Compare commits

..

133 Commits

Author SHA1 Message Date
Aaron Fenyes
5bec0306ce Tidy up Rust .gitignore files 2024-08-21 13:04:56 -07:00
Aaron Fenyes
8cb73f88d0 Rust native benchmark: drop unused dependencies
Also, drop the commented-out beginnings of a `plotters-gtk4` version. I
can't use `plotters-gtk4` on my machine because it requires GTK 4.14 or
higher, and Ubuntu 22.04 is still at GTK 4.6.
2024-08-19 13:12:50 -07:00
Aaron Fenyes
eeb0f00534 Rust benchmark: write native version 2024-08-19 12:20:56 -07:00
Aaron Fenyes
8ce3e251d7 Drop unused dependency and use declaration 2024-08-13 14:00:02 -07:00
Aaron Fenyes
543f348cd8 Rust benchmark: drop old debug code 2024-08-13 13:50:58 -07:00
Aaron Fenyes
0abcb995b5 Rust benchmark: rename package 2024-08-13 13:40:33 -07:00
Aaron Fenyes
d864ab5abe Drop second attempt at static matrices
I couldn't get this one working, and the first attempt seems fine.
2024-08-13 13:34:26 -07:00
Aaron Fenyes
fb51e00503 Remove unnecessary type annotations
These annotations are only needed for statically sized matrices.
2024-08-13 13:14:54 -07:00
Aaron Fenyes
144bfb8faf Scala benchmark: use fullLinkJS output
The JavaScript produced by `fullLinkJS` is about twice as fast as the
code produced by `fastLinkJS`.
2024-08-10 21:30:36 -07:00
Aaron Fenyes
27ada6566b Scala benchmark: step rotation by multiplying
This makes the algorithm more consistent with the Rust benchmark.
2024-08-10 19:11:55 -07:00
Aaron Fenyes
3665351e12 Scala benchmark: adjust interface code to match Rust 2024-08-09 15:19:48 -07:00
Aaron Fenyes
14fb6d01f0 Rust benchmark: tidy up a bit 2024-08-09 15:18:13 -07:00
Aaron Fenyes
0b3fe689cd Rust trial: write benchmark 2024-08-09 15:12:44 -07:00
Aaron Fenyes
6b0fad89dc Scala trial: write benchmark 2024-08-08 00:26:26 -07:00
Aaron Fenyes
0bd025dd14 Scala trial: clean up Laminar interface
Also, drop unused Breeze code in favor of Slash.
2024-08-07 13:40:09 -07:00
Aaron Fenyes
4f30f31686 Rust trial: Make git ignore Cargo.lock 2024-08-07 13:36:48 -07:00
Aaron Fenyes
c376fcdad8 Hack together a "Hello, world" in Scala with Laminar 2024-08-07 13:32:12 -07:00
Aaron Fenyes
244f222eb0 Move the engine into a module 2024-07-29 13:14:32 -07:00
Aaron Fenyes
42bdfabd91 Rust trial: port interface to Sycamore
Now we have a reactive web app written entirely in Rust. The Trunk build
tool compiles it to WebAssembly and generates a little JavaScript glue.
2024-07-29 05:30:16 -07:00
Aaron Fenyes
12abef4076 Trial a Rust engine powering a Civet interface
Write a basic web app with a Rust engine, compiled to WebAssembly,
powering a Civet interface. Do linear algebra in the engine using
the `nalgebra` crate.
2024-07-28 21:10:04 -07:00
Aaron Fenyes
d7dbee4c05 Stow algebraic engine prototype
We're using the Gram matrix engine for the next stage of development,
so the algebraic engine shouldn't be at the top level anymore.
2024-07-28 20:50:04 -07:00
Aaron Fenyes
9d69a900e2 Irisawa hexlet: use Abe's terminology in comments
Abe uses the names "sun" and "moon" for what Wikipedia calls the nucleus
spheres.
2024-07-18 03:39:41 -07:00
Aaron Fenyes
8a77cd7484 Irisawa hexlet: drop unviable approach
The approach in the deleted file can't work, because the "sun" and
"moon" spheres can't be placed arbitrarily.
2024-07-18 03:21:46 -07:00
Aaron Fenyes
a26f1e3927 Add Irisawa hexlet example
Hat tip Romy, who sent me the article on sangaku that led me to this
problem.
2024-07-18 03:16:57 -07:00
Aaron Fenyes
19a4d49497 Clean up example formatting 2024-07-18 01:48:05 -07:00
Aaron Fenyes
71c10adbdd Overlapping pyramids: drop outdated comment 2024-07-18 01:12:49 -07:00
Aaron Fenyes
33c09917d0 Correct scope of guess constants 2024-07-18 01:05:13 -07:00
Aaron Fenyes
b24dcc9af8 Report success correctly when step limit is reached 2024-07-18 01:04:40 -07:00
Aaron Fenyes
b040bbb7fe Drop old code from examples 2024-07-18 00:50:48 -07:00
Aaron Fenyes
9007c8bc7c Circles in triangle: jiggle the guess 2024-07-18 00:49:09 -07:00
Aaron Fenyes
a7f9545a37 Circles in triangle: correct frozen variables
Since the self-product of the point at infinity is left unspecified, the
first three components can vary without violating any constraints. To
keep the point at infinity where it's supposed to be, we freeze all of
its components.
2024-07-18 00:43:00 -07:00
Aaron Fenyes
3764fde2f6 Clean up formatting of notes 2024-07-18 00:27:10 -07:00
Aaron Fenyes
24dae6807b Clarify notes on tangency 2024-07-18 00:16:23 -07:00
Aaron Fenyes
74c7f64b0c Correct sign of normal in plane utility
Clarify the relevant notes too.
2024-07-18 00:03:12 -07:00
Aaron Fenyes
d0340c0b65 Correct point utility again
The balance between the light cone basis vectors was wrong, throwing the
point's coordinates off by a factor of two.
2024-07-17 23:37:28 -07:00
Aaron Fenyes
69a704d414 Use notes' sign convention for light cone basis 2024-07-17 23:07:34 -07:00
Aaron Fenyes
01f44324c1 Tetrahedron radius ratio: find radius ratio 2024-07-17 22:45:17 -07:00
Aaron Fenyes
96ffc59642 Tetrahedron radius ratio: tweak guess
Jiggle the vertex guesses. Put the circumscribed sphere guess on-shell.
2024-07-17 19:01:34 -07:00
Aaron Fenyes
a02b76544a Tetrahedron radius ratio: add circumscribed sphere 2024-07-17 18:55:36 -07:00
Aaron Fenyes
6e719f9943 Tetrahedron radius ratio: correct vertex guesses 2024-07-17 18:27:58 -07:00
Aaron Fenyes
d51d43f481 Correct point utility 2024-07-17 18:27:22 -07:00
Aaron Fenyes
6d233b5ee9 Tetrahedron radius ratio: correct signs 2024-07-17 18:08:36 -07:00
Aaron Fenyes
5abd4ca6e1 Revert "Give spheres positive radii in examples"
This reverts commit 4728959ae0, which
actually gave the spheres negative radii! I got confused by the sign
convention differences between the notes and the engine.
2024-07-17 17:49:43 -07:00
Aaron Fenyes
