feat: Curvature regulators (#80)
All checks were successful
/ test (push) Successful in 2m21s

Prior to this commit, there's only one kind of regulator: the one that regulates the inversive distance between two spheres (or, more generally, the Lorentz product between two element representation vectors). Adds a new kind of regulator, which regulates the curvature of a sphere (issue #55). In the process, introduces a general framework based on new traits for organizing and sharing code between different kinds of regulators.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: #80
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
This commit is contained in:
Vectornaut 2025-04-21 23:40:42 +00:00 committed by Glen Whitney
parent 23ba5acad7
commit 360ce12d8b
6 changed files with 640 additions and 331 deletions

View file

@ -1,26 +1,19 @@
use nalgebra::DMatrix;
use dyna3::engine::{Q, point, realize_gram, sphere, PartialMatrix};
use dyna3::engine::{Q, point, realize_gram, sphere, ConstraintProblem};
fn main() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..2 {
for k in j..2 {
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
let mut problem = ConstraintProblem::from_guess(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
let frozen = [(3, 0)];
for j in 0..2 {
for k in j..2 {
problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
problem.frozen.push(3, 0, problem.guess[(3, 0)]);
println!();
let (config, _, success, history) = realize_gram(
&gram, guess, &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
print!("Configuration:{}", config);

View file

@ -1,29 +1,22 @@
use nalgebra::DMatrix;
use dyna3::engine::{Q, realize_gram, sphere, PartialMatrix};
use dyna3::engine::{Q, realize_gram, sphere, ConstraintProblem};
fn main() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..3 {
for k in j..3 {
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
gram_to_be
};
let guess = {
let mut problem = ConstraintProblem::from_guess({
let a: f64 = 0.75_f64.sqrt();
DMatrix::from_columns(&[
&[
sphere(1.0, 0.0, 0.0, 1.0),
sphere(-0.5, a, 0.0, 1.0),
sphere(-0.5, -a, 0.0, 1.0)
])
};
]
});
for j in 0..3 {
for k in j..3 {
problem.gram.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
println!();
let (config, _, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {

View file

@ -4,14 +4,14 @@ use web_sys::{console, wasm_bindgen::JsValue};
use crate::{
engine,
AppState,
assembly::{Assembly, Element}
assembly::{Assembly, Element, InversiveDistanceRegulator}
};
/* DEBUG */
// load an example assembly for testing. this code will be removed once we've
// built a more formal test assembly system
fn load_gen_assemb(assembly: &Assembly) {
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
String::from("gemini_a"),
String::from("Castor"),
@ -19,7 +19,7 @@ fn load_gen_assemb(assembly: &Assembly) {
engine::sphere(0.5, 0.5, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
String::from("gemini_b"),
String::from("Pollux"),
@ -27,7 +27,7 @@ fn load_gen_assemb(assembly: &Assembly) {
engine::sphere(-0.5, -0.5, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
String::from("ursa_major"),
String::from("Ursa major"),
@ -35,7 +35,7 @@ fn load_gen_assemb(assembly: &Assembly) {
engine::sphere(-0.5, 0.5, 0.0, 0.75)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
String::from("ursa_minor"),
String::from("Ursa minor"),
@ -43,7 +43,7 @@ fn load_gen_assemb(assembly: &Assembly) {
engine::sphere(0.5, -0.5, 0.0, 0.5)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
String::from("moon_deimos"),
String::from("Deimos"),
@ -51,7 +51,7 @@ fn load_gen_assemb(assembly: &Assembly) {
engine::sphere(0.0, 0.15, 1.0, 0.25)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
String::from("moon_phobos"),
String::from("Phobos"),
@ -66,7 +66,7 @@ fn load_gen_assemb(assembly: &Assembly) {
// built a more formal test assembly system
fn load_low_curv_assemb(assembly: &Assembly) {
let a = 0.75_f64.sqrt();
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
"central".to_string(),
"Central".to_string(),
@ -74,7 +74,7 @@ fn load_low_curv_assemb(assembly: &Assembly) {
engine::sphere(0.0, 0.0, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
"assemb_plane".to_string(),
"Assembly plane".to_string(),
@ -82,7 +82,7 @@ fn load_low_curv_assemb(assembly: &Assembly) {
engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
"side1".to_string(),
"Side 1".to_string(),
@ -90,7 +90,7 @@ fn load_low_curv_assemb(assembly: &Assembly) {
engine::sphere_with_offset(1.0, 0.0, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
"side2".to_string(),
"Side 2".to_string(),
@ -98,7 +98,7 @@ fn load_low_curv_assemb(assembly: &Assembly) {
engine::sphere_with_offset(-0.5, a, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
"side3".to_string(),
"Side 3".to_string(),
@ -106,7 +106,7 @@ fn load_low_curv_assemb(assembly: &Assembly) {
engine::sphere_with_offset(-0.5, -a, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
