, 0.0);
set_manip_signal(&event, 0.0);
}
},
on:blur=move |_| {
pitch_up.set(0.0);
pitch_down.set(0.0);
yaw_right.set(0.0);
yaw_left.set(0.0);
roll_ccw.set(0.0);
roll_cw.set(0.0);
},
on:click=move |event: MouseEvent| {
// find the nearest element along the pointer direction
let (dir, pixel_size) = event_dir(&event);
console::log_1(&JsValue::from(dir.to_string()));
let mut clicked: Option<(Rc<dyn Element>, f64)> = None;
let tangible_elts = state.assembly.elements
.get_clone_untracked()
.into_iter()
.filter(|elt| !elt.ghost().get());
for elt in tangible_elts {
match assembly_to_world.with(|asm_to_world| elt.cast(dir, asm_to_world, pixel_size)) {
Some(depth) => match clicked {
Some((_, best_depth)) => {
if depth < best_depth {
clicked = Some((elt, depth))
}
},
None => clicked = Some((elt, depth))
}
None => ()
};
}
// if we clicked something, select it
match clicked {
Some((elt, _)) => state.select(&elt, event.shift_key()),
None => state.selection.update(|sel| sel.clear())
};
}
)
}
}

View file

@ -0,0 +1,7 @@
#version 300 es
in vec4 position;
void main() {
gl_Position = position;
}

View file

@ -0,0 +1,264 @@
use itertools::Itertools;
use std::rc::Rc;
use sycamore::prelude::*;
use web_sys::{
KeyboardEvent,
MouseEvent,
wasm_bindgen::JsCast
};
use crate::{
AppState,
assembly::{
Element,
HalfCurvatureRegulator,
InversiveDistanceRegulator,
Regulator
},
specified::SpecifiedValue
};
// an editable view of a regulator
#[component(inline_props)]
fn RegulatorInput(regulator: Rc<dyn Regulator>) -> View {
// get the regulator's measurement and set point signals
let measurement = regulator.measurement();
let set_point = regulator.set_point();
// the `valid` signal tracks whether the last entered value is a valid set
// point specification
let valid = create_signal(true);
// the `value` signal holds the current set point specification
let value = create_signal(
set_point.with_untracked(|set_pt| set_pt.spec.clone())
);
// this `reset_value` closure resets the input value to the regulator's set
// point specification
let reset_value = move || {
batch(|| {
valid.set(true);
value.set(set_point.with(|set_pt| set_pt.spec.clone()));
})
};
// reset the input value whenever the regulator's set point specification
// is updated
create_effect(reset_value);
view! {
input(
r#type="text",
class=move || {
if valid.get() {
set_point.with(|set_pt| {
if set_pt.is_present() {
"regulator-input constraint"
} else {
"regulator-input"
}
})
} else {
"regulator-input invalid"
}
},
placeholder=measurement.with(|result| result.to_string()),
bind:value=value,
on:change=move |_| {
valid.set(
match SpecifiedValue::try_from(value.get_clone_untracked()) {
Ok(set_pt) => {
set_point.set(set_pt);
true
}
Err(_) => false
}
)
},
on:keydown={
move |event: KeyboardEvent| {
match event.key().as_str() {
"Escape" => reset_value(),
_ => ()
}
}
}
)
}
}
pub trait OutlineItem {
fn outline_item(self: Rc<Self>, element: &Rc<dyn Element>) -> View;
}
impl OutlineItem for InversiveDistanceRegulator {
fn outline_item(self: Rc<Self>, element: &Rc<dyn Element>) -> View {
let other_subject_label = if self.subjects[0] == element.clone() {
self.subjects[1].label()
} else {
self.subjects[0].label()
}.clone();
view! {
li(class="regulator") {
div(class="regulator-label") { (other_subject_label) }
div(class="regulator-type") { "Inversive distance" }
RegulatorInput(regulator=self)
div(class="status")
}
}
}
}
impl OutlineItem for HalfCurvatureRegulator {
fn outline_item(self: Rc<Self>, _element: &Rc<dyn Element>) -> View {
view! {
li(class="regulator") {
div(class="regulator-label") // for spacing
div(class="regulator-type") { "Half-curvature" }
RegulatorInput(regulator=self)
div(class="status")
}
}
}
}
// a list item that shows an element in an outline view of an assembly
#[component(inline_props)]
fn ElementOutlineItem(element: Rc<dyn Element>) -> View {
let state = use_context::<AppState>();
let class = {
let element_for_class = element.clone();
state.selection.map(
move |sel| if sel.contains(&element_for_class) { "selected" } else { "" }
)
};
let label = element.label().clone();
let representation = element.representation().clone();
let rep_components = move || {
representation.with(
|rep| rep.iter().map(
|u| {
let u_str = format!("{:.3}", u).replace("-", "\u{2212}");
view! { div { (u_str) } }
}
).collect::<Vec<_>>()
)
};
let regulated = element.regulators().map(|regs| regs.len() > 0);
let regulator_list = element.regulators().map(
|regs| regs
.clone()
.into_iter()
.sorted_by_key(|reg| reg.subjects().len())
.collect::<Vec<_>>()
);
let details_node = create_node_ref();
view! {
li {
details(ref=details_node) {
summary(
class=class.get(),
on:keydown={
let element_for_handler = element.clone();
move |event: KeyboardEvent| {
match event.key().as_str() {
"Enter" => {
state.select(&element_for_handler, event.shift_key());
event.prevent_default();
},
"ArrowRight" if regulated.get() => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.set_attribute("open", "");
},
"ArrowLeft" => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.remove_attribute("open");
},
_ => ()
}
}
}
) {
div(
class="element-switch",
on:click=|event: MouseEvent| event.stop_propagation()
)
div(
class="element",
on:click={
let state_for_handler = state.clone();
let element_for_handler = element.clone();
move |event: MouseEvent| {
state_for_handler.select(&element_for_handler, event.shift_key());
event.stop_propagation();
event.prevent_default();
}
}
) {
div(class="element-label") { (label) }
div(class="element-representation") { (rep_components) }
input(
r#type="checkbox",
bind:checked=element.ghost(),
on:click=|event: MouseEvent| event.stop_propagation()
)
}
}
ul(class="regulators") {
Keyed(
list=regulator_list,
view=move |reg| reg.outline_item(&element),
key=|reg| reg.serial()
)
}
}
}
}
}
// a component that lists the elements of the current assembly, showing each
// element's regulators in a collapsible sub-list. its implementation is based
// on Kate Morley's HTML + CSS tree views:
//
// https://iamkate.com/code/tree-views/
//
#[component]
pub fn Outline() -> View {
let state = use_context::<AppState>();
// list the elements alphabetically by ID
/* TO DO */
// this code is designed to generalize easily to other sort keys. if we only
// ever wanted to sort by ID, we could do that more simply using the
// `elements_by_id` index
let element_list = state.assembly.elements.map(
|elts| elts
.clone()
.into_iter()
.sorted_by_key(|elt| elt.id().clone())
.collect::<Vec<_>>()
);
view! {
ul(
id="outline",
on:click={
let state = use_context::<AppState>();
move |_| state.selection.update(|sel| sel.clear())
}
) {
Keyed(
list=element_list,
view=|elt| view! {
ElementOutlineItem(element=elt)
},
key=|elt| elt.serial()
)
}
}
}

View file

@ -0,0 +1,19 @@
#version 300 es
precision highp float;
in vec4 point_color;
in float point_highlight;
in float total_radius;
out vec4 outColor;
void main() {
float r = total_radius * length(2.*gl_PointCoord - vec2(1.));
const float POINT_RADIUS = 4.;
float border = smoothstep(POINT_RADIUS - 1., POINT_RADIUS, r);
float disk = 1. - smoothstep(total_radius - 1., total_radius, r);
vec4 color = mix(point_color, vec4(1.), border * point_highlight);
outColor = vec4(vec3(1.), disk) * color;
}

View file

@ -0,0 +1,24 @@
#version 300 es
in vec4 position;
in vec4 color;
in float highlight;
in float selected;
out vec4 point_color;
out float point_highlight;
out float total_radius;
// camera
const float focal_slope = 0.3;
void main() {
total_radius = 5. + 0.5*selected;
float depth = -focal_slope * position.z;
gl_Position = vec4(position.xy / depth, 0., 1.);
gl_PointSize = 2.*total_radius;
point_color = color;
point_highlight = highlight;
}

View file

@ -0,0 +1,235 @@
#version 300 es
precision highp float;
out vec4 outColor;
// --- inversive geometry ---
struct vecInv {
vec3 sp;
vec2 lt;
};
// --- uniforms ---
// assembly
const int SPHERE_MAX = 200;
uniform int sphere_cnt;
uniform vecInv sphere_list[SPHERE_MAX];
uniform vec4 color_list[SPHERE_MAX];
uniform float highlight_list[SPHERE_MAX];
// view
uniform vec2 resolution;
uniform float shortdim;
// controls
uniform int layer_threshold;
uniform bool debug_mode;
// light and camera
const float focal_slope = 0.3;
const vec3 light_dir = normalize(vec3(2., 2., 1.));
const float ixn_threshold = 0.005;
const float INTERIOR_DIMMING = 0.7;
// --- sRGB ---
// map colors from RGB space to sRGB space, as specified in the sRGB standard
// (IEC 61966-2-1:1999)
//
// https://www.color.org/sRGB.pdf
// https://www.color.org/chardata/rgb/srgb.xalter
//
// in RGB space, color value is proportional to light intensity, so linear
// color-vector interpolation corresponds to physical light mixing. in sRGB
// space, the color encoding used by many monitors, we use more of the value
// interval to represent low intensities, and less of the interval to represent
// high intensities. this improves color quantization
float sRGB(float t) {
if (t <= 0.0031308) {
return 12.92*t;
} else {
return 1.055*pow(t, 5./12.) - 0.055;
}
}
vec3 sRGB(vec3 color) {
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
}
// --- shading ---
struct Fragment {
vec3 pt;
vec3 normal;
vec4 color;
};
Fragment sphere_shading(vecInv v, vec3 pt, vec4 base_color) {
// the expression for normal needs to be checked. it's supposed to give the
// negative gradient of the lorentz product between the impact point vector
// and the sphere vector with respect to the coordinates of the impact
// point. i calculated it in my head and decided that the result looked good
// enough for now
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
float incidence = dot(normal, light_dir);
float illum = mix(0.4, 1.0, max(incidence, 0.0));
return Fragment(pt, normal, vec4(illum * base_color.rgb, base_color.a));
}
float intersection_dist(Fragment a, Fragment b) {
float intersection_sin = length(cross(a.normal, b.normal));
vec3 disp = a.pt - b.pt;
return max(
abs(dot(a.normal, disp)),
abs(dot(b.normal, disp))
) / intersection_sin;
}
// --- ray-casting ---
struct TaggedDepth {
float depth;
float dimming;
int id;
};
// if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by
// the linear function `b*u + c`
const float DEG_THRESHOLD = 1e-9;
// the depths, represented as multiples of `dir`, where the line generated by
// `dir` hits the sphere represented by `v`. if both depths are positive, the
// smaller one is returned in the first component. if only one depth is
// positive, it could be returned in either component
vec2 sphere_cast(vecInv v, vec3 dir) {
float a = -v.lt.s * dot(dir, dir);
float b = dot(v.sp, dir);
float c = -v.lt.t;
float adjust = 4.*a*c/(b*b);
if (adjust < 1.) {
// as long as `b` is non-zero, the linear approximation of
//
// a*u^2 + b*u + c
//
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of the
// quadratic adjacent to `u_lin` is stored in `lin_root`. if both roots
// have the same sign, `lin_root` will be the one closer to `u = 0`
float square_rect_ratio = 1. + sqrt(1. - adjust);
float lin_root = -(2.*c)/b / square_rect_ratio;
if (abs(a) > DEG_THRESHOLD * abs(b)) {
return vec2(lin_root, -b/(2.*a) * square_rect_ratio);
} else {
return vec2(lin_root, -1.);
}
} else {
// the line through `dir` misses the sphere completely
return vec2(-1., -1.);
}
}
void main() {
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
vec3 dir = vec3(focal_slope * scr, -1.);
// cast rays through the spheres
const int LAYER_MAX = 12;
TaggedDepth top_hits [LAYER_MAX];
int layer_cnt = 0;
for (int id = 0; id < sphere_cnt; ++id) {
// find out where the ray hits the sphere
vec2 hit_depths = sphere_cast(sphere_list[id], dir);
// insertion-sort the points we hit into the hit list
float dimming = 1.;
for (int side = 0; side < 2; ++side) {
float depth = hit_depths[side];
if (depth > 0.) {
for (int layer = layer_cnt; layer >= 0; --layer) {
if (layer < 1 || top_hits[layer-1].depth <= depth) {
// we're not as close to the screen as the hit before
// the empty slot, so insert here
if (layer < LAYER_MAX) {
top_hits[layer] = TaggedDepth(depth, dimming, id);
}
break;
} else {
// we're closer to the screen than the hit before the
// empty slot, so move that hit into the empty slot
top_hits[layer] = top_hits[layer-1];
}
}
layer_cnt = min(layer_cnt + 1, LAYER_MAX);
dimming = INTERIOR_DIMMING;
}
}
}
/* DEBUG */
// in debug mode, show the layer count instead of the shaded image
if (debug_mode) {
// at the bottom of the screen, show the color scale instead of the
// layer count
if (gl_FragCoord.y < 10.) layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
// convert number to color
ivec3 bits = layer_cnt / ivec3(1, 2, 4);
vec3 color = mod(vec3(bits), 2.);
if (layer_cnt % 16 >= 8) {
color = mix(color, vec3(0.5), 0.5);
}
outColor = vec4(color, 1.);
return;
}
// composite the sphere fragments
vec3 color = vec3(0.);
int layer = layer_cnt - 1;
TaggedDepth hit = top_hits[layer];
vec4 sphere_color = color_list[hit.id];
Fragment frag_next = sphere_shading(
sphere_list[hit.id],
hit.depth * dir,
vec4(hit.dimming * sphere_color.rgb, sphere_color.a)
);
float highlight_next = highlight_list[hit.id];
--layer;
for (; layer >= layer_threshold; --layer) {
// load the current fragment
Fragment frag = frag_next;
float highlight = highlight_next;
// shade the next fragment
hit = top_hits[layer];
sphere_color = color_list[hit.id];
frag_next = sphere_shading(
sphere_list[hit.id],
hit.depth * dir,
vec4(hit.dimming * sphere_color.rgb, sphere_color.a)
);
highlight_next = highlight_list[hit.id];
// highlight intersections
float ixn_dist = intersection_dist(frag, frag_next);
float max_highlight = max(highlight, highlight_next);
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
frag.color = mix(frag.color, vec4(1.), ixn_highlight);
frag_next.color = mix(frag_next.color, vec4(1.), ixn_highlight);
// highlight cusps
float cusp_cos = abs(dot(dir, frag.normal));
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[hit.id].lt.s);
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
frag.color = mix(frag.color, vec4(1.), cusp_highlight);
// composite the current fragment
color = mix(color, frag.color.rgb, frag.color.a);
}
color = mix(color, frag_next.color.rgb, frag_next.color.a);
outColor = vec4(sRGB(color), 1.);
}