ea640f4861 Start tetrahedron radius ratio example
Add the vertices of the tetrahedron to the `sphere-in-tetrahedron`
example.
2024-07-17 17:33:32 -07:00
Aaron Fenyes
4728959ae0 Give spheres positive radii in examples
This changes the meaning of `indep_val` in the overlapping pyramids
example, so we adjust `indep_val` to get a nice-looking construction.
2024-07-17 17:22:33 -07:00
Aaron Fenyes
2038103d80 Write examples directly in light cone basis 2024-07-17 15:37:14 -07:00
Aaron Fenyes
bde42ebac0 Switch engine to light cone basis 2024-07-17 14:30:43 -07:00
Aaron Fenyes
e6cf08a9b3 Make tetrahedron faces planar 2024-07-15 23:54:59 -07:00
Aaron Fenyes
7c77481f5e Don't constrain self-product of frozen vector 2024-07-15 23:39:05 -07:00
Aaron Fenyes
1ce609836b Implement frozen variables 2024-07-15 22:11:54 -07:00
Aaron Fenyes
b185fd4b83 Switch to backtracking Newton's method in Optim
This performs much better than the trust region Newton's method for the
actual `circles-in-triangle` problem. (The trust region method performs
better for the simplified problem produced by the conversion bug.)
2024-07-15 15:52:38 -07:00
Aaron Fenyes
94e0d321d5 Switch back to BigFloat precision in examples 2024-07-15 14:31:30 -07:00
Aaron Fenyes
53d8c38047 Preserve explicit zeros in Gram matrix conversion
In previous commits, the `circles-in-triangle` example converged much
more slowly in BigFloat precision than in Float64 precision. This
turned out to be a sign of a bug in the Float64 computation: converting
the Gram matrix using `Float64.()` dropped the explicit zeros, removing
many constraints and making the problem much easier to solve. This
commit corrects the Gram matrix conversion. The Float64 search now
solves the same problem as the BigFloat search, with comparable
performance.
2024-07-15 14:08:57 -07:00
Aaron Fenyes
7b3efbc385 Clean up backtracking gradient descent code
Drop experimental singularity handling strategies. Reduce the default
tolerance to within 64-bit floating point precision. Report success.
2024-07-15 13:15:15 -07:00
Aaron Fenyes
25b09ebf92 Sketch backtracking Newton's method
This code is a mess, but I'm committing it to record a working state
before I start trying to clean up.
2024-07-15 11:32:04 -07:00
Aaron Fenyes
3910b9f740 Use Newton's method for polishing 2024-07-11 13:43:52 -07:00
Aaron Fenyes
d538cbf716 Correct improvement threshold by using unit step
Our formula for the improvement theshold works when the step size is
an absolute distance. However, in commit `4d5ea06`, the step size was
measured relative to the current gradient instead. This commit scales
the base step to unit length, so now the step size really is an absolute
distance.
2024-07-10 23:31:44 -07:00
Aaron Fenyes
4d5ea062a3 Record gradient and last line search in history 2024-07-09 15:00:13 -07:00
Aaron Fenyes
5652719642 Require triangle sides to be planar 2024-07-09 14:10:23 -07:00
Aaron Fenyes
f84d475580 Visualize neighborhoods of global minima 2024-07-09 14:01:30 -07:00
Aaron Fenyes
77bc124170 Change loss function to match gradient 2024-07-09 14:00:24 -07:00
Aaron Fenyes
023759a267 Start "circles in triangle" from a very close guess 2024-07-08 14:21:10 -07:00
Aaron Fenyes
610fc451f0 Track slope in gradient descent history 2024-07-08 14:19:25 -07:00
Aaron Fenyes
93dd05c317 Add required package to "sphere in tetrahedron" example 2024-07-08 14:19:05 -07:00
Aaron Fenyes
9efa99e8be Test gradient descent for circles in triangle 2024-07-08 12:56:28 -07:00
Aaron Fenyes
828498b3de Add sphere and plane utilities to engine 2024-07-08 12:56:14 -07:00
Aaron Fenyes
736ac50b07 Test gradient descent for sphere in tetrahedron 2024-07-07 17:58:55 -07:00
Aaron Fenyes
ea354b6c2b Randomize guess in gradient descent test
Randomly perturb the pre-solved part of the guess, and randomly choose
the unsolved part.
2024-07-07 17:56:12 -07:00
Aaron Fenyes
d39244d308 Host Ganja.js locally 2024-07-06 21:35:09 -07:00
Aaron Fenyes
7e94fef19e Improve random vector generator 2024-07-06 21:32:43 -07:00
Aaron Fenyes
abc53b4705 Sketch random vector generator
This needs to be rewritten: it can fail at generating spacelike vectors.
2024-07-02 17:16:31 -07:00
Aaron Fenyes
17fefff61e Name gradient descent test more specifically 2024-07-02 17:16:19 -07:00
Aaron Fenyes
133519cacb Encapsulate gradient descent code
The completed gram matrix from this commit matches the one from commit
e7dde58 to six decimal places.
2024-07-02 15:02:59 -07:00
Aaron Fenyes
e7dde5800c Do gradient descent entirely in BigFloat
The previos version accidentally returned steps in Float64.
2024-07-02 12:35:12 -07:00
Aaron Fenyes
242d630cc6 Get Ganja.js to display planes 2024-06-27 21:49:53 -07:00
Aaron Fenyes
8eb1ebb8d2 Merge branch 'ganja' into gram 2024-06-26 15:57:07 -07:00
Aaron Fenyes
05a824834d Let visibility controls scroll 2024-06-26 15:56:51 -07:00
Aaron Fenyes
a113f33635 Merge branch 'ganja' into gram
Get visibility controls.
2024-06-26 15:52:20 -07:00
Aaron Fenyes
5ea32ac53c Streamline visibility controls 2024-06-26 15:51:57 -07:00
Aaron Fenyes
3eb4fc6c91 Add element visibility controls 2024-06-26 15:24:31 -07:00
Aaron Fenyes
7aaf134a36 Size the viewer window automatically 2024-06-26 13:15:54 -07:00
Aaron Fenyes
c933e07312 Switch to Ganja.js basis ordering 2024-06-26 11:39:34 -07:00
Aaron Fenyes
2b6c4f4720 Avoid naming conflict with identity transformation 2024-06-26 11:28:47 -07:00
Aaron Fenyes
5aadfecf6c Merge branch 'ganja' into gram
Visualize low-rank factorization results.
2024-06-26 11:12:24 -07:00
Aaron Fenyes
4a28a47520 Update namespace of AbstractAlgebra.Rationals 2024-06-26 01:06:27 -07:00
Aaron Fenyes
a3b1f4920c Build construction viewer module 2024-06-26 00:41:21 -07:00
Aaron Fenyes
665cb30ce0 Correct indentation of CSS 2024-06-25 23:31:00 -07:00