"corner1".to_string(),
"Corner 1".to_string(),
@ -114,7 +114,7 @@ fn load_low_curv_assemb(assembly: &Assembly) {
engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
"corner2".to_string(),
"Corner 2".to_string(),
@ -122,7 +122,7 @@ fn load_low_curv_assemb(assembly: &Assembly) {
engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0)
)
);
let _ = assembly.try_insert_element(
let _ = assembly.try_insert_sphere(
Element::new(
String::from("corner3"),
String::from("Corner 3"),
@ -148,6 +148,7 @@ pub fn AddRemove() -> View {
let assembly = &state.assembly;
// clear state
assembly.regulators.update(|regs| regs.clear());
assembly.elements.update(|elts| elts.clear());
assembly.elements_by_id.update(|elts_by_id| elts_by_id.clear());
state.selection.update(|sel| sel.clear());
@ -166,18 +167,7 @@ pub fn AddRemove() -> View {
button(
on:click=|_| {
let state = use_context::<AppState>();
state.assembly.insert_new_element();
/* DEBUG */
// print updated list of elements by identifier
console::log_1(&JsValue::from("elements by identifier:"));
for (id, key) in state.assembly.elements_by_id.get_clone().iter() {
console::log_3(
&JsValue::from(" "),
&JsValue::from(id),
&JsValue::from(*key)
);
}
state.assembly.insert_new_sphere();
}
) { "+" }
button(
@ -188,13 +178,20 @@ pub fn AddRemove() -> View {
},
on:click=|_| {
let state = use_context::<AppState>();
let subjects = state.selection.with(
|sel| {
let subject_vec: Vec<_> = sel.into_iter().collect();
(subject_vec[0].clone(), subject_vec[1].clone())
}
let subjects: [_; 2] = state.selection.with(
// the button is only enabled when two elements are
// selected, so we know the cast to a two-element array
// will succeed
|sel| sel
.clone()
.into_iter()
.collect::<Vec<_>>()
.try_into()
.unwrap()
);
state.assembly.insert_regulator(
InversiveDistanceRegulator::new(subjects, &state.assembly)
);
state.assembly.insert_new_regulator(subjects);
state.selection.update(|sel| sel.clear());
}
) { "🔗" }

View file

@ -1,12 +1,21 @@
use nalgebra::{DMatrix, DVector, DVectorView, Vector3};
use rustc_hash::FxHashMap;
use slab::Slab;
use std::{collections::BTreeSet, sync::atomic::{AtomicU64, Ordering}};
use std::{collections::BTreeSet, rc::Rc, sync::atomic::{AtomicU64, Ordering}};
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
use crate::{
engine::{Q, local_unif_to_std, realize_gram, ConfigSubspace, PartialMatrix},
engine::{
Q,
change_half_curvature,
local_unif_to_std,
realize_gram,
sphere,
ConfigSubspace,
ConstraintProblem
},
outline::OutlineItem,
specified::SpecifiedValue
};
@ -23,6 +32,10 @@ pub type ElementColor = [f32; 3];
// each assembly has a key that identifies it within the sesssion
static NEXT_ELEMENT_SERIAL: AtomicU64 = AtomicU64::new(0);
pub trait ProblemPoser {
fn pose(&self, problem: &mut ConstraintProblem, elts: &Slab<Element>);
}
#[derive(Clone, PartialEq)]
pub struct Element {
pub id: String,
@ -30,8 +43,8 @@ pub struct Element {
pub color: ElementColor,
pub representation: Signal<DVector<f64>>,
// All regulators with this element as a subject. The assembly owning
// this element is responsible for keeping this set up to date.
// the regulators this element is subject to. the assembly that owns the
// element is responsible for keeping this set up to date
pub regulators: Signal<BTreeSet<RegulatorKey>>,
// a serial number, assigned by `Element::new`, that uniquely identifies
@ -45,6 +58,8 @@ pub struct Element {
}
impl Element {
const CURVATURE_COMPONENT: usize = 3;
pub fn new(
id: String,
label: String,
@ -117,13 +132,148 @@ impl Element {
}
}
#[derive(Clone, Copy)]
pub struct Regulator {
pub subjects: (ElementKey, ElementKey),
impl ProblemPoser for Element {
fn pose(&self, problem: &mut ConstraintProblem, _elts: &Slab<Element>) {
let index = self.column_index.expect(
format!("Element \"{}\" should be indexed before writing problem data", self.id).as_str()
);
problem.gram.push_sym(index, index, 1.0);
problem.guess.set_column(index, &self.representation.get_clone_untracked());
}
}
pub trait Regulator: ProblemPoser + OutlineItem {
fn subjects(&self) -> Vec<ElementKey>;
fn measurement(&self) -> ReadSignal<f64>;
fn set_point(&self) -> Signal<SpecifiedValue>;
// this method is used to responsively precondition the assembly for
// realization when the regulator becomes a constraint, or is edited while
// acting as a constraint. it should track the set point, do any desired
// preconditioning when the set point is present, and use its return value
// to report whether the set is present. the default implementation does no
// preconditioning
fn try_activate(&self, _assembly: &Assembly) -> bool {
self.set_point().with(|set_pt| set_pt.is_present())
}
}
pub struct InversiveDistanceRegulator {
pub subjects: [ElementKey; 2],
pub measurement: ReadSignal<f64>,
pub set_point: Signal<SpecifiedValue>
}
impl InversiveDistanceRegulator {
pub fn new(subjects: [ElementKey; 2], assembly: &Assembly) -> InversiveDistanceRegulator {