View file

@ -0,0 +1,947 @@
use itertools::izip;
use std::{f64::consts::{FRAC_1_SQRT_2, PI}, rc::Rc};
use nalgebra::Vector3;
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue};
use crate::{
AppState,
engine,
engine::DescentHistory,
assembly::{
Assembly,
Element,
ElementColor,
InversiveDistanceRegulator,
Point,
Sphere
},
specified::SpecifiedValue
};
// --- loaders ---
/* DEBUG */
// each of these functions loads an example assembly for testing. once we've
// done more work on saving and loading assemblies, we should come back to this
// code to see if it can be simplified
fn load_gen_assemb(assembly: &Assembly) {
let _ = assembly.try_insert_element(
Sphere::new(
String::from("gemini_a"),
String::from("Castor"),
[1.00_f32, 0.25_f32, 0.00_f32],
engine::sphere(0.5, 0.5, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("gemini_b"),
String::from("Pollux"),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere(-0.5, -0.5, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("ursa_major"),
String::from("Ursa major"),
[0.25_f32, 0.00_f32, 1.00_f32],
engine::sphere(-0.5, 0.5, 0.0, 0.75)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("ursa_minor"),
String::from("Ursa minor"),
[0.25_f32, 1.00_f32, 0.00_f32],
engine::sphere(0.5, -0.5, 0.0, 0.5)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("moon_deimos"),
String::from("Deimos"),
[0.75_f32, 0.75_f32, 0.00_f32],
engine::sphere(0.0, 0.15, 1.0, 0.25)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("moon_phobos"),
String::from("Phobos"),
[0.00_f32, 0.75_f32, 0.50_f32],
engine::sphere(0.0, -0.15, -1.0, 0.25)
)
);
}
fn load_low_curv_assemb(assembly: &Assembly) {
// create the spheres
let a = 0.75_f64.sqrt();
let _ = assembly.try_insert_element(
Sphere::new(
"central".to_string(),
"Central".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"assemb_plane".to_string(),
"Assembly plane".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"side1".to_string(),
"Side 1".to_string(),
[1.00_f32, 0.00_f32, 0.25_f32],
engine::sphere_with_offset(1.0, 0.0, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"side2".to_string(),
"Side 2".to_string(),
[0.25_f32, 1.00_f32, 0.00_f32],
engine::sphere_with_offset(-0.5, a, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"side3".to_string(),
"Side 3".to_string(),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere_with_offset(-0.5, -a, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"corner1".to_string(),
"Corner 1".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"corner2".to_string(),
"Corner 2".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("corner3"),
String::from("Corner 3"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0)
)
);
// impose the desired tangencies and make the sides planar
let index_range = 1..=3;
let [central, assemb_plane] = ["central", "assemb_plane"].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[id].clone()
)
);
let sides = index_range.clone().map(
|k| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("side{k}")].clone()
)
);
let corners = index_range.map(
|k| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("corner{k}")].clone()
)
);
for plane in [assemb_plane.clone()].into_iter().chain(sides.clone()) {
// fix the curvature of each plane
let curvature = plane.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
curvature.set_point().set(SpecifiedValue::try_from("0".to_string()).unwrap());
}
let all_perpendicular = [central.clone()].into_iter()
.chain(sides.clone())
.chain(corners.clone());
for sphere in all_perpendicular {
// make each side and packed sphere perpendicular to the assembly plane
let right_angle = InversiveDistanceRegulator::new([sphere, assemb_plane.clone()]);
right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(right_angle));
}
for sphere in sides.clone().chain(corners.clone()) {
// make each side and corner sphere tangent to the central sphere
let tangency = InversiveDistanceRegulator::new([sphere.clone(), central.clone()]);
tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(tangency));
}
for (side_index, side) in sides.enumerate() {
// make each side tangent to the two adjacent corner spheres
for (corner_index, corner) in corners.clone().enumerate() {
if side_index != corner_index {
let tangency = InversiveDistanceRegulator::new([side.clone(), corner]);
tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(tangency));
}
}
}
}
fn load_pointed_assemb(assembly: &Assembly) {
let _ = assembly.try_insert_element(
Point::new(
format!("point_front"),
format!("Front point"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::point(0.0, 0.0, FRAC_1_SQRT_2)
)
);
let _ = assembly.try_insert_element(
Point::new(
format!("point_back"),
format!("Back point"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::point(0.0, 0.0, -FRAC_1_SQRT_2)
)
);
for index_x in 0..=1 {
for index_y in 0..=1 {
let x = index_x as f64 - 0.5;
let y = index_y as f64 - 0.5;
let _ = assembly.try_insert_element(
Sphere::new(
format!("sphere{index_x}{index_y}"),
format!("Sphere {index_x}{index_y}"),
[0.5*(1.0 + x) as f32, 0.5*(1.0 + y) as f32, 0.5*(1.0 - x*y) as f32],
engine::sphere(x, y, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Point::new(
format!("point{index_x}{index_y}"),
format!("Point {index_x}{index_y}"),
[0.5*(1.0 + x) as f32, 0.5*(1.0 + y) as f32, 0.5*(1.0 - x*y) as f32],
engine::point(x, y, 0.0)
)
);
}
}
}
// to finish describing the tridiminished icosahedron, set the inversive
// distance regulators as follows:
// A-A -0.25
// A-B "
// B-C "
// C-C "
// A-C -0.25 * φ^2 = -0.6545084971874737
fn load_tridim_icosahedron_assemb(assembly: &Assembly) {
// create the vertices
const COLOR_A: ElementColor = [1.00_f32, 0.25_f32, 0.25_f32];
const COLOR_B: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
const COLOR_C: ElementColor = [0.25_f32, 0.50_f32, 1.00_f32];
let vertices = [
Point::new(
"a1".to_string(),
"A₁".to_string(),
COLOR_A,
engine::point(0.25, 0.75, 0.75)
),
Point::new(
"a2".to_string(),
"A₂".to_string(),
COLOR_A,
engine::point(0.75, 0.25, 0.75)
),
Point::new(
"a3".to_string(),
"A₃".to_string(),
COLOR_A,
engine::point(0.75, 0.75, 0.25)
),
Point::new(
"b1".to_string(),
"B₁".to_string(),
COLOR_B,
engine::point(0.75, -0.25, -0.25)
),
Point::new(
"b2".to_string(),
"B₂".to_string(),
COLOR_B,
engine::point(-0.25, 0.75, -0.25)
),
Point::new(
"b3".to_string(),
"B₃".to_string(),
COLOR_B,
engine::point(-0.25, -0.25, 0.75)
),
Point::new(
"c1".to_string(),
"C₁".to_string(),
COLOR_C,
engine::point(0.0, -1.0, -1.0)
),
Point::new(
"c2".to_string(),
"C₂".to_string(),
COLOR_C,
engine::point(-1.0, 0.0, -1.0)
),
Point::new(
"c3".to_string(),
"C₃".to_string(),
COLOR_C,
engine::point(-1.0, -1.0, 0.0)
)
];
for vertex in vertices {
let _ = assembly.try_insert_element(vertex);
}
// create the faces
const COLOR_FACE: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
let frac_1_sqrt_6 = 1.0 / 6.0_f64.sqrt();
let frac_2_sqrt_6 = 2.0 * frac_1_sqrt_6;
let faces = [
Sphere::new(
"face1".to_string(),
"Face 1".to_string(),
COLOR_FACE,
engine::sphere_with_offset(frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, 0.0)
),
Sphere::new(
"face2".to_string(),
"Face 2".to_string(),
COLOR_FACE,
engine::sphere_with_offset(-frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, 0.0)
),
Sphere::new(
"face3".to_string(),
"Face 3".to_string(),
COLOR_FACE,
engine::sphere_with_offset(-frac_1_sqrt_6, -frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6, 0.0)
)
];
for face in faces {
face.ghost().set(true);
let _ = assembly.try_insert_element(face);
}
let index_range = 1..=3;
for j in index_range.clone() {
// make each face planar
let face = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("face{j}")].clone()
);
let curvature_regulator = face.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
curvature_regulator.set_point().set(
SpecifiedValue::try_from("0".to_string()).unwrap()
);
// put each A vertex on the face it belongs to
let vertex_a = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("a{j}")].clone()
);
let incidence_a = InversiveDistanceRegulator::new([face.clone(), vertex_a.clone()]);
incidence_a.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(incidence_a));
// regulate the B-C vertex distances
let vertices_bc = ["b", "c"].map(
|series| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("{series}{j}")].clone()
)
);
assembly.insert_regulator(
Rc::new(InversiveDistanceRegulator::new(vertices_bc))
);
// get the pair of indices adjacent to `j`
let adjacent_indices = [j % 3 + 1, (j + 1) % 3 + 1];
for k in adjacent_indices.clone() {
for series in ["b", "c"] {
// put each B and C vertex on the faces it belongs to
let vertex = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("{series}{k}")].clone()
);
let incidence = InversiveDistanceRegulator::new([face.clone(), vertex.clone()]);
incidence.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(incidence));
// regulate the A-B and A-C vertex distances
assembly.insert_regulator(
Rc::new(InversiveDistanceRegulator::new([vertex_a.clone(), vertex]))
);
}
}
// regulate the A-A and C-C vertex distances
let adjacent_pairs = ["a", "c"].map(
|series| adjacent_indices.map(
|index| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("{series}{index}")].clone()
)
)
);
for pair in adjacent_pairs {
assembly.insert_regulator(
Rc::new(InversiveDistanceRegulator::new(pair))
);
}
}
}
// to finish describing the dodecahedral circle packing, set the inversive
// distance regulators to -1. some of the regulators have already been set
fn load_dodeca_packing_assemb(assembly: &Assembly) {
// add the substrate
let _ = assembly.try_insert_element(
Sphere::new(
"substrate".to_string(),
"Substrate".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
)
);
let substrate = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id["substrate"].clone()
);
// fix the substrate's curvature
substrate.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
).set_point().set(
SpecifiedValue::try_from("0.5".to_string()).unwrap()
);
// add the circles to be packed
const COLOR_A: ElementColor = [1.00_f32, 0.25_f32, 0.00_f32];
const COLOR_B: ElementColor = [1.00_f32, 0.00_f32, 0.25_f32];
const COLOR_C: ElementColor = [0.25_f32, 0.00_f32, 1.00_f32];
let phi = 0.5 + 1.25_f64.sqrt(); /* TO DO */ // replace with std::f64::consts::PHI when that gets stabilized
let phi_inv = 1.0 / phi;
let coord_scale = (phi + 2.0).sqrt();
let face_scales = [phi_inv, (13.0 / 12.0) / coord_scale];
let face_radii = [phi_inv, 5.0 / 12.0];
let mut faces = Vec::<Rc<dyn Element>>::new();
let subscripts = ["", ""];
for j in 0..2 {
for k in 0..2 {
let small_coord = face_scales[k] * (2.0*(j as f64) - 1.0);
let big_coord = face_scales[k] * (2.0*(k as f64) - 1.0) * phi;
let id_num = format!("{j}{k}");
let label_sub = format!("{}{}", subscripts[j], subscripts[k]);
// add the A face
let id_a = format!("a{id_num}");
let _ = assembly.try_insert_element(
Sphere::new(
id_a.clone(),
format!("A{label_sub}"),
COLOR_A,
engine::sphere(0.0, small_coord, big_coord, face_radii[k])
)
);
faces.push(
assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id_a].clone()
)
);
// add the B face
let id_b = format!("b{id_num}");
let _ = assembly.try_insert_element(
Sphere::new(
id_b.clone(),
format!("B{label_sub}"),
COLOR_B,
engine::sphere(small_coord, big_coord, 0.0, face_radii[k])
)
);
faces.push(
assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id_b].clone()
)
);
// add the C face
let id_c = format!("c{id_num}");
let _ = assembly.try_insert_element(
Sphere::new(
id_c.clone(),
format!("C{label_sub}"),
COLOR_C,
engine::sphere(big_coord, 0.0, small_coord, face_radii[k])
)
);
faces.push(
assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id_c].clone()
)
);
}
}
// make each face sphere perpendicular to the substrate
for face in faces {
let right_angle = InversiveDistanceRegulator::new([face, substrate.clone()]);
right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(right_angle));
}
// set up the tangencies that define the packing
for [long_edge_plane, short_edge_plane] in [["a", "b"], ["b", "c"], ["c", "a"]] {
for k in 0..2 {
let long_edge_ids = [
format!("{long_edge_plane}{k}0"),
format!("{long_edge_plane}{k}1")
];
let short_edge_ids = [
format!("{short_edge_plane}0{k}"),
format!("{short_edge_plane}1{k}")
];
let [long_edge, short_edge] = [long_edge_ids, short_edge_ids].map(
|edge_ids| edge_ids.map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id].clone()
)
)
);
// set up the short-edge tangency
let short_tangency = InversiveDistanceRegulator::new(short_edge.clone());
if k == 0 {
short_tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
}
assembly.insert_regulator(Rc::new(short_tangency));
// set up the side tangencies
for i in 0..2 {
for j in 0..2 {
let side_tangency = InversiveDistanceRegulator::new(
[long_edge[i].clone(), short_edge[j].clone()]
);
if i == 0 && k == 0 {
side_tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
}
assembly.insert_regulator(Rc::new(side_tangency));
}
}
}
}
}
// the initial configuration of this test assembly deliberately violates the
// constraints, so loading the assembly will trigger a non-trivial realization
fn load_balanced_assemb(assembly: &Assembly) {
// create the spheres
const R_OUTER: f64 = 10.0;
const R_INNER: f64 = 4.0;
let spheres = [
Sphere::new(
"outer".to_string(),
"Outer".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, R_OUTER)
),
Sphere::new(
"a".to_string(),
"A".to_string(),
[1.00_f32, 0.00_f32, 0.25_f32],
engine::sphere(0.0, 4.0, 0.0, R_INNER)
),
Sphere::new(
"b".to_string(),
"B".to_string(),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere(0.0, -4.0, 0.0, R_INNER)
),
];
for sphere in spheres {
let _ = assembly.try_insert_element(sphere);
}
// get references to the spheres
let [outer, a, b] = ["outer", "a", "b"].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[id].clone()
)
);
// fix the diameters of the outer, sun, and moon spheres
for (sphere, radius) in [
(outer.clone(), R_OUTER),
(a.clone(), R_INNER),
(b.clone(), R_INNER)
] {
let curvature_regulator = sphere.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
let curvature = 0.5 / radius;
curvature_regulator.set_point().set(
SpecifiedValue::try_from(curvature.to_string()).unwrap()
);
}
// set the inversive distances between the spheres. as described above, the
// initial configuration deliberately violates these constraints
for inner in [a, b] {
let tangency = InversiveDistanceRegulator::new([outer.clone(), inner]);
tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(tangency));
}
}
// the initial configuration of this test assembly deliberately violates the
// constraints, so loading the assembly will trigger a non-trivial realization
fn load_off_center_assemb(assembly: &Assembly) {
// create a point almost at the origin and a sphere centered on the origin
let _ = assembly.try_insert_element(
Point::new(
"point".to_string(),
"Point".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::point(1e-9, 0.0, 0.0)
),
);
let _ = assembly.try_insert_element(
Sphere::new(
"sphere".to_string(),
"Sphere".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
),
);
// get references to the elements
let point_and_sphere = ["point", "sphere"].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[id].clone()
)
);
// put the point on the sphere
let incidence = InversiveDistanceRegulator::new(point_and_sphere);
incidence.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(incidence));
}
// setting the inversive distances between the vertices to -2 gives a regular
// tetrahedron with side length 1, whose insphere and circumsphere have radii
// sqrt(1/6) and sqrt(3/2), respectively. to measure those radii, set an
// inversive distance of -1 between the insphere and each face, and then set an
// inversive distance of 0 between the circumsphere and each vertex
fn load_radius_ratio_assemb(assembly: &Assembly) {
let index_range = 1..=4;
// create the spheres
const GRAY: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
let spheres = [
Sphere::new(
"sphere_faces".to_string(),
"Insphere".to_string(),
GRAY,
engine::sphere(0.0, 0.0, 0.0, 0.5)
),
Sphere::new(
"sphere_vertices".to_string(),
"Circumsphere".to_string(),
GRAY,
engine::sphere(0.0, 0.0, 0.0, 0.25)
)
];
for sphere in spheres {
let _ = assembly.try_insert_element(sphere);
}
// create the vertices
let vertices = izip!(
index_range.clone(),
[
[1.00_f32, 0.50_f32, 0.75_f32],
[1.00_f32, 0.75_f32, 0.50_f32],
[1.00_f32, 1.00_f32, 0.50_f32],
[0.75_f32, 0.50_f32, 1.00_f32]
].into_iter(),
[
engine::point(-0.6, -0.8, -0.6),
engine::point(-0.6, 0.8, 0.6),
engine::point(0.6, -0.8, 0.6),
engine::point(0.6, 0.8, -0.6)
].into_iter()
).map(
|(k, color, representation)| {
Point::new(
format!("v{k}"),
format!("Vertex {k}"),
color,
representation
)
}
);
for vertex in vertices {
let _ = assembly.try_insert_element(vertex);
}
// create the faces
let base_dir = Vector3::new(1.0, 0.75, 1.0).normalize();
let offset = base_dir.dot(&Vector3::new(-0.6, 0.8, 0.6));
let faces = izip!(
index_range.clone(),
[
[1.00_f32, 0.00_f32, 0.25_f32],
[1.00_f32, 0.25_f32, 0.00_f32],
[0.75_f32, 0.75_f32, 0.00_f32],
[0.25_f32, 0.00_f32, 1.00_f32]
].into_iter(),
[
engine::sphere_with_offset(base_dir[0], base_dir[1], base_dir[2], offset, 0.0),
engine::sphere_with_offset(base_dir[0], -base_dir[1], -base_dir[2], offset, 0.0),
engine::sphere_with_offset(-base_dir[0], base_dir[1], -base_dir[2], offset, 0.0),
engine::sphere_with_offset(-base_dir[0], -base_dir[1], base_dir[2], offset, 0.0)
].into_iter()
).map(
|(k, color, representation)| {
Sphere::new(
format!("f{k}"),
format!("Face {k}"),
color,
representation
)
}
);
for face in faces {
face.ghost().set(true);
let _ = assembly.try_insert_element(face);
}
// impose the constraints
for j in index_range.clone() {
let [face_j, vertex_j] = [
format!("f{j}"),
format!("v{j}")
].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id].clone()
)
);
// make the faces planar
let curvature_regulator = face_j.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
curvature_regulator.set_point().set(
SpecifiedValue::try_from("0".to_string()).unwrap()
);
for k in index_range.clone().filter(|&index| index != j) {
let vertex_k = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("v{k}")].clone()
);
// fix the distances between the vertices
if j < k {
let distance_regulator = InversiveDistanceRegulator::new(
[vertex_j.clone(), vertex_k.clone()]
);
assembly.insert_regulator(Rc::new(distance_regulator));
}
// put the vertices on the faces
let incidence_regulator = InversiveDistanceRegulator::new([face_j.clone(), vertex_k.clone()]);
incidence_regulator.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(incidence_regulator));
}
}
}
// to finish setting up the problem, fix the following curvatures:
// sun 1
// moon 5/3 = 1.666666666666666...
// chain1 2
// a tiny `x` or `z` nudge of the outer sphere reliably prevents realization
// failures before they happen, or resolves them after they happen. the result
// depends sensitively on the translation direction, suggesting that realization
// is failing because the engine is having trouble breaking a symmetry
// /* TO DO */
// the engine's performance on this problem is scale-dependent! with the current
// initial conditions, realization fails for any order of imposing the remaining
// curvature constraints. scaling everything up by a factor of ten, as done in
// the original problem, makes realization succeed reliably. one potentially
// relevant difference is that a lot of the numbers in the current initial
// conditions are exactly representable as floats, unlike the analogous numbers
// in the scaled-up problem. the inexact representations might break the
// symmetry that's getting the engine stuck
fn load_irisawa_hexlet_assemb(assembly: &Assembly) {
let index_range = 1..=6;
let colors = [
[1.00_f32, 0.00_f32, 0.25_f32],
[1.00_f32, 0.25_f32, 0.00_f32],
[0.75_f32, 0.75_f32, 0.00_f32],
[0.25_f32, 1.00_f32, 0.00_f32],
[0.00_f32, 0.25_f32, 1.00_f32],
[0.25_f32, 0.00_f32, 1.00_f32]
].into_iter();
// create the spheres
let spheres = [
Sphere::new(
"outer".to_string(),
"Outer".to_string(),
[0.5_f32, 0.5_f32, 0.5_f32],
engine::sphere(0.0, 0.0, 0.0, 1.5)
),
Sphere::new(
"sun".to_string(),
"Sun".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, -0.75, 0.0, 0.75)
),
Sphere::new(
"moon".to_string(),
"Moon".to_string(),
[0.25_f32, 0.25_f32, 0.25_f32],
engine::sphere(0.0, 0.75, 0.0, 0.75)
),
].into_iter().chain(
index_range.clone().zip(colors).map(
|(k, color)| {
let ang = (k as f64) * PI/3.0;
Sphere::new(
format!("chain{k}"),
format!("Chain {k}"),
color,
engine::sphere(1.0 * ang.sin(), 0.0, 1.0 * ang.cos(), 0.5)
)
}
)
);
for sphere in spheres {
let _ = assembly.try_insert_element(sphere);
}
// put the outer sphere in ghost mode and fix its curvature
let outer = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id["outer"].clone()
);
outer.ghost().set(true);
let outer_curvature_regulator = outer.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
outer_curvature_regulator.set_point().set(
SpecifiedValue::try_from((1.0 / 3.0).to_string()).unwrap()
);
// impose the desired tangencies
let [outer, sun, moon] = ["outer", "sun", "moon"].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[id].clone()
)
);
let chain = index_range.map(
|k| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("chain{k}")].clone()
)
);
for (chain_sphere, chain_sphere_next) in chain.clone().zip(chain.cycle().skip(1)) {
for (other_sphere, inversive_distance) in [
(outer.clone(), "1"),
(sun.clone(), "-1"),
(moon.clone(), "-1"),
(chain_sphere_next.clone(), "-1")
] {
let tangency = InversiveDistanceRegulator::new([chain_sphere.clone(), other_sphere]);
tangency.set_point.set(SpecifiedValue::try_from(inversive_distance.to_string()).unwrap());
assembly.insert_regulator(Rc::new(tangency));
}
}
let outer_sun_tangency = InversiveDistanceRegulator::new([outer.clone(), sun]);
outer_sun_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(outer_sun_tangency));
let outer_moon_tangency = InversiveDistanceRegulator::new([outer.clone(), moon]);
outer_moon_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(outer_moon_tangency));
}
// --- chooser ---
/* DEBUG */
#[component]
pub fn TestAssemblyChooser() -> View {
// create an effect that loads the selected test assembly
let assembly_name = create_signal("general".to_string());
create_effect(move || {
// get name of chosen assembly
let name = assembly_name.get_clone();
console::log_1(
&JsValue::from(format!("Showing assembly \"{}\"", name.clone()))
);
batch(|| {
let state = use_context::<AppState>();
let assembly = &state.assembly;
// pause realization
assembly.keep_realized.set(false);
// clear state
assembly.regulators.update(|regs| regs.clear());
assembly.elements.update(|elts| elts.clear());
assembly.elements_by_id.update(|elts_by_id| elts_by_id.clear());
assembly.descent_history.set(DescentHistory::new());
state.selection.update(|sel| sel.clear());
// load assembly
match name.as_str() {
"general" => load_gen_assemb(assembly),
"low-curv" => load_low_curv_assemb(assembly),
"pointed" => load_pointed_assemb(assembly),
"tridim-icosahedron" => load_tridim_icosahedron_assemb(assembly),
"dodeca-packing" => load_dodeca_packing_assemb(assembly),
"balanced" => load_balanced_assemb(assembly),
"off-center" => load_off_center_assemb(assembly),
"radius-ratio" => load_radius_ratio_assemb(assembly),
"irisawa-hexlet" => load_irisawa_hexlet_assemb(assembly),
_ => ()
};
// resume realization
assembly.keep_realized.set(true);
});
});
// build the chooser
view! {
select(bind:value=assembly_name) {
option(value="general") { "General" }
option(value="low-curv") { "Low-curvature" }
option(value="pointed") { "Pointed" }
option(value="tridim-icosahedron") { "Tridiminished icosahedron" }
option(value="dodeca-packing") { "Dodecahedral packing" }
option(value="balanced") { "Balanced" }
option(value="off-center") { "Off-center" }
option(value="radius-ratio") { "Radius ratio" }
option(value="irisawa-hexlet") { "Irisawa hexlet" }
option(value="empty") { "Empty" }
}
}
}