Aaron Fenyes
182b5bb9f6 Generate palette automatically 2024-06-25 17:57:16 -07:00
Aaron Fenyes
b7b5b9386b Load elements from Julia into Ganja.js 2024-06-25 16:30:19 -07:00
Aaron Fenyes
06a9dda5bb Play with reflections
Try configuration of five tangent spheres.
2024-06-25 13:40:40 -07:00
Aaron Fenyes
69a9baa8ee Add live updates to Ganja.js visualization 2024-06-25 03:11:50 -07:00
Aaron Fenyes
3b10c95d5f Clean up examples
Declare JavaScript variables. Revise Julia comments to match new code.
2024-06-25 02:58:39 -07:00
Aaron Fenyes
3c34481519 Get familiar with Ganja.js inline syntax 2024-06-25 01:54:01 -07:00
Aaron Fenyes
d1ce91d2aa Get a Ganja.js visualization running in Blink 2024-06-24 19:37:57 -07:00
Aaron Fenyes
58a5c38e62 Try numerical low-rank factorization
The best technique I've found so far is the homemade gradient descent
routine in `descent-test.jl`.
2024-05-30 00:36:03 -07:00
Aaron Fenyes
ef33b8ee10 Correct signature 2024-03-01 13:26:20 -05:00
Aaron Fenyes
717e5a6200 Extend Gram matrix automatically
The signature of the Minkowski form on the subspace spanned by the Gram
matrix should tell us what the big Gram matrix has to look like
2024-02-21 03:00:06 -05:00
Aaron Fenyes
16826cf07c Try out the Gram matrix approach 2024-02-20 22:35:24 -05:00
Aaron Fenyes
3170a933e4 Clean up example of three mutually tangent spheres 2024-02-15 17:16:37 -08:00
Aaron Fenyes
f2000e5731 Test different sign patterns for cosines
It seems like there are real solutions if and only if the product of the
cosines is positive.
2024-02-15 16:25:09 -08:00
Aaron Fenyes
ba365174d3 Find real solutions for three mutually tangent spheres
I'm not sure why the solver wasn't working before. It might've been just
an unlucky random number draw.
2024-02-15 16:16:06 -08:00
Aaron Fenyes
ae5db0f9ea Make results reproducible 2024-02-15 16:00:46 -08:00
Aaron Fenyes
8d8bc9162c Store elements in arrays to keep order stable
This seems to restore reproducibility.
2024-02-15 15:42:26 -08:00
Aaron Fenyes
291d5c8ff6 Study mutually tangent spheres with two fixed 2024-02-15 13:28:01 -08:00
Aaron Fenyes
e41bcc7e13 Explore the performance wall
Three points on two spheres is too much.
2024-02-13 04:02:14 -05:00
Aaron Fenyes
31d5e7e864 Play with two points on two spheres
Guess conditions that make the scaling constraint impossible to satisfy.
2024-02-12 22:48:16 -05:00
Aaron Fenyes
a450f701fb Try displaying a chain of spheres
For three mutually tangent spheres, I couldn't find real solutions.
2024-02-12 21:14:07 -05:00
Aaron Fenyes
6cf07dc6a1 Evaluate and display elements 2024-02-12 20:34:12 -05:00
Aaron Fenyes
1f173708eb Move random cut routine into engine 2024-02-10 17:39:26 -05:00
Aaron Fenyes
6f18d4efcc Test lots of uniformly distributed hyperplanes 2024-02-10 15:10:48 -05:00
Aaron Fenyes
621c4c5776 Try uniformly distributed hyperplane orientations
Unit normals are uniformly distributed over the sphere.
2024-02-10 15:02:26 -05:00
Aaron Fenyes
b3b7c2026d Separate the algebraic and numerical parts of the engine 2024-02-10 14:50:50 -05:00
Aaron Fenyes
af1d31f6e6 Test a scale constraint
In all but a few cases (for example, a single point on a plane), we
should be able to us the radius-coradius boost symmetry to make the
average co-radius—representing the "overall scale"—roughly one.
2024-02-10 14:21:52 -05:00
Aaron Fenyes
8e33987f59 Systematically try out different cut planes 2024-02-10 13:46:01 -05:00
Aaron Fenyes
06872a04af Say how many sample solutions we found 2024-02-10 01:06:06 -05:00
Aaron Fenyes
becefe0c47 Try switching to compiled system 2024-02-10 00:59:50 -05:00
Aaron Fenyes
34358a8728 Find witnesses on random rational hyperplanes
Choose hyperplanes that go through the trivial solution.
2024-02-09 23:44:10 -05:00
Aaron Fenyes
95c0ff14b2 Show explicitly that all coefficients are 1 in first cut equation 2024-02-09 17:09:43 -05:00
Aaron Fenyes
f97090c997 Try a cut that goes through the trivial solution
The previous cut was supposed to do this, but I was missing some parentheses.
2024-02-08 01:58:12 -05:00
Aaron Fenyes
45aaaafc8f Seek sample solutions by cutting with a hyperplane
The example hyperplane yields a single solution, with multiplicity six. You can
find it analytically by hand, and homotopy continuation finds it numerically.
2024-02-08 01:53:55 -05:00
Aaron Fenyes
43cbf8a3a0 Add relations to center and orient the construction 2024-02-05 00:10:13 -05:00
Aaron Fenyes
21f09c4a4d Switch element abbreviation from "elem" to "elt" 2024-02-04 16:08:13 -05:00
Aaron Fenyes
a3f3f6a31b Order spheres before points within each coordinate block
In the cases I've tried so far, this leads to substantially smaller
Gröbner bases.
2024-02-01 16:13:22 -05:00
Aaron Fenyes
65d23fb667 Use module names as filenames
You're right: this naming convention seems to be standard for Julia
modules now.
2024-01-30 02:49:33 -05:00
Aaron Fenyes
4e02ee16fc Find dimension of solution variety 2024-01-30 02:45:14 -05:00
Aaron Fenyes
6349f298ae Extend AbstractAlgebra ideals to rational coefficients
The extension should also let us work over finite fields of prime order,
although we don't need to do that.
2024-01-29 19:11:21 -05:00
Aaron Fenyes
0731c7aac1 Correct relation equations 2024-01-29 12:41:07 -05:00
Aaron Fenyes
59a527af43 Correct Minkowski product; build chain of three spheres 2024-01-29 12:28:57 -05:00
Aaron Fenyes
c29000d912 Write a simple solver for the hitting set problem
I think we need this to find the dimension of the solution variety.
2024-01-28 01:34:13 -05:00
Aaron Fenyes
86dbd9ea45 Order variables by coordinate and then element
In other words, order coordinates like
  (rₛ₁, rₛ₂, sₛ₁, sₛ₂, xₛ₁, xₛ₂, xₚ₃, yₛ₁, yₛ₂, yₚ₃, zₛ₁, zₛ₂, zₚ₃)
instead of like
  (rₛ₁, sₛ₁, xₛ₁, yₛ₁, zₛ₁, rₛ₂, sₛ₂, xₛ₂, yₛ₂, zₛ₂, xₚ₃, yₚ₃, zₚ₃).