let measurement = assembly.elements.map(
move |elts| {
let representations = subjects.map(|subj| elts[subj].representation);
representations[0].with(|rep_0|
representations[1].with(|rep_1|
rep_0.dot(&(&*Q * rep_1))
)
)
}
);
let set_point = create_signal(SpecifiedValue::from_empty_spec());
InversiveDistanceRegulator { subjects, measurement, set_point }
}
}
impl Regulator for InversiveDistanceRegulator {
fn subjects(&self) -> Vec<ElementKey> {
self.subjects.into()
}
fn measurement(&self) -> ReadSignal<f64> {
self.measurement
}
fn set_point(&self) -> Signal<SpecifiedValue> {
self.set_point
}
}
impl ProblemPoser for InversiveDistanceRegulator {
fn pose(&self, problem: &mut ConstraintProblem, elts: &Slab<Element>) {
self.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let [row, col] = self.subjects.map(
|subj| elts[subj].column_index.expect(
"Subjects should be indexed before inversive distance regulator writes problem data"
)
);
problem.gram.push_sym(row, col, val);
}
});
}
}
pub struct HalfCurvatureRegulator {
pub subject: ElementKey,
pub measurement: ReadSignal<f64>,
pub set_point: Signal<SpecifiedValue>
}
impl HalfCurvatureRegulator {
pub fn new(subject: ElementKey, assembly: &Assembly) -> HalfCurvatureRegulator {
let measurement = assembly.elements.map(
move |elts| elts[subject].representation.with(
|rep| rep[Element::CURVATURE_COMPONENT]
)
);
let set_point = create_signal(SpecifiedValue::from_empty_spec());
HalfCurvatureRegulator { subject, measurement, set_point }
}
}
impl Regulator for HalfCurvatureRegulator {
fn subjects(&self) -> Vec<ElementKey> {
vec![self.subject]
}
fn measurement(&self) -> ReadSignal<f64> {
self.measurement
}
fn set_point(&self) -> Signal<SpecifiedValue> {
self.set_point
}
fn try_activate(&self, assembly: &Assembly) -> bool {
match self.set_point.with(|set_pt| set_pt.value) {
Some(half_curv) => {
let representation = assembly.elements.with_untracked(
|elts| elts[self.subject].representation
);
representation.update(
|rep| change_half_curvature(rep, half_curv)
);
true
}
None => false
}
}
}
impl ProblemPoser for HalfCurvatureRegulator {
fn pose(&self, problem: &mut ConstraintProblem, elts: &Slab<Element>) {
self.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let col = elts[self.subject].column_index.expect(
"Subject should be indexed before half-curvature regulator writes problem data"
);
problem.frozen.push(Element::CURVATURE_COMPONENT, col, val);
}
});
}
}
// the velocity is expressed in uniform coordinates
pub struct ElementMotion<'a> {
pub key: ElementKey,
@ -137,7 +287,7 @@ type AssemblyMotion<'a> = Vec<ElementMotion<'a>>;
pub struct Assembly {
// elements and regulators
pub elements: Signal<Slab<Element>>,
pub regulators: Signal<Slab<Regulator>>,
pub regulators: Signal<Slab<Rc<dyn Regulator>>>,
// solution variety tangent space. the basis vectors are stored in
// configuration matrix format, ordered according to the elements' column
@ -167,26 +317,33 @@ impl Assembly {
// --- inserting elements and regulators ---
// insert an element into the assembly without checking whether we already
// insert a sphere into the assembly without checking whether we already
// have an element with the same identifier. any element that does have the
// same identifier will get kicked out of the `elements_by_id` index
fn insert_element_unchecked(&self, elt: Element) {
fn insert_sphere_unchecked(&self, elt: Element) -> ElementKey {
// insert the sphere
let id = elt.id.clone();
let key = self.elements.update(|elts| elts.insert(elt));
self.elements_by_id.update(|elts_by_id| elts_by_id.insert(id, key));
// regulate the sphere's curvature
self.insert_regulator(HalfCurvatureRegulator::new(key, &self));
key
}
pub fn try_insert_element(&self, elt: Element) -> bool {
pub fn try_insert_sphere(&self, elt: Element) -> Option<ElementKey> {
let can_insert = self.elements_by_id.with_untracked(
|elts_by_id| !elts_by_id.contains_key(&elt.id)
);
if can_insert {
self.insert_element_unchecked(elt);
Some(self.insert_sphere_unchecked(elt))
} else {
None
}
can_insert
}
pub fn insert_new_element(&self) {
pub fn insert_new_sphere(&self) {
// find the next unused identifier in the default sequence
let mut id_num = 1;
let mut id = format!("sphere{}", id_num);
@ -197,70 +354,69 @@ impl Assembly {
id = format!("sphere{}", id_num);
}
// create and insert a new element
self.insert_element_unchecked(
// create and insert a sphere
let _ = self.insert_sphere_unchecked(
Element::new(
id,
format!("Sphere {}", id_num),
[0.75_f32, 0.75_f32, 0.75_f32],
DVector::<f64>::from_column_slice(&[0.0, 0.0, 0.0, 0.5, -0.5])
sphere(0.0, 0.0, 0.0, 1.0)
)
);
}
fn insert_regulator(&self, regulator: Regulator) {
let subjects = regulator.subjects;
let key = self.regulators.update(|regs| regs.insert(regulator));
let subject_regulators = self.elements.with(
|elts| (elts[subjects.0].regulators, elts[subjects.1].regulators)
pub fn insert_regulator<T: Regulator + 'static>(&self, regulator: T) {