1006
app-proto/src/engine.rs Normal file

File diff suppressed because it is too large Load diff

1
app-proto/src/lib.rs Normal file
View file

@ -0,0 +1 @@
pub mod engine;

69
app-proto/src/main.rs Normal file
View file

@ -0,0 +1,69 @@
mod assembly;
mod components;
mod engine;
mod specified;
#[cfg(test)]
mod tests;
use std::{collections::BTreeSet, rc::Rc};
use sycamore::prelude::*;
use assembly::{Assembly, Element};
use components::{
add_remove::AddRemove,
diagnostics::Diagnostics,
display::Display,
outline::Outline
};
#[derive(Clone)]
struct AppState {
assembly: Assembly,
selection: Signal<BTreeSet<Rc<dyn Element>>>
}
impl AppState {
fn new() -> AppState {
AppState {
assembly: Assembly::new(),
selection: create_signal(BTreeSet::default())
}
}
// in single-selection mode, select the given element. in multiple-selection
// mode, toggle whether the given element is selected
fn select(&self, element: &Rc<dyn Element>, multi: bool) {
if multi {
self.selection.update(|sel| {
if !sel.remove(element) {
sel.insert(element.clone());
}
});
} else {
self.selection.update(|sel| {
sel.clear();
sel.insert(element.clone());
});
}
}
}
fn main() {
// set the console error panic hook
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| {
provide_context(AppState::new());
view! {
div(id="sidebar") {
AddRemove {}
Outline {}
Diagnostics {}
}
Display {}
}
});
}

View file

@ -0,0 +1,44 @@
use std::num::ParseFloatError;
// a real number described by a specification string. since the structure is
// read-only, we can guarantee that `spec` always specifies `value` in the
// following format
// ┌──────────────────────────────────────────────────────┬───────────┐
// │ `spec` │ `value` │
// ┝━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━┥
// │ a string that parses to the floating-point value `x` │ `Some(x)` │
// ├──────────────────────────────────────────────────────┼───────────┤
// │ the empty string │ `None` │
// └──────────────────────────────────────────────────────┴───────────┘
#[readonly::make]
pub struct SpecifiedValue {
pub spec: String,
pub value: Option<f64>
}
impl SpecifiedValue {
pub fn from_empty_spec() -> SpecifiedValue {
SpecifiedValue { spec: String::new(), value: None }
}
pub fn is_present(&self) -> bool {
matches!(self.value, Some(_))
}
}
// a `SpecifiedValue` can be constructed from a specification string, formatted
// as described in the comment on the structure definition. the result is `Ok`
// if the specification is properly formatted, and `Error` if not
impl TryFrom<String> for SpecifiedValue {
type Error = ParseFloatError;
fn try_from(spec: String) -> Result<Self, Self::Error> {
if spec.is_empty() {
Ok(SpecifiedValue::from_empty_spec())
} else {
spec.parse::<f64>().map(
|value| SpecifiedValue { spec: spec, value: Some(value) }
)
}
}
}