In the test cases, this really cuts down the size of the Gröbner basis.
2024-01-27 14:21:03 -05:00
Aaron Fenyes
463a3b21e1 Realize relations as equations 2024-01-27 12:28:29 -05:00
Aaron Fenyes
4d5aa3b327 Realize geometric elements as symbolic vectors 2024-01-26 11:14:32 -05:00
Aaron Fenyes
b864cf7866 Start drafting engine prototype 2024-01-24 11:16:24 -05:00
53 changed files with 1122 additions and 2898 deletions

View File

@ -17,51 +17,3 @@ Note that currently this is just the barest beginnings of the project, more of a
* Able to run in browser (so implemented in WASM-compatible language)
* Produce scalable graphics of 3D diagrams, and maybe STL files (or other fabricatable file format) as well.
## Prototype
The latest prototype is in the folder `app-proto`. It includes both a user interface and a numerical constraint-solving engine.
### Install the prerequisites
1. Install [`rustup`](https://rust-lang.github.io/rustup/): the officially recommended Rust toolchain manager
* It's available on Ubuntu as a [Snap](https://snapcraft.io/rustup)
2. Call `rustup default stable` to "download the latest stable release of Rust and set it as your default toolchain"
* If you forget, the `rustup` [help system](https://github.com/rust-lang/rustup/blob/d9b3601c3feb2e88cf3f8ca4f7ab4fdad71441fd/src/errors.rs#L109-L112) will remind you
3. Call `rustup target add wasm32-unknown-unknown` to add the [most generic 32-bit WebAssembly target](https://doc.rust-lang.org/nightly/rustc/platform-support/wasm32-unknown-unknown.html)
4. Call `cargo install wasm-pack` to install the [WebAssembly toolchain](https://rustwasm.github.io/docs/wasm-pack/)
5. Call `cargo install trunk` to install the [Trunk](https://trunkrs.dev/) web-build tool
6. Add the `.cargo/bin` folder in your home directory to your executable search path
* This lets you call Trunk, and other tools installed by Cargo, without specifying their paths
* On POSIX systems, the search path is stored in the `PATH` environment variable
### Play with the prototype
1. Go into the `app-proto` folder
2. Call `trunk serve --release` to build and serve the prototype
* *The crates the prototype depends on will be downloaded and served automatically*
* *For a faster build, at the expense of a much slower prototype, you can call `trunk serve` without the `--release` flag*
3. In a web browser, visit one of the URLs listed under the message `INFO 📡 server listening at:`
* *Touching any file in the `app-proto` folder will make Trunk rebuild and live-reload the prototype*
4. Press *ctrl+C* in the shell where Trunk is running to stop serving the prototype
### Run the engine on some example problems
1. Go into the `app-proto` folder
2. Call `./run-examples`
* *For each example problem, the engine will print the value of the loss function at each optimization step*
* *The first example that prints is the same as the Irisawa hexlet example from the Julia version of the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then*
```julia
include("irisawa-hexlet.jl")
for (step, scaled_loss) in enumerate(history_alt.scaled_loss)
println(rpad(step-1, 4), " | ", scaled_loss)
end
```
*you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show*
### Run the automated tests
1. Go into the `app-proto` folder
2. Call `cargo test`

View File

@ -1,4 +0,0 @@
target
dist
profiling
Cargo.lock

View File

@ -1,25 +0,0 @@
use dyna3::engine::{Q, irisawa::realize_irisawa_hexlet};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let (config, _, success, history) = realize_irisawa_hexlet(SCALED_TOL);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
if success {
println!("\nChain diameters:");
println!(" {} sun (given)", 1.0 / config[(3, 3)]);
for k in 4..9 {
println!(" {} sun", 1.0 / config[(3, k)]);
}
}
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View File

@ -1,38 +0,0 @@
use nalgebra::DMatrix;
use dyna3::engine::{Q, point, realize_gram, sphere, PartialMatrix};
fn main() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..2 {
for k in j..2 {
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
let frozen = [(3, 0)];
println!();
let (config, _, success, history) = realize_gram(
&gram, guess, &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
print!("Configuration:{}", config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View File

@ -1,40 +0,0 @@
use nalgebra::DMatrix;
use dyna3::engine::{Q, realize_gram, sphere, PartialMatrix};
fn main() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..3 {
for k in j..3 {
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
gram_to_be
};
let guess = {
let a: f64 = 0.75_f64.sqrt();
DMatrix::from_columns(&[
sphere(1.0, 0.0, 0.0, 1.0),
sphere(-0.5, a, 0.0, 1.0),
sphere(-0.5, -a, 0.0, 1.0)
])
};
println!();
let (config, _, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View File

@ -1,11 +0,0 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<title>dyna3</title>
<link data-trunk rel="css" href="main.css"/>
<link href="https://fonts.bunny.net/css?family=fira-sans:ital,wght@0,400;1,400&display=swap" rel="stylesheet">
<link href="https://fonts.bunny.net/css?family=noto-emoji:wght@400&text=%f0%9f%94%97%e2%9a%a0&display=swap" rel="stylesheet">
</head>
<body></body>
</html>