// add the regulator to the assembly's regulator list
let regulator_rc = Rc::new(regulator);
let key = self.regulators.update(
|regs| regs.insert(regulator_rc.clone())
);
subject_regulators.0.update(|regs| regs.insert(key));
subject_regulators.1.update(|regs| regs.insert(key));
}
pub fn insert_new_regulator(self, subjects: (ElementKey, ElementKey)) {
// create and insert a new regulator
let measurement = self.elements.map(
move |elts| {
let reps = (
elts[subjects.0].representation.get_clone(),
elts[subjects.1].representation.get_clone()
);
reps.0.dot(&(&*Q * reps.1))
// add the regulator to each subject's regulator list
let subjects = regulator_rc.subjects();
let subject_regulators: Vec<_> = self.elements.with_untracked(
|elts| subjects.into_iter().map(
|subj| elts[subj].regulators
).collect()
);
for regulators in subject_regulators {
regulators.update(|regs| regs.insert(key));
}
// update the realization when the regulator becomes a constraint, or is
// edited while acting as a constraint
let self_for_effect = self.clone();
create_effect(move || {
/* DEBUG */
// log the regulator update
console::log_1(&JsValue::from(
format!("Updated regulator with subjects {:?}", regulator_rc.subjects())
));
if regulator_rc.try_activate(&self_for_effect) {
self_for_effect.realize();
}
);
let set_point = create_signal(SpecifiedValue::from_empty_spec());
self.insert_regulator(Regulator {
subjects: subjects,
measurement: measurement,
set_point: set_point
});
/* DEBUG */
// print an updated list of regulators
console::log_1(&JsValue::from("Regulators:"));
self.regulators.with(|regs| {
self.regulators.with_untracked(|regs| {
for (_, reg) in regs.into_iter() {
console::log_5(
&JsValue::from(" "),
&JsValue::from(reg.subjects.0),
&JsValue::from(reg.subjects.1),
&JsValue::from(":"),
&reg.set_point.with_untracked(
|set_pt| JsValue::from(set_pt.spec.as_str())
console::log_1(&JsValue::from(format!(
" {:?}: {}",
reg.subjects(),
reg.set_point().with_untracked(
|set_pt| {
let spec = &set_pt.spec;
if spec.is_empty() {
"__".to_string()
} else {
spec.clone()
}
}
)
);
}
});
// update the realization when the regulator becomes a constraint, or is
// edited while acting as a constraint
create_effect(move || {
console::log_1(&JsValue::from(
format!("Updated constraint with subjects ({}, {})", subjects.0, subjects.1)
));
if set_point.with(|set_pt| set_pt.is_present()) {
self.realize();
)));
}
});
}
@ -275,55 +431,39 @@ impl Assembly {
}
});
// set up the Gram matrix and the initial configuration matrix
let (gram, guess) = self.elements.with_untracked(|elts| {
// set up the off-diagonal part of the Gram matrix
let mut gram_to_be = PartialMatrix::new();
// set up the constraint problem
let problem = self.elements.with_untracked(|elts| {
let mut problem = ConstraintProblem::new(elts.len());
for (_, elt) in elts {
elt.pose(&mut problem, elts);
}
self.regulators.with_untracked(|regs| {
for (_, reg) in regs {
reg.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let subjects = reg.subjects;
let row = elts[subjects.0].column_index.unwrap();
let col = elts[subjects.1].column_index.unwrap();
gram_to_be.push_sym(row, col, val);
}
});
reg.pose(&mut problem, elts);
}
});
// set up the initial configuration matrix and the diagonal of the
// Gram matrix
let mut guess_to_be = DMatrix::<f64>::zeros(5, elts.len());
for (_, elt) in elts {
let index = elt.column_index.unwrap();
gram_to_be.push_sym(index, index, 1.0);
guess_to_be.set_column(index, &elt.representation.get_clone_untracked());
}
(gram_to_be, guess_to_be)
problem
});
/* DEBUG */
// log the Gram matrix
console::log_1(&JsValue::from("Gram matrix:"));
gram.log_to_console();
problem.gram.log_to_console();
/* DEBUG */
// log the initial configuration matrix
console::log_1(&JsValue::from("Old configuration:"));
for j in 0..guess.nrows() {
for j in 0..problem.guess.nrows() {
let mut row_str = String::new();
for k in 0..guess.ncols() {
row_str.push_str(format!(" {:>8.3}", guess[(j, k)]).as_str());
for k in 0..problem.guess.ncols() {
row_str.push_str(format!(" {:>8.3}", problem.guess[(j, k)]).as_str());
}
console::log_1(&JsValue::from(row_str));
}
// look for a configuration with the given Gram matrix
let (config, tangent, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
/* DEBUG */
@ -458,4 +598,48 @@ impl Assembly {
// sync
self.realize();
}
}
#[cfg(test)]
mod tests {
use crate::engine;
use super::*;
#[test]
#[should_panic(expected = "Element \"sphere\" should be indexed before writing problem data")]
fn unindexed_element_test() {
let _ = create_root(|| {
Element::new(
"sphere".to_string(),
"Sphere".to_string(),
[1.0_f32, 1.0_f32, 1.0_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
).pose(&mut ConstraintProblem::new(1), &Slab::new());
});
}
#[test]
#[should_panic(expected = "Subjects should be indexed before inversive distance regulator writes problem data")]
fn unindexed_subject_test_inversive_distance() {
let _ = create_root(|| {
let mut elts = Slab::new();