14
app-proto/src/tests.rs Normal file
View file

@ -0,0 +1,14 @@
use std::process::Command;
// build and bundle the application, reporting success if there are no errors or
// warnings. to see this test fail while others succeed, try moving `index.html`
// or one of the assets that it links to
#[test]
fn trunk_build_test() {
let build_status = Command::new("trunk")
.arg("build")
.env("RUSTFLAGS", "-D warnings")
.status()
.expect("Call to Trunk failed");
assert!(build_status.success());
}

View file

@ -0,0 +1,223 @@
module Viewer
using Blink
using Colors
using Printf
using Main.Engine
export ConstructionViewer, display!, opentools!, closetools!
# === Blink utilities ===
append_to_head!(w, type, content) = @js w begin
@var element = document.createElement($type)
element.appendChild(document.createTextNode($content))
document.head.appendChild(element)
end
style!(w, stylesheet) = append_to_head!(w, "style", stylesheet)
script!(w, code) = append_to_head!(w, "script", code)
# === construction viewer ===
mutable struct ConstructionViewer
win::Window
function ConstructionViewer()
# create window and open developer console
win = Window(Blink.Dict(:width => 620, :height => 830))
# set stylesheet
style!(win, """
body {
background-color: #ccc;
}
/* the maximum dimensions keep Ganja from blowing up the canvas */
#view {
display: block;
width: 600px;
height: 600px;
margin-top: 10px;
margin-left: 10px;
border-radius: 10px;
background-color: #f0f0f0;
}
#control-panel {
width: 600px;
height: 200px;
box-sizing: border-box;
padding: 5px 10px 5px 10px;
margin-top: 10px;
margin-left: 10px;
overflow-y: scroll;
border-radius: 10px;
background-color: #f0f0f0;
}
#control-panel > div {
margin-top: 5px;
padding: 4px;
border-radius: 5px;
border: solid;
font-family: monospace;
}
""")
# load Ganja.js. for an automatically updated web-hosted version, load from
#
# https://unpkg.com/ganja.js
#
# instead
loadjs!(win, "http://localhost:8000/ganja-1.0.204.js")
# create global functions and variables
script!(win, """
// create algebra
var CGA3 = Algebra(4, 1);
// initialize element list and palette
var elements = [];
var palette = [];
// declare handles for the view and its options
var view;
var viewOpt;
// declare handles for the controls
var controlPanel;
var visToggles;
// create scene function
function scene() {
commands = [];
for (let n = 0; n < elements.length; ++n) {
if (visToggles[n].checked) {
commands.push(palette[n], elements[n]);
}
}
return commands;
}
function updateView() {
requestAnimationFrame(view.update.bind(view, scene));
}
""")
@js win begin
# create view
viewOpt = Dict(
:conformal => true,
:gl => true,
:devicePixelRatio => window.devicePixelRatio
)
view = CGA3.graph(scene, viewOpt)
view.setAttribute(:id, "view")
view.removeAttribute(:style)
document.body.replaceChildren(view)
# create control panel
controlPanel = document.createElement(:div)
controlPanel.setAttribute(:id, "control-panel")
document.body.appendChild(controlPanel)
end
new(win)
end
end
mprod(v, w) =
v[1]*w[1] + v[2]*w[2] + v[3]*w[3] + v[4]*w[4] - v[5]*w[5]
function display!(viewer::ConstructionViewer, elements::Matrix)
# load elements
elements_full = []
for elt in eachcol(Engine.unmix * elements)
if mprod(elt, elt) < 0.5
elt_full = [0; elt; fill(0, 26)]
else
# `elt` is a spacelike vector, representing a generalized sphere, so we
# take its Hodge dual before passing it to Ganja.js. the dual represents
# the same generalized sphere, but Ganja.js only displays planes when
# they're represented by vectors in grade 4 rather than grade 1
elt_full = [fill(0, 26); -elt[5]; -elt[4]; elt[3]; -elt[2]; elt[1]; 0]
end
push!(elements_full, elt_full)
end
@js viewer.win elements = $elements_full.map((elt) -> @new CGA3(elt))
# generate palette. this is Gadfly's `default_discrete_colors` palette,
# available under the MIT license
palette = distinguishable_colors(
length(elements_full),
[LCHab(70, 60, 240)],
transform = c -> deuteranopic(c, 0.5),
lchoices = Float64[65, 70, 75, 80],
cchoices = Float64[0, 50, 60, 70],
hchoices = range(0, stop=330, length=24)
)
palette_packed = [RGB24(c).color for c in palette]
@js viewer.win palette = $palette_packed
# create visibility toggles
@js viewer.win begin
controlPanel.replaceChildren()
visToggles = []
end
for (elt, c) in zip(eachcol(elements), palette)
vec_str = join(map(t -> @sprintf("%.3f", t), elt), ", ")
color_str = "#$(hex(c))"
style_str = "background-color: $color_str; border-color: $color_str;"
@js viewer.win begin
@var toggle = document.createElement(:div)
toggle.setAttribute(:style, $style_str)
toggle.checked = true
toggle.addEventListener(
"click",
() -> begin
toggle.checked = !toggle.checked
toggle.style.backgroundColor = toggle.checked ? $color_str : "inherit";
updateView()
end
)
toggle.appendChild(document.createTextNode($vec_str))
visToggles.push(toggle);
controlPanel.appendChild(toggle);
end
end
# update view
@js viewer.win updateView()
end
function opentools!(viewer::ConstructionViewer)
size(viewer.win, 1240, 830)
opentools(viewer.win)
end
function closetools!(viewer::ConstructionViewer)
closetools(viewer.win)
size(viewer.win, 620, 830)
end
end
# ~~~ sandbox setup ~~~
elements = let
a = sqrt(BigFloat(3)/2)
sqrt(0.5) * BigFloat[
1 1 -1 -1 0
1 -1 1 -1 0
1 -1 -1 1 0
0.5 0.5 0.5 0.5 1+a
0.5 0.5 0.5 0.5 1-a
]
end
# show construction
viewer = Viewer.ConstructionViewer()
Viewer.display!(viewer, elements)

View file

@ -0,0 +1,203 @@
module Algebraic
export
codimension, dimension,
Construction, realize,
Element, Point, Sphere,
Relation, LiesOn, AlignsWithBy, mprod
import Subscripts
using LinearAlgebra
using AbstractAlgebra
using Groebner
using ...HittingSet
# --- commutative algebra ---
# as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate
# polynomial rings when the coefficients are integers. we use Groebner to extend
# support to rationals and to finite fields of prime order
Generic.reduce_gens(I::Generic.Ideal{U}) where {T <: FieldElement, U <: MPolyRingElem{T}} =
Generic.Ideal{U}(base_ring(I), groebner(gens(I)))
function codimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}}
leading = [exponent_vector(f, 1) for f in gens(I)]
targets = [Set(findall(.!iszero.(exp_vec))) for exp_vec in leading]
length(HittingSet.solve(HittingSetProblem(targets), maxdepth))
end
dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} =
length(gens(base_ring(I))) - codimension(I, maxdepth)
# --- primitve elements ---
abstract type Element{T} end
mutable struct Point{T} <: Element{T}
coords::Vector{MPolyRingElem{T}}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
rel::Nothing
## [to do] constructor argument never needed?
Point{T}(
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing
) where T = new(coords, vec, nothing)
end
function buildvec!(pt::Point)
coordring = parent(pt.coords[1])
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
end
mutable struct Sphere{T} <: Element{T}
coords::Vector{MPolyRingElem{T}}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
rel::Union{MPolyRingElem{T}, Nothing}
## [to do] constructor argument never needed?
Sphere{T}(
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
rel::Union{MPolyRingElem{T}, Nothing} = nothing
) where T = new(coords, vec, rel)
end
function buildvec!(sph::Sphere)
coordring = parent(sph.coords[1])
sph.vec = sph.coords
sph.rel = mprod(sph.coords, sph.coords) + one(coordring)
end
const coordnames = IdDict{Symbol, Vector{Union{Symbol, Nothing}}}(
nameof(Point) => [nothing, nothing, :xₚ, :yₚ, :zₚ],
nameof(Sphere) => [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
)
coordname(elt::Element, index) = coordnames[nameof(typeof(elt))][index]
function pushcoordname!(coordnamelist, indexed_elt::Tuple{Any, Element}, coordindex)
eltindex, elt = indexed_elt
name = coordname(elt, coordindex)
if !isnothing(name)
subscript = Subscripts.sub(string(eltindex))
push!(coordnamelist, Symbol(name, subscript))
end
end
function takecoord!(coordlist, indexed_elt::Tuple{Any, Element}, coordindex)
elt = indexed_elt[2]
if !isnothing(coordname(elt, coordindex))
push!(elt.coords, popfirst!(coordlist))
end
end
# --- primitive relations ---
abstract type Relation{T} end
mprod(v, w) = (v[1]*w[2] + w[1]*v[2]) / 2 - dot(v[3:end], w[3:end])
# elements: point, sphere
struct LiesOn{T} <: Relation{T}
elements::Vector{Element{T}}
LiesOn{T}(pt::Point{T}, sph::Sphere{T}) where T = new{T}([pt, sph])
end
equation(rel::LiesOn) = mprod(rel.elements[1].vec, rel.elements[2].vec)
# elements: sphere, sphere
struct AlignsWithBy{T} <: Relation{T}
elements::Vector{Element{T}}
cos_angle::T
AlignsWithBy{T}(sph1::Sphere{T}, sph2::Sphere{T}, cos_angle::T) where T = new{T}([sph1, sph2], cos_angle)
end
equation(rel::AlignsWithBy) = mprod(rel.elements[1].vec, rel.elements[2].vec) - rel.cos_angle
# --- constructions ---
mutable struct Construction{T}
points::Vector{Point{T}}
spheres::Vector{Sphere{T}}
relations::Vector{Relation{T}}
function Construction{T}(; elements = Vector{Element{T}}(), relations = Vector{Relation{T}}()) where T
allelements = union(elements, (rel.elements for rel in relations)...)
new{T}(
filter(elt -> isa(elt, Point), allelements),
filter(elt -> isa(elt, Sphere), allelements),
relations
)
end
end
function Base.push!(ctx::Construction{T}, elt::Point{T}) where T
push!(ctx.points, elt)
end
function Base.push!(ctx::Construction{T}, elt::Sphere{T}) where T
push!(ctx.spheres, elt)
end
function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
push!(ctx.relations, rel)
for elt in rel.elements
push!(ctx, elt)
end
end
function realize(ctx::Construction{T}) where T
# collect coordinate names
coordnamelist = Symbol[]
eltenum = enumerate(Iterators.flatten((ctx.spheres, ctx.points)))
for coordindex in 1:5
for indexed_elt in eltenum
pushcoordname!(coordnamelist, indexed_elt, coordindex)
end
end
# construct coordinate ring
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
# retrieve coordinates
for (_, elt) in eltenum
empty!(elt.coords)
end
for coordindex in 1:5
for indexed_elt in eltenum
takecoord!(coordqueue, indexed_elt, coordindex)
end
end
# construct coordinate vectors
for (_, elt) in eltenum
buildvec!(elt)
end
# turn relations into equations
eqns = vcat(
equation.(ctx.relations),
[elt.rel for (_, elt) in eltenum if !isnothing(elt.rel)]
)
# add relations to center, orient, and scale the construction
# [to do] the scaling constraint, as written, can be impossible to satisfy
# when all of the spheres have to go through the origin
if !isempty(ctx.points)
append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
end
if !isempty(ctx.spheres)
append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4])
end
n_elts = length(ctx.points) + length(ctx.spheres)
if n_elts > 0
push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
end
(Generic.Ideal(coordring, eqns), eqns)
end
end

View file

@ -0,0 +1,53 @@
module Numerical
using Random: default_rng
using LinearAlgebra
using AbstractAlgebra
using HomotopyContinuation:
Variable, Expression, AbstractSystem, System, LinearSubspace,
nvariables, isreal, witness_set, results
import GLMakie
using ..Algebraic
# --- polynomial conversion ---
# hat tip Sascha Timme
# https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl/issues/520#issuecomment-1317681521
function Base.convert(::Type{Expression}, f::MPolyRingElem)
variables = Variable.(symbols(parent(f)))
f_data = zip(coefficients(f), exponent_vectors(f))
sum(cf * prod(variables .^ exp_vec) for (cf, exp_vec) in f_data)
end
# create a ModelKit.System from an ideal in a multivariate polynomial ring. the
# variable ordering is taken from the polynomial ring
function System(I::Generic.Ideal)
eqns = Expression.(gens(I))
variables = Variable.(symbols(base_ring(I)))
System(eqns, variables = variables)
end
# --- sampling ---
function real_samples(F::AbstractSystem, dim; rng = default_rng())
# choose a random real hyperplane of codimension `dim` by intersecting
# hyperplanes whose normal vectors are uniformly distributed over the unit
# sphere
# [to do] guard against the unlikely event that one of the normals is zero
normals = transpose(hcat(
(normalize(randn(rng, nvariables(F))) for _ in 1:dim)...
))
cut = LinearSubspace(normals, fill(0., dim))
filter(isreal, results(witness_set(F, cut, seed = 0x1974abba)))
end
AbstractAlgebra.evaluate(pt::Point, vals::Vector{<:RingElement}) =
GLMakie.Point3f([evaluate(u, vals) for u in pt.coords])
function AbstractAlgebra.evaluate(sph::Sphere, vals::Vector{<:RingElement})
radius = 1 / evaluate(sph.coords[1], vals)
center = radius * [evaluate(u, vals) for u in sph.coords[3:end]]
GLMakie.Sphere(GLMakie.Point3f(center), radius)
end
end