View File

@ -1,175 +0,0 @@
:root {
--text: #fcfcfc; /* almost white */
--text-bright: white;
--text-invalid: #f58fc2; /* bright pink */
--border: #555; /* light gray */
--border-focus: #aaa; /* bright gray */
--border-invalid: #70495c; /* dusky pink */
--selection-highlight: #444; /* medium gray */
--page-background: #222; /* dark gray */
--display-background: #020202; /* almost black */
}
body {
margin: 0px;
color: var(--text);
background-color: var(--page-background);
font-family: 'Fira Sans', sans-serif;
}
/* sidebar */
#sidebar {
display: flex;
flex-direction: column;
float: left;
width: 450px;
height: 100vh;
margin: 0px;
padding: 0px;
border-width: 0px 1px 0px 0px;
border-style: solid;
border-color: var(--border);
}
/* add-remove */
#add-remove {
display: flex;
gap: 8px;
margin: 8px;
}
#add-remove > button {
width: 32px;
height: 32px;
font-size: large;
}
/* KLUDGE */
/*
for convenience, we're using emoji as temporary icons for some buttons. these
buttons need to be displayed in an emoji font
*/
#add-remove > button.emoji {
font-family: 'Noto Emoji', sans-serif;
}
/* outline */
#outline {
flex-grow: 1;
margin: 0px;
padding: 0px;
overflow-y: scroll;
}
li {
user-select: none;
}
summary {
display: flex;
}
summary.selected {
color: var(--text-bright);
background-color: var(--selection-highlight);
}
summary > div, .constraint {
padding-top: 4px;
padding-bottom: 4px;
}
.element, .constraint {
display: flex;
flex-grow: 1;
padding-left: 8px;
padding-right: 8px;
}
.element-switch {
width: 18px;
padding-left: 2px;
text-align: center;
}
details:has(li) .element-switch::after {
content: '▸';
}
details[open]:has(li) .element-switch::after {
content: '▾';
}
.element-label {
flex-grow: 1;
}
.constraint-label {
flex-grow: 1;
}
.element-representation {
display: flex;
}
.element-representation > div {
padding: 2px 0px 0px 0px;
font-size: 10pt;
font-variant-numeric: tabular-nums;
text-align: right;
width: 56px;
}
.constraint {
font-style: italic;
}
.constraint.invalid {
color: var(--text-invalid);
}
.constraint > input[type=checkbox] {
margin: 0px 8px 0px 0px;
}
.constraint > input[type=text] {
color: inherit;
background-color: inherit;
border: 1px solid var(--border);
border-radius: 2px;
}
.constraint.invalid > input[type=text] {
border-color: var(--border-invalid);
}
.status {
width: 20px;
padding-left: 4px;
text-align: center;
font-family: 'Noto Emoji';
font-style: normal;
}
.invalid > .status::after, details:has(.invalid):not([open]) .status::after {
content: '⚠';
color: var(--text-invalid);
}
/* display */
canvas {
float: left;
margin-left: 20px;
margin-top: 20px;
background-color: var(--display-background);
border: 1px solid var(--border);
border-radius: 16px;
}
canvas:focus {
border-color: var(--border-focus);
}

View File

@ -1,11 +0,0 @@
#!/bin/sh
# run all Cargo examples, as described here:
#
# Karol Kuczmarski. "Add examples to your Rust libraries"
# http://xion.io/post/code/rust-examples.html
#
cargo run --example irisawa-hexlet
cargo run --example three-spheres
cargo run --example point-on-sphere

View File

@ -1,240 +0,0 @@
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue};
use crate::{engine, AppState, assembly::{Assembly, Constraint, Element}};
/* DEBUG */
// load an example assembly for testing. this code will be removed once we've
// built a more formal test assembly system
fn load_gen_assemb(assembly: &Assembly) {
let _ = assembly.try_insert_element(
Element::new(
String::from("gemini_a"),
String::from("Castor"),
[1.00_f32, 0.25_f32, 0.00_f32],
engine::sphere(0.5, 0.5, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("gemini_b"),
String::from("Pollux"),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere(-0.5, -0.5, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("ursa_major"),
String::from("Ursa major"),
[0.25_f32, 0.00_f32, 1.00_f32],
engine::sphere(-0.5, 0.5, 0.0, 0.75)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("ursa_minor"),
String::from("Ursa minor"),
[0.25_f32, 1.00_f32, 0.00_f32],
engine::sphere(0.5, -0.5, 0.0, 0.5)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("moon_deimos"),
String::from("Deimos"),
[0.75_f32, 0.75_f32, 0.00_f32],
engine::sphere(0.0, 0.15, 1.0, 0.25)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("moon_phobos"),
String::from("Phobos"),
[0.00_f32, 0.75_f32, 0.50_f32],
engine::sphere(0.0, -0.15, -1.0, 0.25)
)
);
}
/* DEBUG */
// load an example assembly for testing. this code will be removed once we've
// built a more formal test assembly system
fn load_low_curv_assemb(assembly: &Assembly) {
let a = 0.75_f64.sqrt();
let _ = assembly.try_insert_element(
Element::new(
"central".to_string(),
"Central".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"assemb_plane".to_string(),
"Assembly plane".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"side1".to_string(),
"Side 1".to_string(),
[1.00_f32, 0.00_f32, 0.25_f32],
engine::sphere_with_offset(1.0, 0.0, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"side2".to_string(),
"Side 2".to_string(),
[0.25_f32, 1.00_f32, 0.00_f32],
engine::sphere_with_offset(-0.5, a, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"side3".to_string(),
"Side 3".to_string(),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere_with_offset(-0.5, -a, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"corner1".to_string(),
"Corner 1".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"corner2".to_string(),
"Corner 2".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("corner3"),
String::from("Corner 3"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0)
)
);
}
#[component]
pub fn AddRemove() -> View {
/* DEBUG */
let assembly_name = create_signal("general".to_string());
create_effect(move || {
// get name of chosen assembly
let name = assembly_name.get_clone();
console::log_1(
&JsValue::from(format!("Showing assembly \"{}\"", name.clone()))
);
batch(|| {
let state = use_context::<AppState>();
let assembly = &state.assembly;
// clear state
assembly.elements.update(|elts| elts.clear());
assembly.elements_by_id.update(|elts_by_id| elts_by_id.clear());
state.selection.update(|sel| sel.clear());
// load assembly
match name.as_str() {
"general" => load_gen_assemb(assembly),
"low-curv" => load_low_curv_assemb(assembly),
_ => ()
};
});
});
view! {
div(id="add-remove") {
button(
on:click=|_| {
let state = use_context::<AppState>();
state.assembly.insert_new_element();
/* DEBUG */
// print updated list of elements by identifier
console::log_1(&JsValue::from("elements by identifier:"));
for (id, key) in state.assembly.elements_by_id.get_clone().iter() {
console::log_3(
&JsValue::from(" "),
&JsValue::from(id),
&JsValue::from(*key)
);
}
}
) { "+" }
button(
class="emoji", /* KLUDGE */ // for convenience, we're using an emoji as a temporary icon for this button
disabled={
let state = use_context::<AppState>();
state.selection.with(|sel| sel.len() != 2)
},
on:click=|_| {
let state = use_context::<AppState>();
let subjects = state.selection.with(
|sel| {
let subject_vec: Vec<_> = sel.into_iter().collect();
(subject_vec[0].clone(), subject_vec[1].clone())
}
);
let lorentz_prod = create_signal(0.0);
let lorentz_prod_valid = create_signal(false);
let active = create_signal(true);
state.assembly.insert_constraint(Constraint {
subjects: subjects,
lorentz_prod: lorentz_prod,
lorentz_prod_text: create_signal(String::new()),
lorentz_prod_valid: lorentz_prod_valid,
active: active,
});
state.selection.update(|sel| sel.clear());
/* DEBUG */
// print updated constraint list
console::log_1(&JsValue::from("Constraints:"));
state.assembly.constraints.with(|csts| {
for (_, cst) in csts.into_iter() {
console::log_5(
&JsValue::from(" "),
&JsValue::from(cst.subjects.0),
&JsValue::from(cst.subjects.1),
&JsValue::from(":"),
&JsValue::from(cst.lorentz_prod.get_untracked())
);
}
});
// update the realization when the constraint becomes active
// and valid, or is edited while active and valid
create_effect(move || {
console::log_1(&JsValue::from(
format!("Constraint ({}, {}) updated", subjects.0, subjects.1)
));
lorentz_prod.track();
if active.get() && lorentz_prod_valid.get() {
state.assembly.realize();
}
});
}
) { "🔗" }
select(bind:value=assembly_name) { /* DEBUG */ // example assembly chooser
option(value="general") { "General" }
option(value="low-curv") { "Low-curvature" }
option(value="empty") { "Empty" }
}
}
}
}