let subjects = [0, 1].map(|k| {
elts.insert(
Element::new(
format!("sphere{k}"),
format!("Sphere {k}"),
[1.0_f32, 1.0_f32, 1.0_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
)
)
});
elts[subjects[0]].column_index = Some(0);
InversiveDistanceRegulator {
subjects: subjects,
measurement: create_memo(|| 0.0),
set_point: create_signal(SpecifiedValue::try_from("0.0".to_string()).unwrap())
}.pose(&mut ConstraintProblem::new(2), &elts);
});
}
}

View file

@ -35,9 +35,43 @@ pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f6
])
}
// given a sphere's representation vector, change the sphere's half-curvature to
// `half-curv` and then restore normalization by contracting the representation
// vector toward the curvature axis
pub fn change_half_curvature(rep: &mut DVector<f64>, half_curv: f64) {
// set the sphere's half-curvature to the desired value
rep[3] = half_curv;
// restore normalization by contracting toward the curvature axis
const SIZE_THRESHOLD: f64 = 1e-9;
let half_q_lt = -2.0 * half_curv * rep[4];
let half_q_lt_sq = half_q_lt * half_q_lt;
let mut spatial = rep.fixed_rows_mut::<3>(0);
let q_sp = spatial.norm_squared();
if q_sp < SIZE_THRESHOLD && half_q_lt_sq < SIZE_THRESHOLD {
spatial.copy_from_slice(
&[0.0, 0.0, (1.0 - 2.0 * half_q_lt).sqrt()]
);
} else {
let scaling = half_q_lt + (q_sp + half_q_lt_sq).sqrt();
spatial.scale_mut(1.0 / scaling);
rep[4] /= scaling;
}
/* DEBUG */
// verify normalization
let rep_for_debug = rep.clone();
console::log_1(&JsValue::from(
format!(
"Sphere self-product after curvature change: {}",
rep_for_debug.dot(&(&*Q * &rep_for_debug))
)
));
}
// --- partial matrices ---
struct MatrixEntry {
pub struct MatrixEntry {
index: (usize, usize),
value: f64
}
@ -49,42 +83,72 @@ impl PartialMatrix {
PartialMatrix(Vec::<MatrixEntry>::new())
}
pub fn push_sym(&mut self, row: usize, col: usize, value: f64) {
pub fn push(&mut self, row: usize, col: usize, value: f64) {
let PartialMatrix(entries) = self;
entries.push(MatrixEntry { index: (row, col), value: value });
}
pub fn push_sym(&mut self, row: usize, col: usize, value: f64) {
self.push(row, col, value);
if row != col {
entries.push(MatrixEntry { index: (col, row), value: value });
self.push(col, row, value);
}
}
/* DEBUG */
pub fn log_to_console(&self) {
let PartialMatrix(entries) = self;
for ent in entries {
let ent_str = format!(" {} {} {}", ent.index.0, ent.index.1, ent.value);
console::log_1(&JsValue::from(ent_str.as_str()));
for &MatrixEntry { index: (row, col), value } in self {
console::log_1(&JsValue::from(
format!(" {} {} {}", row, col, value)
));
}
}
fn freeze(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = a.clone();
for &MatrixEntry { index, value } in self {
result[index] = value;
}
result
}
fn proj(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(a.nrows(), a.ncols());
let PartialMatrix(entries) = self;
for ent in entries {
result[ent.index] = a[ent.index];
for &MatrixEntry { index, .. } in self {
result[index] = a[index];
}
result
}
fn sub_proj(&self, rhs: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
let PartialMatrix(entries) = self;
for ent in entries {
result[ent.index] = ent.value - rhs[ent.index];
for &MatrixEntry { index, value } in self {
result[index] = value - rhs[index];
}
result
}
}
impl IntoIterator for PartialMatrix {
type Item = MatrixEntry;
type IntoIter = std::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
let PartialMatrix(entries) = self;
entries.into_iter()
}
}
impl<'a> IntoIterator for &'a PartialMatrix {
type Item = &'a MatrixEntry;
type IntoIter = std::slice::Iter<'a, MatrixEntry>;
fn into_iter(self) -> Self::IntoIter {
let PartialMatrix(entries) = self;
entries.into_iter()
}
}
// --- configuration subspaces ---
#[derive(Clone)]
@ -195,6 +259,34 @@ impl DescentHistory {
}
}
// --- constraint problems ---
pub struct ConstraintProblem {
pub gram: PartialMatrix,
pub frozen: PartialMatrix,
pub guess: DMatrix<f64>,
}
impl ConstraintProblem {
pub fn new(element_count: usize) -> ConstraintProblem {
const ELEMENT_DIM: usize = 5;
ConstraintProblem {
gram: PartialMatrix::new(),
frozen: PartialMatrix::new(),
guess: DMatrix::<f64>::zeros(ELEMENT_DIM, element_count)
}
}
#[cfg(feature = "dev")]
pub fn from_guess(guess_columns: &[DVector<f64>]) -> ConstraintProblem {
ConstraintProblem {
gram: PartialMatrix::new(),
frozen: PartialMatrix::new(),
guess: DMatrix::from_columns(guess_columns)
}
}
}
// --- gram matrix realization ---
// the Lorentz form
@ -286,12 +378,12 @@ fn seek_better_config(
None
}
// seek a matrix `config` for which `config' * Q * config` matches the partial
// matrix `gram`. use gradient descent starting from `guess`
// seek a matrix `config` that matches the partial matrix `problem.frozen` and
// has `config' * Q * config` matching the partial matrix `problem.gram`. start
// at `problem.guess`, set the frozen entries to their desired values, and then
// use a regularized Newton's method to seek the desired Gram matrix