View file

@ -0,0 +1,76 @@
include("HittingSet.jl")
module Engine
include("Engine.Algebraic.jl")
include("Engine.Numerical.jl")
using .Algebraic
using .Numerical
export Construction, mprod, codimension, dimension
end
# ~~~ sandbox setup ~~~
using Random
using Distributions
using LinearAlgebra
using AbstractAlgebra
using HomotopyContinuation
using GLMakie
CoeffType = Rational{Int64}
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
tangencies = [
Engine.AlignsWithBy{CoeffType}(
spheres[n],
spheres[mod1(n+1, length(spheres))],
CoeffType(1)
)
for n in 1:3
]
ctx_tan_sph = Engine.Construction{CoeffType}(elements = spheres, relations = tangencies)
ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
freedom = Engine.dimension(ideal_tan_sph)
println("Three mutually tangent spheres: $freedom degrees of freedom")
# --- test rational cut ---
coordring = base_ring(ideal_tan_sph)
vbls = Variable.(symbols(coordring))
# test a random witness set
system = CompiledSystem(System(eqns_tan_sph, variables = vbls))
norm2 = vec -> real(dot(conj.(vec), vec))
rng = MersenneTwister(6071)
n_planes = 6
samples = []
for _ in 1:n_planes
real_solns = solution.(Engine.Numerical.real_samples(system, freedom, rng = rng))
for soln in real_solns
if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples)
push!(samples, soln)
end
end
end
println("Found $(length(samples)) sample solutions")
# show a sample solution
function show_solution(ctx, vals)
# evaluate elements
real_vals = real.(vals)
disp_points = [Engine.Numerical.evaluate(pt, real_vals) for pt in ctx.points]
disp_spheres = [Engine.Numerical.evaluate(sph, real_vals) for sph in ctx.spheres]
# create scene
scene = Scene()
cam3d!(scene)
scatter!(scene, disp_points, color = :green)
for sph in disp_spheres
mesh!(scene, sph, color = :gray)
end
scene
end

View file

@ -0,0 +1,111 @@
module HittingSet
export HittingSetProblem, solve
HittingSetProblem{T} = Pair{Set{T}, Vector{Pair{T, Set{Set{T}}}}}
# `targets` should be a collection of Set objects
function HittingSetProblem(targets, chosen = Set())
wholeset = union(targets...)
T = eltype(wholeset)
unsorted_moves = [
elt => Set(filter(s -> elt s, targets))
for elt in wholeset
]
moves = sort(unsorted_moves, by = pair -> length(pair.second))
Set{T}(chosen) => moves
end
function Base.display(problem::HittingSetProblem{T}) where T
println("HittingSetProblem{$T}")
chosen = problem.first
println(" {", join(string.(chosen), ", "), "}")
moves = problem.second
for (choice, missed) in moves
println(" | ", choice)
for s in missed
println(" | | {", join(string.(s), ", "), "}")
end
end
println()
end
function solve(pblm::HittingSetProblem{T}, maxdepth = Inf) where T
problems = Dict(pblm)
while length(first(problems).first) < maxdepth
subproblems = typeof(problems)()
for (chosen, moves) in problems
if isempty(moves)
return chosen
else
for (choice, missed) in moves
to_be_chosen = union(chosen, Set([choice]))
if isempty(missed)
return to_be_chosen
elseif !haskey(subproblems, to_be_chosen)
push!(subproblems, HittingSetProblem(missed, to_be_chosen))
end
end
end
end
problems = subproblems
end
problems
end
function test(n = 1)
T = [Int64, Int64, Symbol, Symbol][n]
targets = Set{T}.([
[
[1, 3, 5],
[2, 3, 4],
[1, 4],
[2, 3, 4, 5],
[4, 5]
],
# example from Amit Chakrabarti's graduate-level algorithms class (CS 105)
# notes by Valika K. Wan and Khanh Do Ba, Winter 2005
# https://www.cs.dartmouth.edu/~ac/Teach/CS105-Winter05/
[
[1, 3], [1, 4], [1, 5],
[1, 3], [1, 2, 4], [1, 2, 5],
[4, 3], [ 2, 4], [ 2, 5],
[6, 3], [6, 4], [ 5]
],
[
[:w, :x, :y],
[:x, :y, :z],
[:w, :z],
[:x, :y]
],
# Wikipedia showcases this as an example of a problem where the greedy
# algorithm performs especially poorly
[
[:a, :x, :t1],
[:a, :y, :t2],
[:a, :y, :t3],
[:a, :z, :t4],
[:a, :z, :t5],
[:a, :z, :t6],
[:a, :z, :t7],
[:b, :x, :t8],
[:b, :y, :t9],
[:b, :y, :t10],
[:b, :z, :t11],
[:b, :z, :t12],
[:b, :z, :t13],
[:b, :z, :t14]
]
][n])
problem = HittingSetProblem(targets)
if isa(problem, HittingSetProblem{T})
println("Correct type")
else
println("Wrong type: ", typeof(problem))
end
problem
end
end

View file

@ -0,0 +1,96 @@
<!DOCTYPE html>
<html>
<head>
<style>
body {
background-color: #ffe0f0;
}
/* needed to keep Ganja canvas from blowing up */
canvas {
min-width: 600px;
max-width: 600px;
min-height: 600px;
max-height: 600px;
}
</style>
<script src="https://unpkg.com/ganja.js"></script>
</head>
<body>
<p><button onclick="flip()">Flip</button></p>
<script>
// in the default view, e4 + e5 is the point at infinity
let CGA3 = Algebra(4, 1);
let elements = [
CGA3.inline(() => Math.sqrt(0.5)*( 1e1 + 1e2 + 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*( 1e1 - 1e2 - 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*(-1e1 + 1e2 - 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*(-1e1 - 1e2 + 1e3 + 1e5))(),
CGA3.inline(() => -Math.sqrt(3)*1e4 + Math.sqrt(2)*1e5)()
];
/*
these blocks of commented-out code can be used to confirm that a spacelike
vector and its Hodge dual represent the same generalized sphere
*/
/*let elements = [
CGA3.inline(() => Math.sqrt(0.5)*!( 1e1 + 1e2 + 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*!( 1e1 - 1e2 - 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*!(-1e1 + 1e2 - 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*!(-1e1 - 1e2 + 1e3 + 1e5))(),
CGA3.inline(() => !(-Math.sqrt(3)*1e4 + Math.sqrt(2)*1e5))()
];*/
/*let elements = [
CGA3.inline(() => 1e1 + 1e5)(),
CGA3.inline(() => 1e2 + 1e5)(),
CGA3.inline(() => 1e3 + 1e5)(),
CGA3.inline(() => -1e4 + 1e5)(),
CGA3.inline(() => Math.sqrt(0.5)*(1e1 + 1e2 + 1e3 + 1e5))(),
CGA3.inline(() => Math.sqrt(0.5)*!(1e1 + 1e2 + 1e3 - 0.01e4 + 1e5))()
];*/
// set up palette
var colorIndex;
var palette = [0xff00b0, 0x00ffb0, 0x00b0ff, 0x8040ff, 0xc0c0c0];
function nextColor() {
colorIndex = (colorIndex + 1) % palette.length;
return palette[colorIndex];
}
function resetColorCycle() {
colorIndex = palette.length - 1;
}
resetColorCycle();
// create scene function
function scene() {
commands = [];
resetColorCycle();
elements.forEach((elt) => commands.push(nextColor(), elt));
return commands;
}
// initialize graph
let graph = CGA3.graph(
scene,
{
conformal: true, gl: true, grid: true
}
)
document.body.appendChild(graph);
function flip() {
let last = elements.length - 1;
for (let n = 0; n < last; ++n) {
// reflect
elements[n] = CGA3.Mul(CGA3.Mul(elements[last], elements[n]), elements[last]);
// de-noise
for (let k = 6; k < elements[n].length; ++k) {
/*for (let k = 0; k < 26; ++k) {*/
elements[n][k] = 0;
}
}
requestAnimationFrame(graph.update.bind(graph, scene));
}
</script>
</body>
</html>

View file

@ -0,0 +1,127 @@
using Blink
using Colors
# === utilities ===
append_to_head!(w, type, content) = @js w begin
@var element = document.createElement($type)
element.appendChild(document.createTextNode($content))
document.head.appendChild(element)
end
style!(w, stylesheet) = append_to_head!(w, "style", stylesheet)
script!(w, code) = append_to_head!(w, "script", code)
function add_element!(vec)
# add element
full_vec = [0; vec; fill(0, 26)]
n = @js win elements.push(@new CGA3($full_vec))
# generate palette. this is Gadfly's `default_discrete_colors` palette,
# available under the MIT license
palette = distinguishable_colors(
n,
[LCHab(70, 60, 240)],
transform = c -> deuteranopic(c, 0.5),
lchoices = Float64[65, 70, 75, 80],
cchoices = Float64[0, 50, 60, 70],
hchoices = range(0, stop=330, length=24)
)
palette_packed = [RGB24(c).color for c in palette]
@js win palette = $palette_packed
end
# === build page ===
# create window and open developer console
win = Window()
opentools(win)
# set stylesheet
style!(win, """
body {
background-color: #ffe0f0;
}
/* needed to keep Ganja canvas from blowing up */
canvas {
min-width: 600px;
max-width: 600px;
min-height: 600px;
max-height: 600px;
}
""")
# load Ganja.js
loadjs!(win, "https://unpkg.com/ganja.js")
# create global functions and variables
script!(win, """
// create algebra
var CGA3 = Algebra(4, 1);
// initialize element list and palette
var elements = [];
var palette = [];
// declare visualization handle
var graph;
// create scene function
function scene() {
commands = [];
for (let n = 0; n < elements.length; ++n) {
commands.push(palette[n], elements[n]);
}
return commands;
}
function flip() {
let last = elements.length - 1;
for (let n = 0; n < last; ++n) {
// reflect
elements[n] = CGA3.Mul(CGA3.Mul(elements[last], elements[n]), elements[last]);
// de-noise
for (let k = 6; k < elements[n].length; ++k) {
elements[n][k] = 0;
}
}
requestAnimationFrame(graph.update.bind(graph, scene));
}
""")
# set up controls
body!(win, """
<p><button id="flip-button" onclick="flip()">Flip</button></p>
""", async = false)
# === set up visualization ===
# list elements. in the default view, e4 + e5 is the point at infinity
elements = sqrt(0.5) * BigFloat[
1 1 -1 -1 0;
1 -1 1 -1 0;
1 -1 -1 1 0;
0 0 0 0 -sqrt(6);
1 1 1 1 2
]
# load elements
for vec in eachcol(elements)
add_element!(vec)
end
# initialize visualization
@js win begin
graph = CGA3.graph(
scene,
Dict(
"conformal" => true,
"gl" => true,
"grid" => true
)
)
document.body.appendChild(graph)
end