View File

@ -1,393 +0,0 @@
use nalgebra::{DMatrix, DVector, DVectorView, Vector3};
use rustc_hash::FxHashMap;
use slab::Slab;
use std::{collections::BTreeSet, sync::atomic::{AtomicU64, Ordering}};
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
use crate::engine::{realize_gram, ConfigSubspace, PartialMatrix, Q};
// the types of the keys we use to access an assembly's elements and constraints
pub type ElementKey = usize;
pub type ConstraintKey = usize;
pub type ElementColor = [f32; 3];
/* KLUDGE */
// we should reconsider this design when we build a system for switching between
// assemblies. at that point, we might want to switch to hierarchical keys,
// where each each element has a key that identifies it within its assembly and
// each assembly has a key that identifies it within the sesssion
static NEXT_ELEMENT_SERIAL: AtomicU64 = AtomicU64::new(0);
#[derive(Clone, PartialEq)]
pub struct Element {
pub id: String,
pub label: String,
pub color: ElementColor,
pub representation: Signal<DVector<f64>>,
pub constraints: Signal<BTreeSet<ConstraintKey>>,
// a serial number, assigned by `Element::new`, that uniquely identifies
// each element
pub serial: u64,
// the configuration matrix column index that was assigned to this element
// last time the assembly was realized, or `None` if the element has never
// been through a realization
column_index: Option<usize>
}
impl Element {
pub fn new(
id: String,
label: String,
color: ElementColor,
representation: DVector<f64>
) -> Element {
// take the next serial number, panicking if that was the last number we
// had left. the technique we use to panic on overflow is taken from
// _Rust Atomics and Locks_, by Mara Bos
//
// https://marabos.nl/atomics/atomics.html#example-handle-overflow
//
let serial = NEXT_ELEMENT_SERIAL.fetch_update(
Ordering::SeqCst, Ordering::SeqCst,
|serial| serial.checked_add(1)
).expect("Out of serial numbers for elements");
Element {
id: id,
label: label,
color: color,
representation: create_signal(representation),
constraints: create_signal(BTreeSet::default()),
serial: serial,
column_index: None
}
}
// the smallest positive depth, represented as a multiple of `dir`, where
// the line generated by `dir` hits the element (which is assumed to be a
// sphere). returns `None` if the line misses the sphere. this function
// should be kept synchronized with `sphere_cast` in `inversive.frag`, which
// does essentially the same thing on the GPU side
pub fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>) -> Option<f64> {
// if `a/b` is less than this threshold, we approximate
// `a*u^2 + b*u + c` by the linear function `b*u + c`
const DEG_THRESHOLD: f64 = 1e-9;
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
let a = -rep[3] * dir.norm_squared();
let b = rep.rows_range(..3).dot(&dir);
let c = -rep[4];
let adjust = 4.0*a*c/(b*b);
if adjust < 1.0 {
// as long as `b` is non-zero, the linear approximation of
//
// a*u^2 + b*u + c
//
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of
// the quadratic adjacent to `u_lin` is stored in `lin_root`. if
// both roots have the same sign, `lin_root` will be the one closer
// to `u = 0`
let square_rect_ratio = 1.0 + (1.0 - adjust).sqrt();
let lin_root = -(2.0*c)/b / square_rect_ratio;
if a.abs() > DEG_THRESHOLD * b.abs() {
if lin_root > 0.0 {
Some(lin_root)
} else {
let other_root = -b/(2.*a) * square_rect_ratio;
(other_root > 0.0).then_some(other_root)
}
} else {
(lin_root > 0.0).then_some(lin_root)
}
} else {
// the line through `dir` misses the sphere completely
None
}
}
}
#[derive(Clone)]
pub struct Constraint {
pub subjects: (ElementKey, ElementKey),
pub lorentz_prod: Signal<f64>,
pub lorentz_prod_text: Signal<String>,
pub lorentz_prod_valid: Signal<bool>,
pub active: Signal<bool>
}
pub struct ElementMotion<'a> {
pub key: ElementKey,
pub velocity: DVectorView<'a, f64>
}
type AssemblyMotion<'a> = Vec<ElementMotion<'a>>;
// a complete, view-independent description of an assembly
#[derive(Clone)]
pub struct Assembly {
// elements and constraints
pub elements: Signal<Slab<Element>>,
pub constraints: Signal<Slab<Constraint>>,
// solution variety tangent space. the basis vectors are stored in
// configuration matrix format, ordered according to the elements' column
// indices. when you realize the assembly, every element that's present
// during realization gets a column index and is reflected in the tangent
// space. since the methods in this module never assign column indices
// without later realizing the assembly, we get the following invariant:
//
// (1) if an element has a column index, its tangent motions can be found
// in that column of the tangent space basis matrices
//
pub tangent: Signal<ConfigSubspace>,
// indexing
pub elements_by_id: Signal<FxHashMap<String, ElementKey>>
}
impl Assembly {
pub fn new() -> Assembly {
Assembly {
elements: create_signal(Slab::new()),
constraints: create_signal(Slab::new()),
tangent: create_signal(ConfigSubspace::zero(0)),
elements_by_id: create_signal(FxHashMap::default())
}
}
// --- inserting elements and constraints ---
// insert an element into the assembly without checking whether we already
// have an element with the same identifier. any element that does have the
// same identifier will get kicked out of the `elements_by_id` index
fn insert_element_unchecked(&self, elt: Element) {
let id = elt.id.clone();
let key = self.elements.update(|elts| elts.insert(elt));
self.elements_by_id.update(|elts_by_id| elts_by_id.insert(id, key));
}
pub fn try_insert_element(&self, elt: Element) -> bool {
let can_insert = self.elements_by_id.with_untracked(
|elts_by_id| !elts_by_id.contains_key(&elt.id)
);
if can_insert {
self.insert_element_unchecked(elt);
}
can_insert
}
pub fn insert_new_element(&self) {
// find the next unused identifier in the default sequence
let mut id_num = 1;
let mut id = format!("sphere{}", id_num);
while self.elements_by_id.with_untracked(
|elts_by_id| elts_by_id.contains_key(&id)
) {
id_num += 1;
id = format!("sphere{}", id_num);
}
// create and insert a new element
self.insert_element_unchecked(
Element::new(
id,
format!("Sphere {}", id_num),
[0.75_f32, 0.75_f32, 0.75_f32],