pub fn realize_gram(
gram: &PartialMatrix,
guess: DMatrix<f64>,
frozen: &[(usize, usize)],
problem: &ConstraintProblem,
scaled_tol: f64,
min_efficiency: f64,
backoff: f64,
@ -299,6 +391,11 @@ pub fn realize_gram(
max_descent_steps: i32,
max_backoff_steps: i32
) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
// destructure the problem data
let ConstraintProblem {
gram, guess, frozen
} = problem;
// start the descent history
let mut history = DescentHistory::new();
@ -313,11 +410,11 @@ pub fn realize_gram(
// convert the frozen indices to stacked format
let frozen_stacked: Vec<usize> = frozen.into_iter().map(
|index| index.1*element_dim + index.0
|MatrixEntry { index: (row, col), .. }| col*element_dim + row
).collect();
// use Newton's method with backtracking and gradient descent backup
let mut state = SearchState::from_config(gram, guess);
// use a regularized Newton's method with backtracking
let mut state = SearchState::from_config(gram, frozen.freeze(guess));
let mut hess = DMatrix::zeros(element_dim, assembly_dim);
for _ in 0..max_descent_steps {
// find the negative gradient of the loss function
@ -415,7 +512,7 @@ pub fn realize_gram(
#[cfg(feature = "dev")]
pub mod examples {
use std::{array, f64::consts::PI};
use std::f64::consts::PI;
use super::*;
@ -428,35 +525,7 @@ pub mod examples {
// https://www.nippon.com/en/japan-topics/c12801/
//
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for s in 0..9 {
// each sphere is represented by a spacelike vector
gram_to_be.push_sym(s, s, 1.0);
// the circumscribing sphere is tangent to all of the other
// spheres, with matching orientation
if s > 0 {
gram_to_be.push_sym(0, s, 1.0);
}
if s > 2 {
// each chain sphere is tangent to the "sun" and "moon"
// spheres, with opposing orientation
for n in 1..3 {
gram_to_be.push_sym(s, n, -1.0);
}
// each chain sphere is tangent to the next chain sphere,
// with opposing orientation
let s_next = 3 + (s-2) % 6;
gram_to_be.push_sym(s, s_next, -1.0);
}
}
gram_to_be
};
let guess = DMatrix::from_columns(
let mut problem = ConstraintProblem::from_guess(
[
sphere(0.0, 0.0, 0.0, 15.0),
sphere(0.0, 0.0, -9.0, 5.0),
@ -471,42 +540,45 @@ pub mod examples {
).collect::<Vec<_>>().as_slice()
);
for s in 0..9 {
// each sphere is represented by a spacelike vector
problem.gram.push_sym(s, s, 1.0);
// the circumscribing sphere is tangent to all of the other
// spheres, with matching orientation
if s > 0 {
problem.gram.push_sym(0, s, 1.0);
}
if s > 2 {
// each chain sphere is tangent to the "sun" and "moon"
// spheres, with opposing orientation
for n in 1..3 {
problem.gram.push_sym(s, n, -1.0);
}
// each chain sphere is tangent to the next chain sphere,
// with opposing orientation
let s_next = 3 + (s-2) % 6;
problem.gram.push_sym(s, s_next, -1.0);
}
}
// the frozen entries fix the radii of the circumscribing sphere, the
// "sun" and "moon" spheres, and one of the chain spheres
let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k));
for k in 0..4 {
problem.frozen.push(3, k, problem.guess[(3, k)]);
}
realize_gram(
&gram, guess, &frozen,
scaled_tol, 0.5, 0.9, 1.1, 200, 110
)
realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110)
}
// set up a kaleidocycle, made of points with fixed distances between them,
// and find its tangent space
pub fn realize_kaleidocycle(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
const N_POINTS: usize = 12;
let gram = {
let mut gram_to_be = PartialMatrix::new();
for block in (0..N_POINTS).step_by(2) {
let block_next = (block + 2) % N_POINTS;
for j in 0..2 {
// diagonal and hinge edges
for k in j..2 {
gram_to_be.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 });
}
// non-hinge edges
for k in 0..2 {
gram_to_be.push_sym(block + j, block_next + k, -0.625);
}
}
}
gram_to_be
};
let guess = {
const N_HINGES: usize = 6;
let guess_elts = (0..N_HINGES).step_by(2).flat_map(
const N_HINGES: usize = 6;
let mut problem = ConstraintProblem::from_guess(
(0..N_HINGES).step_by(2).flat_map(
|n| {
let ang_hor = (n as f64) * PI/3.0;
let ang_vert = ((n + 1) as f64) * PI/3.0;
@ -519,16 +591,30 @@ pub mod examples {
point(x_vert, y_vert, 0.5)
]
}
).collect::<Vec<_>>();
DMatrix::from_columns(&guess_elts)
};
).collect::<Vec<_>>().as_slice()
);
let frozen: [_; N_POINTS] = array::from_fn(|k| (3, k));
const N_POINTS: usize = 2 * N_HINGES;
for block in (0..N_POINTS).step_by(2) {
let block_next = (block + 2) % N_POINTS;
for j in 0..2 {
// diagonal and hinge edges
for k in j..2 {
problem.gram.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 });
}
// non-hinge edges
for k in 0..2 {
problem.gram.push_sym(block + j, block_next + k, -0.625);
}
}
}
realize_gram(
&gram, guess, &frozen,
scaled_tol, 0.5, 0.9, 1.1, 200, 110
)
for k in 0..N_POINTS {
problem.frozen.push(3, k, problem.guess[(3, k)])
}
realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110)
}
}
@ -539,6 +625,25 @@ mod tests {
use super::{*, examples::*};
#[test]
fn freeze_test() {