View file

@ -0,0 +1,573 @@
module Engine
using LinearAlgebra
using GenericLinearAlgebra
using SparseArrays
using Random
using Optim
export
rand_on_shell, Q, DescentHistory,
realize_gram_gradient, realize_gram_newton, realize_gram_optim,
realize_gram_alt_proj, realize_gram
# === guessing ===
sconh(t, u) = 0.5*(exp(t) + u*exp(-t))
function rand_on_sphere(rng::AbstractRNG, ::Type{T}, n) where T
out = randn(rng, T, n)
tries_left = 2
while dot(out, out) < 1e-6 && tries_left > 0
out = randn(rng, T, n)
tries_left -= 1
end
normalize(out)
end
##[TO DO] write a test to confirm that the outputs are on the correct shells
function rand_on_shell(rng::AbstractRNG, shell::T) where T <: Number
space_part = rand_on_sphere(rng, T, 4)
rapidity = randn(rng, T)
sig = sign(shell)
nullmix * [sconh(rapidity, sig)*space_part; sconh(rapidity, -sig)]
end
rand_on_shell(rng::AbstractRNG, shells::Array{T}) where T <: Number =
hcat([rand_on_shell(rng, sh) for sh in shells]...)
rand_on_shell(shells::Array{<:Number}) = rand_on_shell(Random.default_rng(), shells)
# === elements ===
point(pos) = [pos; 0.5; 0.5 * dot(pos, pos)]
plane(normal, offset) = [-normal; 0; -offset]
function sphere(center, radius)
dist_sq = dot(center, center)
[
center / radius;
0.5 / radius;
0.5 * (dist_sq / radius - radius)
]
end
# === Gram matrix realization ===
# basis changes
nullmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1; 1 1]//2]
unmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1; 1 1]]
# the Lorentz form
Q = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [0 -2; -2 0]]
# project a matrix onto the subspace of matrices whose entries vanish away from
# the given indices
function proj_to_entries(mat, indices)
result = zeros(size(mat))
for (j, k) in indices
result[j, k] = mat[j, k]
end
result
end
# the difference between the matrices `target` and `attempt`, projected onto the
# subspace of matrices whose entries vanish at each empty index of `target`
function proj_diff(target::SparseMatrixCSC{T, <:Any}, attempt::Matrix{T}) where T
J, K, values = findnz(target)
result = zeros(size(target))
for (j, k, val) in zip(J, K, values)
result[j, k] = val - attempt[j, k]
end
result
end
# a type for keeping track of gradient descent history
struct DescentHistory{T}
scaled_loss::Array{T}
neg_grad::Array{Matrix{T}}
base_step::Array{Matrix{T}}
hess::Array{Hermitian{T, Matrix{T}}}
slope::Array{T}
stepsize::Array{T}
positive::Array{Bool}
backoff_steps::Array{Int64}
last_line_L::Array{Matrix{T}}
last_line_loss::Array{T}
function DescentHistory{T}(
scaled_loss = Array{T}(undef, 0),
neg_grad = Array{Matrix{T}}(undef, 0),
hess = Array{Hermitian{T, Matrix{T}}}(undef, 0),
base_step = Array{Matrix{T}}(undef, 0),
slope = Array{T}(undef, 0),
stepsize = Array{T}(undef, 0),
positive = Bool[],
backoff_steps = Int64[],
last_line_L = Array{Matrix{T}}(undef, 0),
last_line_loss = Array{T}(undef, 0)
) where T
new(scaled_loss, neg_grad, hess, base_step, slope, stepsize, positive, backoff_steps, last_line_L, last_line_loss)
end
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`
function realize_gram_gradient(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T};
scaled_tol = 1e-30,
min_efficiency = 0.5,
init_stepsize = 1.0,
backoff = 0.9,
max_descent_steps = 600,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# scale tolerance
scale_adjustment = sqrt(T(nnz(gram)))
tol = scale_adjustment * scaled_tol
# initialize variables
stepsize = init_stepsize
L = copy(guess)
# do gradient descent
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
for _ in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj
slope = norm(neg_grad)
dir = neg_grad / slope
# store current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, slope)
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = stepsize
L = L_last + stepsize * dir
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * stepsize * slope
history.backoff_steps[end] = backoff_steps
break
end
stepsize *= backoff
end
# [DEBUG] if we've hit a wall, quit
if history.backoff_steps[end] == max_backoff_steps
break
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, history
end
function basis_matrix(::Type{T}, j, k, dims) where T
result = zeros(T, dims)
result[j, k] = one(T)
result
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use Newton's method starting from `guess`
function realize_gram_newton(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T};
scaled_tol = 1e-30,
rate = 1,
max_steps = 100
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# use Newton's method
L = copy(guess)
for step in 0:max_steps
# evaluate the loss function
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# store the current loss
push!(history.scaled_loss, loss / scale_adjustment)
# stop if the loss is tolerably low
if loss < tol || step > max_steps
break
end
# find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess = Hermitian(hess)
push!(history.hess, hess)
# compute the Newton step
step = hess \ reshape(neg_grad, total_dim)
L += rate * reshape(step, dims)
end
# return the factorization and its history
L, history
end
LinearAlgebra.eigen!(A::Symmetric{BigFloat, Matrix{BigFloat}}; sortby::Nothing) =
eigen!(Hermitian(A))
function convertnz(type, mat)
J, K, values = findnz(mat)
sparse(J, K, type.(values))
end
function realize_gram_optim(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T}
) where T <: Number
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the loss function
scale_adjustment = length(constrained)
function loss(L_vec)
L = reshape(L_vec, dims)
Δ_proj = proj_diff(gram, L'*Q*L)
dot(Δ_proj, Δ_proj) / scale_adjustment
end
function loss_grad!(storage, L_vec)
L = reshape(L_vec, dims)
Δ_proj = proj_diff(gram, L'*Q*L)
storage .= reshape(-4*Q*L*Δ_proj, total_dim) / scale_adjustment
end
function loss_hess!(storage, L_vec)
L = reshape(L_vec, dims)
Δ_proj = proj_diff(gram, L'*Q*L)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj) / scale_adjustment
storage[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
end
optimize(
loss, loss_grad!, loss_hess!,
reshape(guess, total_dim),
Newton()
)
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`, with an
# alternate technique for finding the projected base step from the unprojected
# Hessian
function realize_gram_alt_proj(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T},
frozen = CartesianIndex[];
scaled_tol = 1e-30,
min_efficiency = 0.5,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# convert the frozen indices to stacked format
frozen_stacked = [(index[2]-1)*element_dim + index[1] for index in frozen]
# initialize search state
L = copy(guess)
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# use Newton's method with backtracking and gradient descent backup
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess_sym = Hermitian(hess)
push!(history.hess, hess_sym)
# regularize the Hessian
min_eigval = minimum(eigvals(hess_sym))
push!(history.positive, min_eigval > 0)
if min_eigval <= 0
hess -= reg_scale * min_eigval * I
end
# compute the Newton step
neg_grad_stacked = reshape(neg_grad, total_dim)
for k in frozen_stacked
neg_grad_stacked[k] = 0
hess[k, :] .= 0
hess[:, k] .= 0
hess[k, k] = 1
end
base_step_stacked = Hermitian(hess) \ neg_grad_stacked
base_step = reshape(base_step_stacked, dims)
push!(history.base_step, base_step)
# store the current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, norm(neg_grad))
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
rate = one(T)
step_success = false
base_target_improvement = dot(neg_grad, base_step)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * base_target_improvement
history.backoff_steps[end] = backoff_steps
step_success = true
break
end
rate *= backoff
end
# if we've hit a wall, quit
if !step_success
return L_last, false, history
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, loss < tol, history
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`
function realize_gram(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T},
frozen = nothing;
scaled_tol = 1e-30,
min_efficiency = 0.5,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# list the un-frozen indices
has_frozen = !isnothing(frozen)
if has_frozen
is_unfrozen = fill(true, size(guess))
is_unfrozen[frozen] .= false
unfrozen = findall(is_unfrozen)
unfrozen_stacked = reshape(is_unfrozen, total_dim)
end
# initialize search state
L = copy(guess)
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# use Newton's method with backtracking and gradient descent backup
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess = Hermitian(hess)
push!(history.hess, hess)
# regularize the Hessian
min_eigval = minimum(eigvals(hess))
push!(history.positive, min_eigval > 0)
if min_eigval <= 0
hess -= reg_scale * min_eigval * I
end
# compute the Newton step
neg_grad_stacked = reshape(neg_grad, total_dim)
if has_frozen
hess = hess[unfrozen_stacked, unfrozen_stacked]
neg_grad_compressed = neg_grad_stacked[unfrozen_stacked]
else
neg_grad_compressed = neg_grad_stacked
end
base_step_compressed = hess \ neg_grad_compressed
if has_frozen
base_step_stacked = zeros(total_dim)
base_step_stacked[unfrozen_stacked] .= base_step_compressed
else
base_step_stacked = base_step_compressed
end
base_step = reshape(base_step_stacked, dims)
push!(history.base_step, base_step)
# store the current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, norm(neg_grad))
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
rate = one(T)
step_success = false
base_target_improvement = dot(neg_grad, base_step)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * base_target_improvement
history.backoff_steps[end] = backoff_steps
step_success = true
break
end
rate *= backoff
end
# if we've hit a wall, quit
if !step_success
return L_last, false, history
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, loss < tol, history
end
end

View file

@ -0,0 +1,99 @@
include("Engine.jl")
using LinearAlgebra
using SparseArrays
function sphere_in_tetrahedron_shape()
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:5
for k in 1:5
push!(J, j)
push!(K, k)
if j == k
push!(values, 1)
elseif (j <= 4 && k <= 4)
push!(values, -1/BigFloat(3))
else
push!(values, -1)
end
end
end
gram = sparse(J, K, values)
# plot loss along a slice
loss_lin = []
loss_sq = []
mesh = range(0.9, 1.1, 101)
for t in mesh
L = hcat(
Engine.plane(normalize(BigFloat[ 1, 1, 1]), BigFloat(1)),
Engine.plane(normalize(BigFloat[ 1, -1, -1]), BigFloat(1)),
Engine.plane(normalize(BigFloat[-1, 1, -1]), BigFloat(1)),
Engine.plane(normalize(BigFloat[-1, -1, 1]), BigFloat(1)),
Engine.sphere(BigFloat[0, 0, 0], BigFloat(t))
)
Δ_proj = Engine.proj_diff(gram, L'*Engine.Q*L)
push!(loss_lin, norm(Δ_proj))
push!(loss_sq, dot(Δ_proj, Δ_proj))
end
mesh, loss_lin, loss_sq
end
function circles_in_triangle_shape()
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:8
for k in 1:8
filled = false
if j == k
push!(values, 1)
filled = true
elseif (j == 1 || k == 1)
push!(values, 0)
filled = true
elseif (j == 2 || k == 2)
push!(values, -1)
filled = true
end
#=elseif (j <= 5 && j != 2 && k == 9 || k == 9 && k <= 5 && k != 2)
push!(values, 0)
filled = true
end=#
if filled
push!(J, j)
push!(K, k)
end
end
end
append!(J, [6, 4, 6, 5, 7, 5, 7, 3, 8, 3, 8, 4])
append!(K, [4, 6, 5, 6, 5, 7, 3, 7, 3, 8, 4, 8])
append!(values, fill(-1, 12))
# plot loss along a slice
loss_lin = []
loss_sq = []
mesh = range(0.99, 1.01, 101)
for t in mesh
L = hcat(
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
Engine.sphere(BigFloat[0, 0, 0], BigFloat(t)),
Engine.plane(BigFloat[1, 0, 0], BigFloat(1)),
Engine.plane(BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(1)),
Engine.plane(BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(1)),
Engine.sphere(4//3*BigFloat[-1, 0, 0], BigFloat(1//3)),
Engine.sphere(4//3*BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//3)),
Engine.sphere(4//3*BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//3))
)
Δ_proj = Engine.proj_diff(gram, L'*Engine.Q*L)
push!(loss_lin, norm(Δ_proj))
push!(loss_sq, dot(Δ_proj, Δ_proj))
end
mesh, loss_lin, loss_sq
end

View file

@ -0,0 +1,76 @@
include("Engine.jl")
using SparseArrays
using Random
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:9
for k in 1:9
filled = false
if j == 9
if k <= 5 && k != 2
push!(values, 0)
filled = true
end
elseif k == 9
if j <= 5 && j != 2
push!(values, 0)
filled = true
end
elseif j == k
push!(values, 1)
filled = true
elseif j == 1 || k == 1
push!(values, 0)
filled = true
elseif j == 2 || k == 2
push!(values, -1)
filled = true
end
if filled
push!(J, j)
push!(K, k)
end
end
end
append!(J, [6, 4, 6, 5, 7, 5, 7, 3, 8, 3, 8, 4])
append!(K, [4, 6, 5, 6, 5, 7, 3, 7, 3, 8, 4, 8])
append!(values, fill(-1, 12))
#= make construction rigid
append!(J, [3, 4, 4, 5])
append!(K, [4, 3, 5, 4])
append!(values, fill(-0.5, 4))
=#
gram = sparse(J, K, values)
# set initial guess
Random.seed!(58271)
guess = hcat(
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
Engine.sphere(BigFloat[0, 0, 0], BigFloat(1//2)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.plane(-BigFloat[1, 0, 0], BigFloat(-1)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.plane(-BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(-1)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.plane(-BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(-1)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.sphere(BigFloat[-1, 0, 0], BigFloat(1//5)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.sphere(BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//5)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
Engine.sphere(BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//5)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
BigFloat[0, 0, 0, 0, 1]
)
frozen = [CartesianIndex(j, 9) for j in 1:5]
# complete the gram matrix using Newton's method with backtracking
L, success, history = Engine.realize_gram(gram, guess, frozen)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,85 @@
using LinearAlgebra
using AbstractAlgebra
function printgood(msg)
printstyled("", color = :green)
println(" ", msg)
end
function printbad(msg)
printstyled("", color = :red)
println(" ", msg)
end
F, gens = rational_function_field(AbstractAlgebra.Rationals{BigInt}(), ["a₁", "a₂", "b₁", "b₂", "c₁", "c₂"])
a = gens[1:2]
b = gens[3:4]
c = gens[5:6]
# three mutually tangent spheres which are all perpendicular to the x, y plane
gram = [
-1 1 1;
1 -1 1;
1 1 -1
]
eig = eigen(gram)
n_pos = count(eig.values .> 0.5)
n_neg = count(eig.values .< -0.5)
if n_pos + n_neg == size(gram, 1)
printgood("Non-degenerate subspace")
else
printbad("Degenerate subspace")
end
sig_rem = Int64[ones(1-n_pos); -ones(4-n_neg)]
unk = hcat(a, b, c)
M = matrix_space(F, 5, 5)
big_gram = M(F.([
diagm(sig_rem) unk;
transpose(unk) gram
]))
r, p, L, U = lu(big_gram)
if isone(p)
printgood("Found a solution")
else
printbad("Didn't find a solution")
end
solution = transpose(L)
mform = U * inv(solution)
vals = [0, 0, 0, 1, 0, -3//4]
solution_ex = [evaluate(entry, vals) for entry in solution]
mform_ex = [evaluate(entry, vals) for entry in mform]
std_basis = [
0 0 0 1 1;
0 0 0 1 -1;
1 0 0 0 0;
0 1 0 0 0;
0 0 1 0 0
]
std_solution = M(F.(std_basis)) * solution
std_solution_ex = std_basis * solution_ex
println("Minkowski form:")
display(mform_ex)
big_gram_recovered = transpose(solution_ex) * mform_ex * solution_ex
valid = all(iszero.(
[evaluate(entry, vals) for entry in big_gram] - big_gram_recovered
))
if valid
printgood("Recovered Gram matrix:")
else
printbad("Didn't recover Gram matrix. Instead, got:")
end
display(big_gram_recovered)
# this should be a solution
hand_solution = [0 0 1 0 0; 0 0 -1 2 2; 0 0 0 1 -1; 1 0 0 0 0; 0 1 0 0 0]
unmix = Rational{Int64}[[1//2 1//2; 1//2 -1//2] zeros(Int64, 2, 3); zeros(Int64, 3, 2) Matrix{Int64}(I, 3, 3)]
hand_solution_diag = unmix * hand_solution
big_gram_hand_recovered = transpose(hand_solution_diag) * diagm([1; -ones(Int64, 4)]) * hand_solution_diag
println("Gram matrix from hand-written solution:")
display(big_gram_hand_recovered)

View file

@ -0,0 +1,27 @@
F = QQ['a', 'b', 'c'].fraction_field()
a, b, c = F.gens()
# three mutually tangent spheres which are all perpendicular to the x, y plane
gram = matrix([
[-1, 0, 0, 0, 0],
[0, -1, a, b, c],
[0, a, -1, 1, 1],
[0, b, 1, -1, 1],
[0, c, 1, 1, -1]
])
P, L, U = gram.LU()
solution = (P * L).transpose()
mform = U * L.transpose().inverse()
concrete = solution.subs({a: 0, b: 1, c: -3/4})
std_basis = matrix([
[0, 0, 0, 1, 1],
[0, 0, 0, 1, -1],
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0]
])
std_solution = std_basis * solution
std_concrete = std_basis * concrete