DVector::<f64>::from_column_slice(&[0.0, 0.0, 0.0, 0.5, -0.5])
)
);
}
pub fn insert_constraint(&self, constraint: Constraint) {
let subjects = constraint.subjects;
let key = self.constraints.update(|csts| csts.insert(constraint));
let subject_constraints = self.elements.with(
|elts| (elts[subjects.0].constraints, elts[subjects.1].constraints)
);
subject_constraints.0.update(|csts| csts.insert(key));
subject_constraints.1.update(|csts| csts.insert(key));
}
// --- realization ---
pub fn realize(&self) {
// index the elements
self.elements.update_silent(|elts| {
for (index, (_, elt)) in elts.into_iter().enumerate() {
elt.column_index = Some(index);
}
});
// set up the Gram matrix and the initial configuration matrix
let (gram, guess) = self.elements.with_untracked(|elts| {
// set up the off-diagonal part of the Gram matrix
let mut gram_to_be = PartialMatrix::new();
self.constraints.with_untracked(|csts| {
for (_, cst) in csts {
if cst.active.get_untracked() && cst.lorentz_prod_valid.get_untracked() {
let subjects = cst.subjects;
let row = elts[subjects.0].column_index.unwrap();
let col = elts[subjects.1].column_index.unwrap();
gram_to_be.push_sym(row, col, cst.lorentz_prod.get_untracked());
}
}
});
// set up the initial configuration matrix and the diagonal of the
// Gram matrix
let mut guess_to_be = DMatrix::<f64>::zeros(5, elts.len());
for (_, elt) in elts {
let index = elt.column_index.unwrap();
gram_to_be.push_sym(index, index, 1.0);
guess_to_be.set_column(index, &elt.representation.get_clone_untracked());
}
(gram_to_be, guess_to_be)
});
/* DEBUG */
// log the Gram matrix
console::log_1(&JsValue::from("Gram matrix:"));
gram.log_to_console();
/* DEBUG */
// log the initial configuration matrix
console::log_1(&JsValue::from("Old configuration:"));
for j in 0..guess.nrows() {
let mut row_str = String::new();
for k in 0..guess.ncols() {
row_str.push_str(format!(" {:>8.3}", guess[(j, k)]).as_str());
}
console::log_1(&JsValue::from(row_str));
}
// look for a configuration with the given Gram matrix
let (config, tangent, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
/* DEBUG */
// report the outcome of the search
console::log_1(&JsValue::from(
if success {
"Target accuracy achieved!"
} else {
"Failed to reach target accuracy"
}
));
console::log_2(&JsValue::from("Steps:"), &JsValue::from(history.scaled_loss.len() - 1));
console::log_2(&JsValue::from("Loss:"), &JsValue::from(*history.scaled_loss.last().unwrap()));
console::log_2(&JsValue::from("Tangent dimension:"), &JsValue::from(tangent.dim()));
if success {
// read out the solution
for (_, elt) in self.elements.get_clone_untracked() {
elt.representation.update(
|rep| rep.set_column(0, &config.column(elt.column_index.unwrap()))
);
}
// save the tangent space
self.tangent.set_silent(tangent);
}
}
// --- deformation ---
// project the given motion to the tangent space of the solution variety and
// move the assembly along it. the implementation is based on invariant (1)
// from above and the following additional invariant:
//
// (2) if an element is affected by a constraint, it has a column index
//
// we have this invariant because the assembly gets realized each time you
// add a constraint
pub fn deform(&self, motion: AssemblyMotion) {
/* KLUDGE */
// when the tangent space is zero, deformation won't do anything, but
// the attempt to deform should be registered in the UI. this console
// message will do for now
if self.tangent.with(|tan| tan.dim() <= 0 && tan.assembly_dim() > 0) {
console::log_1(&JsValue::from("The assembly is rigid"));
}
// give a column index to each moving element that doesn't have one yet.
// this temporarily breaks invariant (1), but the invariant will be
// restored when we realize the assembly at the end of the deformation.
// in the process, we find out how many matrix columns we'll need to
// hold the deformation
let realized_dim = self.tangent.with(|tan| tan.assembly_dim());
let motion_dim = self.elements.update_silent(|elts| {
let mut next_column_index = realized_dim;
for elt_motion in motion.iter() {
let moving_elt = &mut elts[elt_motion.key];
if moving_elt.column_index.is_none() {
moving_elt.column_index = Some(next_column_index);
next_column_index += 1;
}
}
next_column_index
});
// project the element motions onto the tangent space of the solution
// variety and sum them to get a deformation of the whole assembly. the
// matrix `motion_proj` that holds the deformation has extra columns for
// any moving elements that aren't reflected in the saved tangent space
const ELEMENT_DIM: usize = 5;
let mut motion_proj = DMatrix::zeros(ELEMENT_DIM, motion_dim);
for elt_motion in motion {
// we can unwrap the column index because we know that every moving
// element has one at this point
let column_index = self.elements.with_untracked(
|elts| elts[elt_motion.key].column_index.unwrap()
);
if column_index < realized_dim {
// this element had a column index when we started, so by
// invariant (1), it's reflected in the tangent space
let mut target_columns = motion_proj.columns_mut(0, realized_dim);
target_columns += self.tangent.with(
|tan| tan.proj(&elt_motion.velocity, column_index)
);
} else {
// this element didn't have a column index when we started, so
// by invariant (2), it's unconstrained
let mut target_column = motion_proj.column_mut(column_index);
target_column += elt_motion.velocity;
}
}
// step each element along the mass shell geodesic that matches its
// velocity in the deformation found above
/* KLUDGE */
// since our test assemblies only include spheres, we assume that every
// element is on the 1 mass shell
for (_, elt) in self.elements.get_clone_untracked() {
elt.representation.update_silent(|rep| {
match elt.column_index {
Some(column_index) => {
let rep_next = &*rep + motion_proj.column(column_index);
let normalizer = rep_next.dot(&(&*Q * &rep_next));
rep.set_column(0, &(rep_next / normalizer));
},
None => {
console::log_1(&JsValue::from(
format!("No velocity to unpack for fresh element \"{}\"", elt.id)
))
}
};
});
}
// bring the configuration back onto the solution variety. this also
// gets the elements' column indices and the saved tangent space back in
// sync
self.realize();
}
}