let frozen = PartialMatrix(vec![
MatrixEntry { index: (0, 0), value: 14.0 },
MatrixEntry { index: (0, 2), value: 28.0 },
MatrixEntry { index: (1, 1), value: 42.0 },
MatrixEntry { index: (1, 2), value: 49.0 }
]);
let config = DMatrix::<f64>::from_row_slice(2, 3, &[
1.0, 2.0, 3.0,
4.0, 5.0, 6.0
]);
let expected_result = DMatrix::<f64>::from_row_slice(2, 3, &[
14.0, 2.0, 28.0,
4.0, 42.0, 49.0
]);
assert_eq!(frozen.freeze(&config), expected_result);
}
#[test]
fn sub_proj_test() {
let target = PartialMatrix(vec![
@ -560,18 +665,12 @@ mod tests {
#[test]
fn zero_loss_test() {
let gram = PartialMatrix({
let mut entries = Vec::<MatrixEntry>::new();
for j in 0..3 {
for k in 0..3 {
entries.push(MatrixEntry {
index: (j, k),
value: if j == k { 1.0 } else { -1.0 }
});
}
let mut gram = PartialMatrix::new();
for j in 0..3 {
for k in 0..3 {
gram.push(j, k, if j == k { 1.0 } else { -1.0 });
}
entries
});
}
let config = {
let a = 0.75_f64.sqrt();
DMatrix::from_columns(&[
@ -584,37 +683,33 @@ mod tests {
assert!(state.loss.abs() < f64::EPSILON);
}
/* TO DO */
// at the frozen indices, the optimization steps should have exact zeros,
// and the realized configuration should match the initial guess
// and the realized configuration should have the desired values
#[test]
fn frozen_entry_test() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..2 {
for k in j..2 {
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
let mut problem = ConstraintProblem::from_guess(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
sphere(0.0, 0.0, 0.0, 0.95)
]);
let frozen = [(3, 0), (3, 1)];
println!();
for j in 0..2 {
for k in j..2 {
problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
problem.frozen.push(3, 0, problem.guess[(3, 0)]);
problem.frozen.push(3, 1, 0.5);
let (config, _, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(success, true);
for base_step in history.base_step.into_iter() {
for index in frozen {
for &MatrixEntry { index, .. } in &problem.frozen {
assert_eq!(base_step[index], 0.0);
}
}
for index in frozen {
assert_eq!(config[index], guess[index]);
for MatrixEntry { index, value } in problem.frozen {
assert_eq!(config[index], value);
}
}
@ -635,34 +730,32 @@ mod tests {
#[test]
fn tangent_test_three_spheres() {
const SCALED_TOL: f64 = 1.0e-12;
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..3 {
for k in j..3 {
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
const ELEMENT_DIM: usize = 5;
let mut problem = ConstraintProblem::from_guess(&[
sphere(0.0, 0.0, 0.0, -2.0),
sphere(0.0, 0.0, 1.0, 1.0),
sphere(0.0, 0.0, -1.0, 1.0)
]);
let frozen: [_; 5] = std::array::from_fn(|k| (k, 0));
for j in 0..3 {
for k in j..3 {
problem.gram.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
for n in 0..ELEMENT_DIM {
problem.frozen.push(n, 0, problem.guess[(n, 0)]);
}
let (config, tangent, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
&problem, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(config, guess);
assert_eq!(config, problem.guess);
assert_eq!(success, true);
assert_eq!(history.scaled_loss.len(), 1);
// list some motions that should form a basis for the tangent space of
// the solution variety
const UNIFORM_DIM: usize = 4;
let element_dim = guess.nrows();
let assembly_dim = guess.ncols();
let element_dim = problem.guess.nrows();
let assembly_dim = problem.guess.ncols();
let tangent_motions_unif = vec![
basis_matrix((0, 1), UNIFORM_DIM, assembly_dim),
basis_matrix((1, 1), UNIFORM_DIM, assembly_dim),
@ -805,22 +898,17 @@ mod tests {
fn proj_equivar_test() {
// find a pair of spheres that meet at 120°
const SCALED_TOL: f64 = 1.0e-12;
let gram = {
let mut gram_to_be = PartialMatrix::new();
gram_to_be.push_sym(0, 0, 1.0);
gram_to_be.push_sym(1, 1, 1.0);
gram_to_be.push_sym(0, 1, 0.5);
gram_to_be
};
let guess_orig = DMatrix::from_columns(&[
let mut problem_orig = ConstraintProblem::from_guess(&[
sphere(0.0, 0.0, 0.5, 1.0),
sphere(0.0, 0.0, -0.5, 1.0)
]);
problem_orig.gram.push_sym(0, 0, 1.0);
problem_orig.gram.push_sym(1, 1, 1.0);
problem_orig.gram.push_sym(0, 1, 0.5);
let (config_orig, tangent_orig, success_orig, history_orig) = realize_gram(
&gram, guess_orig.clone(), &[],
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
&problem_orig, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(config_orig, guess_orig);
assert_eq!(config_orig, problem_orig.guess);
assert_eq!(success_orig, true);
assert_eq!(history_orig.scaled_loss.len(), 1);
@ -833,11 +921,15 @@ mod tests {
sphere(-a, 0.0, 7.0 - a, 1.0)
])
};
let problem_tfm = ConstraintProblem {
gram: problem_orig.gram,
guess: guess_tfm,
frozen: problem_orig.frozen
};
let (config_tfm, tangent_tfm, success_tfm, history_tfm) = realize_gram(
&gram, guess_tfm.clone(), &[],
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
&problem_tfm, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(config_tfm, guess_tfm);
assert_eq!(config_tfm, problem_tfm.guess);
assert_eq!(success_tfm, true);
assert_eq!(history_tfm.scaled_loss.len(), 1);