View file

@ -0,0 +1,86 @@
include("Engine.jl")
using SparseArrays
# this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article below
# includes a nice translation of the problem statement, which was recorded in
# Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and Present_)
#
# "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
# https://www.nippon.com/en/japan-topics/c12801/
#
# initialize the partial gram matrix
J = Int64[]
K = Int64[]
values = BigFloat[]
for s in 1:9
# each sphere is represented by a spacelike vector
push!(J, s)
push!(K, s)
push!(values, 1)
# the circumscribing sphere is internally tangent to all of the other spheres
if s > 1
append!(J, [1, s])
append!(K, [s, 1])
append!(values, [1, 1])
end
if s > 3
# each chain sphere is externally tangent to the "sun" and "moon" spheres
for n in 2:3
append!(J, [s, n])
append!(K, [n, s])
append!(values, [-1, -1])
end
# each chain sphere is externally tangent to the next chain sphere
s_next = 4 + mod(s-3, 6)
append!(J, [s, s_next])
append!(K, [s_next, s])
append!(values, [-1, -1])
end
end
gram = sparse(J, K, values)
# make an initial guess
guess = hcat(
Engine.sphere(BigFloat[0, 0, 0], BigFloat(15)),
Engine.sphere(BigFloat[0, 0, -9], BigFloat(5)),
Engine.sphere(BigFloat[0, 0, 11], BigFloat(3)),
(
Engine.sphere(9*BigFloat[cos(k*π/3), sin(k*π/3), 0], BigFloat(2.5))
for k in 1:6
)...
)
frozen = [CartesianIndex(4, k) for k in 1:4]
# complete the gram matrix using Newton's method with backtracking
L, success, history = Engine.realize_gram(gram, guess, frozen)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")
if success
println("Chain diameters:")
println(" ", 1 / L[4,4], " sun (given)")
for k in 5:9
println(" ", 1 / L[4,k], " sun")
end
end
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")

View file

@ -0,0 +1,49 @@
using LowRankModels
using LinearAlgebra
using SparseArrays
# testing Gram matrix recovery using the LowRankModels package
# initialize the partial gram matrix for an arrangement of seven spheres in
# which spheres 1 through 5 are mutually tangent, and spheres 3 through 7 are
# also mutually tangent
I = Int64[]
J = Int64[]
values = Float64[]
for i in 1:7
for j in 1:7
if (i <= 5 && j <= 5) || (i >= 3 && j >= 3)
push!(I, i)
push!(J, j)
push!(values, i == j ? 1 : -1)
end
end
end
gram = sparse(I, J, values)
# in this initial guess, the mutual tangency condition is satisfied for spheres
# 1 through 5
X₀ = sqrt(0.5) * [
1 0 1 1 1;
1 0 1 -1 -1;
1 0 -1 1 -1;
1 0 -1 -1 1;
2 -sqrt(6) 0 0 0;
0.2 0.3 -0.1 -0.2 0.1;
0.1 -0.2 0.3 0.4 -0.1
]'
Y₀ = diagm([-1, 1, 1, 1, 1]) * X₀
# search parameters
search_params = ProxGradParams(
1.0;
max_iter = 100,
inner_iter = 1,
abs_tol = 1e-16,
rel_tol = 1e-9,
min_stepsize = 0.01
)
# complete gram matrix
model = GLRM(gram, QuadLoss(), ZeroReg(), ZeroReg(), 5, X = X₀, Y = Y₀)
X, Y, history = fit!(model, search_params)

View file

@ -0,0 +1,37 @@
using LinearAlgebra
using AbstractAlgebra
function printgood(msg)
printstyled("", color = :green)
println(" ", msg)
end
function printbad(msg)
printstyled("", color = :red)
println(" ", msg)
end
F, gens = rational_function_field(AbstractAlgebra.Rationals{BigInt}(), ["x", "t₁", "t₂", "t₃"])
x = gens[1]
t = gens[2:4]
# three mutually tangent spheres which are all perpendicular to the x, y plane
M = matrix_space(F, 7, 7)
gram = M(F[
1 -1 -1 -1 -1 t[1] t[2];
-1 1 -1 -1 -1 x t[3]
-1 -1 1 -1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 -1 1 -1 -1;
t[1] x -1 -1 -1 1 -1;
t[2] t[3] -1 -1 -1 -1 1
])
r, p, L, U = lu(gram)
if isone(p)
printgood("Found a solution")
else
printbad("Didn't find a solution")
end
solution = transpose(L)
mform = U * inv(solution)

View file

@ -0,0 +1,90 @@
include("Engine.jl")
using SparseArrays
using AbstractAlgebra
using PolynomialRoots
using Random
# initialize the partial gram matrix for an arrangement of seven spheres in
# which spheres 1 through 5 are mutually tangent, and spheres 3 through 7 are
# also mutually tangent
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:7
for k in 1:7
if (j <= 5 && k <= 5) || (j >= 3 && k >= 3)
push!(J, j)
push!(K, k)
push!(values, j == k ? 1 : -1)
end
end
end
gram = sparse(J, K, values)
# set the independent variable
indep_val = -9//5
gram[6, 1] = BigFloat(indep_val)
gram[1, 6] = gram[6, 1]
# in this initial guess, the mutual tangency condition is satisfied for spheres
# 1 through 5
Random.seed!(50793)
guess = let
a = sqrt(BigFloat(3)/2)
hcat(
sqrt(1/BigFloat(2)) * BigFloat[
1 1 -1 -1 0
1 -1 1 -1 0
1 -1 -1 1 0
0.5 0.5 0.5 0.5 1+a
0.5 0.5 0.5 0.5 1-a
] + 0.2*Engine.rand_on_shell(fill(BigFloat(-1), 5)),
Engine.rand_on_shell(fill(BigFloat(-1), 2))
)
end
# complete the gram matrix using Newton's method with backtracking
L, success, history = Engine.realize_gram(gram, guess)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")
# === algebraic check ===
#=
R, gens = polynomial_ring(AbstractAlgebra.Rationals{BigInt}(), ["x", "t₁", "t₂", "t₃"])
x = gens[1]
t = gens[2:4]
S, u = polynomial_ring(AbstractAlgebra.Rationals{BigInt}(), "u")
M = matrix_space(R, 7, 7)
gram_symb = M(R[
1 -1 -1 -1 -1 t[1] t[2];
-1 1 -1 -1 -1 x t[3]
-1 -1 1 -1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 -1 1 -1 -1;
t[1] x -1 -1 -1 1 -1;
t[2] t[3] -1 -1 -1 -1 1
])
rank_constraints = det.([
gram_symb[1:6, 1:6],
gram_symb[2:7, 2:7],
gram_symb[[1, 3, 4, 5, 6, 7], [1, 3, 4, 5, 6, 7]]
])
# solve for x and t
x_constraint = 25//16 * to_univariate(S, evaluate(rank_constraints[1], [2], [indep_val]))
t₂_constraint = 25//16 * to_univariate(S, evaluate(rank_constraints[3], [2], [indep_val]))
x_vals = PolynomialRoots.roots(x_constraint.coeffs)
t₂_vals = PolynomialRoots.roots(t₂_constraint.coeffs)
=#

View file

@ -0,0 +1,76 @@
include("Engine.jl")
using SparseArrays
using Random
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:6
for k in 1:6
filled = false
if j == 6
if k <= 4
push!(values, 0)
filled = true
end
elseif k == 6
if j <= 4
push!(values, 0)
filled = true
end
elseif j == k
push!(values, 1)
filled = true
elseif j <= 4 && k <= 4
push!(values, -1/BigFloat(3))
filled = true
else
push!(values, -1)
filled = true
end
if filled
push!(J, j)
push!(K, k)
end
end
end
gram = sparse(J, K, values)
# set initial guess
Random.seed!(99230)
guess = hcat(
sqrt(1/BigFloat(3)) * BigFloat[
1 1 -1 -1 0
1 -1 1 -1 0
1 -1 -1 1 0
0 0 0 0 1.5
1 1 1 1 -0.5
] + 0.2*Engine.rand_on_shell(fill(BigFloat(-1), 5)),
BigFloat[0, 0, 0, 0, 1]
)
frozen = [CartesianIndex(j, 6) for j in 1:5]
# complete the gram matrix using Newton's method with backtracking
L, success, history = Engine.realize_gram(gram, guess, frozen)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")

View file

@ -0,0 +1,105 @@
include("Engine.jl")
using LinearAlgebra
using SparseArrays
using Random
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:11
for k in 1:11
filled = false
if j == 11
if k <= 4
push!(values, 0)
filled = true
end
elseif k == 11
if j <= 4
push!(values, 0)
filled = true
end
elseif j == k
push!(values, j <= 6 ? 1 : 0)
filled = true
elseif j <= 4
if k <= 4
push!(values, -1/BigFloat(3))
filled = true
elseif k == 5
push!(values, -1)
filled = true
elseif 7 <= k <= 10 && k - j != 6
push!(values, 0)
filled = true
end
elseif k <= 4
if j == 5
push!(values, -1)
filled = true
elseif 7 <= j <= 10 && j - k != 6
push!(values, 0)
filled = true
end
elseif j == 6 && 7 <= k <= 10 || k == 6 && 7 <= j <= 10
push!(values, 0)
filled = true
end
if filled
push!(J, j)
push!(K, k)
end
end
end
gram = sparse(J, K, values)
# set initial guess
Random.seed!(99230)
guess = hcat(
sqrt(1/BigFloat(3)) * BigFloat[
1 1 -1 -1 0 0
1 -1 1 -1 0 0
1 -1 -1 1 0 0
0 0 0 0 1.5 0.5
1 1 1 1 -0.5 -1.5
] + 0.0*Engine.rand_on_shell(fill(BigFloat(-1), 6)),
Engine.point([-0.5, -0.5, -0.5] + 0.3*randn(3)),
Engine.point([-0.5, 0.5, 0.5] + 0.3*randn(3)),
Engine.point([ 0.5, -0.5, 0.5] + 0.3*randn(3)),
Engine.point([ 0.5, 0.5, -0.5] + 0.3*randn(3)),
BigFloat[0, 0, 0, 0, 1]
)
frozen = vcat(
[CartesianIndex(4, k) for k in 7:10],
[CartesianIndex(j, 11) for j in 1:5]
)
# complete the gram matrix using Newton's method with backtracking
L, success, history = Engine.realize_gram(gram, guess, frozen)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end])
if success
infty = BigFloat[0, 0, 0, 0, 1]
radius_ratio = dot(infty, Engine.Q * L[:,5]) / dot(infty, Engine.Q * L[:,6])
println("\nCircumradius / inradius: ", radius_ratio)
end
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")