@ -869,7 +961,7 @@ mod tests {
// the comparison tolerance because the transformation seems to
// introduce some numerical error
const SCALED_TOL_TFM: f64 = 1.0e-9;
let tol_sq = ((guess_orig.nrows() * guess_orig.ncols()) as f64) * SCALED_TOL_TFM * SCALED_TOL_TFM;
let tol_sq = ((problem_orig.guess.nrows() * problem_orig.guess.ncols()) as f64) * SCALED_TOL_TFM * SCALED_TOL_TFM;
assert!((motion_proj_tfm - motion_tfm_proj).norm_squared() < tol_sq);
}
}

View file

@ -1,4 +1,5 @@
use itertools::Itertools;
use std::rc::Rc;
use sycamore::prelude::*;
use web_sys::{
KeyboardEvent,
@ -9,24 +10,38 @@ use web_sys::{
use crate::{
AppState,
assembly,
assembly::{ElementKey, Regulator, RegulatorKey},
assembly::{
ElementKey,
HalfCurvatureRegulator,
InversiveDistanceRegulator,
Regulator,
RegulatorKey
},
specified::SpecifiedValue
};
// an editable view of a regulator
#[component(inline_props)]
fn RegulatorInput(regulator: Regulator) -> View {
fn RegulatorInput(regulator: Rc<dyn Regulator>) -> View {
// get the regulator's measurement and set point signals
let measurement = regulator.measurement();
let set_point = regulator.set_point();
// the `valid` signal tracks whether the last entered value is a valid set
// point specification
let valid = create_signal(true);
// the `value` signal holds the current set point specification
let value = create_signal(
regulator.set_point.with_untracked(|set_pt| set_pt.spec.clone())
set_point.with_untracked(|set_pt| set_pt.spec.clone())
);
// this closure resets the input value to the regulator's set point
// specification
// this `reset_value` closure resets the input value to the regulator's set
// point specification
let reset_value = move || {
batch(|| {
valid.set(true);
value.set(regulator.set_point.with(|set_pt| set_pt.spec.clone()));
value.set(set_point.with(|set_pt| set_pt.spec.clone()));
})
};
@ -39,7 +54,7 @@ fn RegulatorInput(regulator: Regulator) -> View {
r#type="text",
class=move || {
if valid.get() {
regulator.set_point.with(|set_pt| {
set_point.with(|set_pt| {
if set_pt.is_present() {
"regulator-input constraint"
} else {
@ -50,13 +65,13 @@ fn RegulatorInput(regulator: Regulator) -> View {
"regulator-input invalid"
}
},
placeholder=regulator.measurement.with(|result| result.to_string()),
placeholder=measurement.with(|result| result.to_string()),
bind:value=value,
on:change=move |_| {
valid.set(
match SpecifiedValue::try_from(value.get_clone_untracked()) {
Ok(set_pt) => {
regulator.set_point.set(set_pt);
set_point.set(set_pt);
true
}
Err(_) => false
@ -75,26 +90,53 @@ fn RegulatorInput(regulator: Regulator) -> View {
}
}
pub trait OutlineItem {
fn outline_item(self: Rc<Self>, element_key: ElementKey) -> View;
}
impl OutlineItem for InversiveDistanceRegulator {
fn outline_item(self: Rc<Self>, element_key: ElementKey) -> View {
let state = use_context::<AppState>();
let other_subject = if self.subjects[0] == element_key {
self.subjects[1]
} else {
self.subjects[0]
};
let other_subject_label = state.assembly.elements.with(
|elts| elts[other_subject].label.clone()
);
view! {
li(class="regulator") {
div(class="regulator-label") { (other_subject_label) }
div(class="regulator-type") { "Inversive distance" }
RegulatorInput(regulator=self)
div(class="status")
}
}
}
}
impl OutlineItem for HalfCurvatureRegulator {
fn outline_item(self: Rc<Self>, _element_key: ElementKey) -> View {
view! {
li(class="regulator") {
div(class="regulator-label") // for spacing
div(class="regulator-type") { "Half-curvature" }
RegulatorInput(regulator=self)
div(class="status")
}
}
}
}
// a list item that shows a regulator in an outline view of an element
#[component(inline_props)]
fn RegulatorOutlineItem(regulator_key: RegulatorKey, element_key: ElementKey) -> View {
let state = use_context::<AppState>();
let assembly = &state.assembly;
let regulator = assembly.regulators.with(|regs| regs[regulator_key]);
let other_subject = if regulator.subjects.0 == element_key {
regulator.subjects.1
} else {
regulator.subjects.0
};
let other_subject_label = assembly.elements.with(|elts| elts[other_subject].label.clone());
view! {
li(class="regulator") {
div(class="regulator-label") { (other_subject_label) }
div(class="regulator-type") { "Inversive distance" }
RegulatorInput(regulator=regulator)
div(class="status")
}
}
let regulator = state.assembly.regulators.with(
|regs| regs[regulator_key].clone()
);
regulator.outline_item(element_key)
}
// a list item that shows an element in an outline view of an assembly
@ -117,7 +159,15 @@ fn ElementOutlineItem(key: ElementKey, element: assembly::Element) -> View {
};
let regulated = element.regulators.map(|regs| regs.len() > 0);
let regulator_list = element.regulators.map(
|regs| regs.clone().into_iter().collect()
move |elt_reg_keys| elt_reg_keys
.clone()
.into_iter()
.sorted_by_key(
|&reg_key| state.assembly.regulators.with(
|regs| regs[reg_key].subjects().len()
)
)
.collect()
);
let details_node = create_node_ref();
view! {