View file

@ -2,28 +2,29 @@
(proposed by Alex Kontorovich as a practical system for doing 3D geometric calculations)
These coordinates are of form $I=(c, r, x, y, z)$ where we think of $c$ as the co-radius, $r$ as the radius, and $x, y, z$ as the "Euclidean" part, which we abbreviate $E_I$. There is an underlying basic quadratic form $Q(I_1,I_2) = (c_1r_2+c_2r_1)/2 - x_1x_2 -y_1y_2-z_1z_2$ which aids in calculation/verification of coordinates in this representation. We have:
These coordinates are of form $I=(c, b, x, y, z)$ where we think of $c$ as the co-radius, $b$ as the "bend" (reciprocal radius), and $x, y, z$ as the "Euclidean" part, which we abbreviate $E_I$. There is an underlying basic quadratic form $Q(I_1,I_2) = (c_1b_2+c_2b_1)/2 - x_1x_2 -y_1y_2-z_1z_2$ which aids in calculation/verification of coordinates in this representation. We have:
| Entity or Relationship | Representation | Comments/questions |
| ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Sphere s with radius r>0 centered on P = (x,y,z) | $I_s = (1/c, 1/r, x/r, y/r, z/r)$ satisfying $Q(I_s,I_s) = -1$, i.e., $c = r/(\|P\|^2 - r^2)$. | Can also write $I_s = (\|P\|^2/r - r, 1/r, x/r. y/r, z/r)$ -- so there is no trouble if $\|E_{I_s}\| = r$, just get first coordinate to be 0. |
| Plane p with unit normal (x,y,z), a distance s from origin | $I_p = (2s, 0, x, y, z)$ | Note $Q(I_p, I_p)$ is still -1. Also, there are two representations for each plane through the origin, namely $(0,0,x,y,z)$ and $(0,0,-x,-y,-z)$ |
| Point P with Euclidean coordinates (x,y,z) | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$.  Because of this we might choose  some other scaling of the inversive coordinates, say $(\||P\||,1/\||P\||,x/\||P\||,y/\||P\||,z/\||P\||)$ instead, but that fails at the origin, and likely won't have some of the other nice properties listed below.  Note that scaling just the co-radius by $s$ and the radius by $1/s$ (which still preserves $Q=0$) dilates by a factor of $s$ about the origin, so that $(\|P\|, \|P\|, x, y, z)$, which might look symmetric, would actually have to represent the Euclidean point $(x/\||P\||, y/\||P\||, z/\||P\||)$ . |
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by the above case. |
| P lies on sphere or plane given by I | $Q(I_P, I) = 0$ | |
| Sphere/planes represented by I and J are tangent | $Q(I,J) = 1$ (??, see note at right) | Seems as though this must be $Q(I,J) = \pm1$  ? For example, the $xy$ plane represented by (0,0,0,0,1)  is tangent to the unit circle centered at (0,0,1) rep'd by (0,1,0,0,1), but their Q-product is -1. And in general you can reflect any sphere tangent to any plane through the plane and it should flip the sign of $Q(I,J)$, if I am not mistaken. |
| Sphere/planes represented by I and J intersect (respectively, don't intersect) | $\|Q(I,J)\| < (\text{resp. }>)\; 1$ | Follows from the angle formula, at least conceptually. |
| P is center of sphere represented by I | Well, $Q(I_P, I)$ comes out to be $(\|P\|^2/r - r + \|P\|^2/r)/2 - \|P\|^2/r$ or just $-r/2$ . | Is it if and only if ?   No this probably doesn't work because center is not conformal quantity. |
| Distance between P and R is d | $Q(I_P, I_R) = d^2/2$ | |
| Distance between P and sphere/plane rep by I | | In the very simple case of a plane $I$ rep'd by $(2s, 0, x, y, z)$ and a point $P$ that lies on its perpendicular through the origin, rep'd by $(r^2, 1, rx, ry, rz)$ we get $Q(I, I_p) = s-r$, which is indeed the signed distance between $I$ and $P$. Not sure if this generalizes to other combinations? |
| Distance between sphere/planes rep by I and J | Note that for any two Euclidean-concentric spheres rep by $I$ and $J$ with radius $r$ and $s,$ $Q(I,J) = -\frac12\left(\frac rs  + \frac sr\right)$ depends only on the ratio of $r$ and $s$. So this can't give something that determines the Euclidean distance between the two spheres, which presumably grows as the two spheres are blown up proportionally. For another example, for any two parallel planes, $Q(I,J) = \pm1$. | Alex had said: Q(I,J)=cosh^2 (d/2) maybe where d is distance in usual hyperbolic metric. Or maybe cosh d. That may be right depending on what's meant by the hyperbolic metric there, but it seems like it won't determine a reasonable Euclidean distance between planes, which should differ between different pairs of parallel planes. |
| Sphere centered on P through R | | Probably just calculate distance etc. |
| Plane rep'd by I goes through center of sphere rep'd by J | I think this is equivalent to the plane being perpendicular to the sphere, i.e.$Q(I,J) = 0$. | |
| Dihedral angle between planes (or spheres?) rep by I and J | $\theta = \arccos(Q(I,J))$ | Aaron Fenyes points out: The angle between spheres in $S^3$ matches the angle between the planes they bound in $R^{(1,4)}$, which matches the angle between the spacelike vectors perpendicular to those planes. So we should have $Q(I,J) = \cos\theta$. Note that when the spheres do not intersect, we can interpret this as the "imaginary angle" between them, via $\cosh t = \cos it$. |
| R, P, S are collinear | Maybe just cross product of two differences is 0. Or, $R,P,S,\infty$ lie on a circle, or equivalently, $I_R,I_P,I_S,I_\infty$ span a plane (rather than a three-space). | Not a conformal property, but $R,P,S,\infty$ lying on a circle _is_. |
| Plane through noncollinear R, P, S | Should be, just solve Q(I, I_R) = 0 etc. | |
| circle | Maybe concentric sphere and the containing plane? Note it is easy to constrain the relationship between those two: they must be perpendicular. | Defn: circle is intersection of two spheres. That does cover lines. But you lose the canonicalness |
| line | Maybe two perpendicular containing planes? Maybe the plane perpendicular to the line and through origin, together with the point of the line on that plane? Or maybe just as a bag of collinear points? | The first is the limiting case of the possible circle rep, but it is not canonical. The second appears to be canonical, but I don't see a circle rep that corresponds to it. |
| Entity or Relationship | Representation | Comments/questions |
| ---------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Sphere $s$ with radius $r>0$ centered on $P = (x,y,z)$ | $I_s = (\frac1{c}, \frac1{r}, \frac{x}{r}, \frac{y}{r}, \frac{z}{r})$ satisfying $Q(I_s,I_s) = -1,$ i.e., $c = r/(\|P\|^2 - r^2)$. | Note that $1/c = \|P\|^2/r - r$, so there is no trouble if $\|P\| = r$; we just get first coordinate to be 0. Using the point representation $I_P$ from below, let's orient the sphere so that its normals point into the "positive side," where $Q(I_P, I_s) > 0$. The vector $I_s$ then represents a sphere with outward normals, while $-I_s$ represents one with inward normals. |
| Plane $p$ with unit normal $(x,y,z)$ through the (Euclidean) point $(sx,sy,sz)$ | $I_p = (-2s, 0, -x, -y, -z)$ | Note that $Q(I_p, I_p)$ is still $-1$. We orient planes using the same convention we use for spheres. For example, $(-2, 0, -1/\sqrt3, -1/\sqrt3, -1/\sqrt3)$ and $(2, 0, 1/\sqrt3, 1/\sqrt3, 1/\sqrt3)$ represent planes that coincide in space, which have their normals pointing away from and toward the origin, respectively. Note that the ray from $(sx, sy, sz) \in p$ in direction $(-x, -y, -z)$ is the ray perpendicular to the plane through the origin; since $(-x, -y, -z)$ is a unit vector, $(sx, sy, sz)$ and hence $p$ is at distance $s$ from the origin. These coordinates are essentially the limit of a sphere's coordinates as its radius goes to infinity, or equivalently, as its bend goes to 0. |
| Point $P$ with Euclidean coordinates $(x,y,z)$ | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$. This gives us the freedom to choose a different normalization. For example, we could scale the representation shown here by $(\|P\|^2+1)^{-1}$, putting it on the sphere where the light cone intersects the plane where the first two coordinates sum to $1$. |
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by (some normalization of) the above case. |
| Point $P$ lies on sphere or plane given by $I$ | $Q(I_P, I) = 0$ | Actually also works if $I$ is the coordinates of a point, in which case "lies on" simply means "coincides with". |
| Sphere/planes represented by $I$ and $J$ are tangent | If $I$ and $J$ have the same orientation where they touch, $Q(I,J) = -1$. If they have opposing orientations, $Q(I,J) = 1$. | For example, the $xy$ plane with normal $-e_z$, represented by $(0,0,0,0,1)$, is tangent with matching orientation to the unit sphere centered at $(0,0,1)$ with outward normals, represented by $(0,1,0,0,1).$ Accordingly, their $Q$ - product is $-1$. |
| Sphere/planes represented by $I$ and $J$ intersect (respectively, don't intersect) | $\lvert Q(I,J)\rvert \le (\text{resp. }>)\; 1$ | Follows from the angle formula and the tangency condition, at least conceptually. One subtlety: parallel planes have $Q$ - product $\pm 1$, because they intersect at infinity (and in fact, are "tangent" there)! |
| $P$ is center of sphere rep'd by $I$ | $Q(I, I_P) = -r/2$, where $1/r = 2Q(I_\infty, I)$ is the signed bend of the sphere, and $I_P$ is normalized in the standard way, which is to set $Q(I_\infty, I_P) = 1/2$ | This relationship is equivalent to both of the following. (1) The point $P$ has signed distance $-r$ from the sphere. (2) Inversion across the sphere maps $\infty$ to $P$. |
| Distance between points $P$ and $R$ is $d$ | $Q(I_P, I_R) = d^2/2$ | If $P$ and $R$ are represented by non-normalized vectors $V_P$ and $V_R$, the relation becomes $Q(V_P, V_R) = 2\,Q(V_P, I_\infty)\,Q(V_R, I_\infty)\,d^2$. This version of the relation makes it easier to see why $d$ goes to infinity as $P$ or $R$ approaches the point at infinity. |
| Signed distance between point rep'd by $V$ and sphere/plane rep'd by $I$ is $d$ | In general, $\frac{Q(I, V)}{2Q(I_\infty, V)} = Q(I_\infty, I)\,d^2 + d$. When $V$ is normalized in the usual way, this simplifies to $Q(I, V) = d^2/r + d$ for a sphere of radius $r$, and to $Q(I, V) = d$ for a plane. | We can use a Euclidean motion, represented linearly by a Lorentz transformation that fixes $I_\infty$, to put the point on the $z$ axis and put the nearest point on the sphere/plane at the origin with its normal pointing in the positive $z$ direction. Then the sphere/plane is represented by $I = (0, 1/r, 0, 0, -1)$, and the point can be represented by any multiple of $I_P = (d^2, 1, 0, 0, d)$, giving $Q(I, I_P) = d^2/2r + d.$ We turn this into a general expression by writing it in terms of Lorentz-invariant quantities and making it independent of the normalization of $I_P$. |
| Distance between sphere/planes rep by $I$ and $J$ | Note that for any two Euclidean-concentric spheres rep by $I$ and $J$ with radius $r$ and $s,$ $Q(I,J) = -\frac12\left(\frac rs + \frac sr\right)$ depends only on the ratio of $r$ and $s$. So this can't give something that determines the Euclidean distance between the two spheres, which presumably grows as the two spheres are blown up proportionally. For another example, for any two parallel planes, $Q(I,J) = \pm1$. | Alex had said: $Q(I,J)=\cosh(d/2)^2$ maybe where d is distance in usual hyperbolic metric. Or maybe $\cosh(d)$. That may be right depending on what's meant by the hyperbolic metric there, but it seems like it won't determine a reasonable Euclidean distance between planes, which should differ between different pairs of parallel planes. |
| Sphere centered on point $P$ through point $R$ | | Probably just calculate distance etc. |
| Plane rep'd by $I$ goes through center of sphere rep'd by $J$ | This is equivalent to the plane being perpendicular to the sphere: that is, $Q(I, J) = 0$. | |
| Dihedral angle between planes or spheres rep by $I$ and $J$ | $\theta = \arccos(Q(I,J))$ | Aaron Fenyes points out: The angle between spheres in $S^3$ matches the angle between the planes they bound in $R^{(1,4)}$, which matches the angle between the spacelike vectors perpendicular to those planes. So we should have $Q(I,J) = \cos(\theta)$. Note that when the spheres do not intersect, we can interpret this as the "imaginary angle" between them, via $\cosh(t) = \cos(it)$. |
| Points $R, P, S$ are collinear | Maybe just cross product of two differences is 0. Or, $R,P,S,\infty$ lie on a circle, or equivalently, $I_R,I_P,I_S,I_\infty$ span a plane (rather than a three-space). Or we can add two planes constrained to be perpendicular with one constrained to contain the origin, and all three points constrained to lie on both. But that's a lot of auxiliary entities and constraints... | $R,P,S$ lying on a line isn't a conformal property, but $R,P,S,\infty$ lying on a circle is. |
| Plane through noncollinear $R, P, S$ | Should be, just solve $Q(I, I_R) = 0$ etc. | |
| circle | Maybe concentric sphere and the containing plane? Note it is easy to constrain the relationship between those two: they must be perpendicular. | Defn: circle is intersection of two spheres. That does cover lines. But you lose the canonicalness |
| line | Maybe two perpendicular containing planes? Maybe the plane perpendicular to the line and through origin, together with the point of the line on that plane? Or maybe just as a bag of collinear points? | The first is the limiting case of the possible circle rep, but it is not canonical. However, there is a distinguished "standard" choice we could make: always choose one plane to contain the origin and the line, and the other to be the perpendicular plane containing the line. That choice or Plücker coordinates might be the best we can do. If we use the standardized perpendicular planes choice, then adding a line would be equivalent to adding two planes and the two constraints that one contains the origin and the other is perpendicular to it. That doesn't seem so bad. The second convention (perpendicular plane through the origin and a point on it) appears to be canonical, but there doesn't seem to be a circle representation that tends to it in the limit. |
| Inversion of entity represented by $v$ across sphere $s$, rep'd by $I_s$ | $v \mapsto v + 2Q(I_s, v)\,I_s$ | This is just an educated guess, but its behavior is consistent with inversion in at least two ways. (1) It fixes points on $s$ and spheres perpendicular to $s$. (2) It preserves dihedral angles with $s$. |
The unification of spheres/planes is indeed attractive for a project like Dyna3. The relationship between this representation and Geometric Algebras is a bit murky; likely it somehow fits under the Geometric Algebra umbrella.
@ -40,3 +41,25 @@ I will have to work out formulas for the Euclidean distance between two entities
In this vein, it seems as though if J1 and J2 are the reps of two points, then Q(J1,J2) = d^2/2. So then the sphere centered at J1 through J2 is (J1-(2Q(J1,J2),0,0,0,0))/sqrt(2Q(J1,J2)). Ugh has a sqrt in it. Similarly for sphere centered at J3 through J2, (J3-(2Q(J3,J2),0000))/sqrt(2Q(J3,J2)). J1,J2,J3 are collinear if these spheres are tangent, i.e. if those vectors have Q-inner-product 1, which is to say Q(J1,J3) - Q(J1,J2) - Q(J3,J2) = 2sqrt(Q(J1,J2)Q(J2,J3)). But maybe that's not the simplest way of putting it. After all, we can just say that the cross-product of the two differences is 0; that has no square roots in it.
One conceivable way to canonicalize lines is to use the *perpendicular* plane that goes through the origin, that's uniquely defined, and anyway just amounts to I = (0,0,d) where d is the ordinary direction vector of the line; and a point J in that plane that the line goes through, which just amounts to J=(r^2,1,E) with Q(I,J) = 0, i.e. E\dot d = 0. It's also the point on the line closest to the origin. The reason that we don't usually use that point as the companion to the direction vector is that the resulting set of six coordinates is not homogeneous. But here that's not an issue, since we have our standard point coordinates and plane coordinates; and for a plane through the origin, only two of the direction coordinates are really free, and then we have the one dot-product relation, so only two of the point coordinates are really free, giving us the correct dimensionality of 4 for the set of lines. So in some sense this says that we could take naively as coordinates for a line the projection of the unit direction vector to the xy plane and the projection of the line's closest point to the origin to the xy plane. That doesn't seem to have any weird gimbal locks or discontinuities or anything. And with these coordinates, you can test if the point E=x,y,z is on the line (dx,dy,cx,cy) by extending (dx,dy) to d via dz = sqrt(1-dx^2 - dy^2), extending (cx,cy) to c by determining cz via d\dot c = 0, and then checking if d\cross(E-c) = 0. And you can see if two lines are parallel just by checking if they have the same direction vector, and if not, you can see if they are coplanar by projecting both of their closest points perpendicularly onto the line in the direction of the cross product of their directions, and if the projections match they are coplanar.
#### Engine Conventions
The coordinate conventions used in the engine are different from the ones used in these notes. Marking the engine vectors and coordinates with $'$, we have
$$I' = (x', y', z', b', c'),$$
where
$$
\begin{align*}
x' & = x & b' & = b/2 \\
y' & = y & c' & = c/2. \\
z' & = z
\end{align*}
$$
The engine uses the quadratic form $Q' = -Q$, which is expressed in engine coordinates as
$$Q'(I'_1, I'_2) = x'_1 x'_2 + y'_1 y'_2 + z'_1 z'_2 - 2(b'_1c'_2 + c'_1 b'_2).$$
In the `engine` module, the matrix of $Q'$ is encoded in the lazy static variable `Q`.
In the engine's coordinate conventions, a sphere with radius $r > 0$ centered on $P = (P_x, P_y, P_z)$ is represented by the vector
$$I'_s = \left(\frac{P_x}{r}, \frac{P_y}{r}, \frac{P_z}{r}, \frac1{2r}, \frac{\|P\|^2 - r^2}{2r}\right),$$
which has the normalization $Q'(I'_s, I'_s) = 1$. The point $P$ is represented by the vector
$$I'_P = \left(P_x, P_y, P_z, \frac{1}{2}, \frac{\|P\|^2}{2}\right).$$
In the `engine` module, these formulas are encoded in the `sphere` and `point` functions.