View File

@ -1,603 +0,0 @@
use core::array;
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
use sycamore::{prelude::*, motion::create_raf};
use web_sys::{
console,
window,
Element,
KeyboardEvent,
MouseEvent,
WebGl2RenderingContext,
WebGlProgram,
WebGlShader,
WebGlUniformLocation,
wasm_bindgen::{JsCast, JsValue}
};
use crate::{AppState, assembly::{ElementKey, ElementMotion}};
fn compile_shader(
context: &WebGl2RenderingContext,
shader_type: u32,
source: &str,
) -> WebGlShader {
let shader = context.create_shader(shader_type).unwrap();
context.shader_source(&shader, source);
context.compile_shader(&shader);
shader
}
fn get_uniform_array_locations<const N: usize>(
context: &WebGl2RenderingContext,
program: &WebGlProgram,
var_name: &str,
member_name_opt: Option<&str>
) -> [Option<WebGlUniformLocation>; N] {
array::from_fn(|n| {
let name = match member_name_opt {
Some(member_name) => format!("{var_name}[{n}].{member_name}"),
None => format!("{var_name}[{n}]")
};
context.get_uniform_location(&program, name.as_str())
})
}
// load the given data into the vertex input of the given name
fn bind_vertex_attrib(
context: &WebGl2RenderingContext,
index: u32,
size: i32,
data: &[f32]
) {
// create a data buffer and bind it to ARRAY_BUFFER
let buffer = context.create_buffer().unwrap();
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, Some(&buffer));
// load the given data into the buffer. the function `Float32Array::view`
// creates a raw view into our module's `WebAssembly.Memory` buffer.
// allocating more memory will change the buffer, invalidating the view.
// that means we have to make sure we don't allocate any memory until the
// view is dropped
unsafe {
context.buffer_data_with_array_buffer_view(
WebGl2RenderingContext::ARRAY_BUFFER,
&js_sys::Float32Array::view(&data),
WebGl2RenderingContext::STATIC_DRAW,
);
}
// allow the target attribute to be used
context.enable_vertex_attrib_array(index);
// take whatever's bound to ARRAY_BUFFER---here, the data buffer created
// above---and bind it to the target attribute
//
// https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/vertexAttribPointer
//
context.vertex_attrib_pointer_with_i32(
index,
size,
WebGl2RenderingContext::FLOAT,
false, // don't normalize
0, // zero stride
0, // zero offset
);
}
// the direction in camera space that a mouse event is pointing along
fn event_dir(event: &MouseEvent) -> Vector3<f64> {
let target: Element = event.target().unwrap().unchecked_into();
let rect = target.get_bounding_client_rect();
let width = rect.width();
let height = rect.height();
let shortdim = width.min(height);
// this constant should be kept synchronized with `inversive.frag`
const FOCAL_SLOPE: f64 = 0.3;
Vector3::new(
FOCAL_SLOPE * (2.0*(f64::from(event.client_x()) - rect.left()) - width) / shortdim,
FOCAL_SLOPE * (2.0*(rect.bottom() - f64::from(event.client_y())) - height) / shortdim,
-1.0
)
}
#[component]
pub fn Display() -> View {
let state = use_context::<AppState>();
// canvas
let display = create_node_ref();
// viewpoint
let assembly_to_world = create_signal(DMatrix::<f64>::identity(5, 5));
// navigation
let pitch_up = create_signal(0.0);
let pitch_down = create_signal(0.0);
let yaw_right = create_signal(0.0);
let yaw_left = create_signal(0.0);
let roll_ccw = create_signal(0.0);
let roll_cw = create_signal(0.0);
let zoom_in = create_signal(0.0);
let zoom_out = create_signal(0.0);
let turntable = create_signal(false); /* BENCHMARKING */
// manipulation
let translate_neg_x = create_signal(0.0);
let translate_pos_x = create_signal(0.0);
let translate_neg_y = create_signal(0.0);
let translate_pos_y = create_signal(0.0);
let translate_neg_z = create_signal(0.0);
let translate_pos_z = create_signal(0.0);
// change listener
let scene_changed = create_signal(true);
create_effect(move || {
state.assembly.elements.with(|elts| {
for (_, elt) in elts {
elt.representation.track();
}
});
state.selection.track();
scene_changed.set(true);
});
/* INSTRUMENTS */
const SAMPLE_PERIOD: i32 = 60;
let mut last_sample_time = 0.0;
let mut frames_since_last_sample = 0;
let mean_frame_interval = create_signal(0.0);
let assembly_for_raf = state.assembly.clone();
on_mount(move || {
// timing
let mut last_time = 0.0;
// viewpoint
const ROT_SPEED: f64 = 0.4; // in radians per second
const ZOOM_SPEED: f64 = 0.15; // multiplicative rate per second
const TURNTABLE_SPEED: f64 = 0.1; /* BENCHMARKING */
let mut orientation = DMatrix::<f64>::identity(5, 5);
let mut rotation = DMatrix::<f64>::identity(5, 5);
let mut location_z: f64 = 5.0;
// manipulation
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
// display parameters
const OPACITY: f32 = 0.5; /* SCAFFOLDING */
const HIGHLIGHT: f32 = 0.2; /* SCAFFOLDING */
const LAYER_THRESHOLD: i32 = 0; /* DEBUG */
const DEBUG_MODE: i32 = 0; /* DEBUG */
/* INSTRUMENTS */
let performance = window().unwrap().performance().unwrap();
// get the display canvas
let canvas = display.get().unchecked_into::<web_sys::HtmlCanvasElement>();
let ctx = canvas
.get_context("webgl2")
.unwrap()
.unwrap()
.dyn_into::<WebGl2RenderingContext>()
.unwrap();
// compile and attach the vertex and fragment shaders
let vertex_shader = compile_shader(
&ctx,
WebGl2RenderingContext::VERTEX_SHADER,
include_str!("identity.vert"),
);
let fragment_shader = compile_shader(
&ctx,
WebGl2RenderingContext::FRAGMENT_SHADER,
include_str!("inversive.frag"),
);
let program = ctx.create_program().unwrap();
ctx.attach_shader(&program, &vertex_shader);
ctx.attach_shader(&program, &fragment_shader);
ctx.link_program(&program);
let link_status = ctx
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
.as_bool()
.unwrap();
let link_msg = if link_status {
"Linked successfully"
} else {
"Linking failed"
};
console::log_1(&JsValue::from(link_msg));
ctx.use_program(Some(&program));
/* DEBUG */
// print the maximum number of vectors that can be passed as
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
// requires this maximum to be at least 224, as discussed in the
// documentation of the GL_MAX_FRAGMENT_UNIFORM_VECTORS parameter
// here:
//
// https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glGet.xhtml
//
// there are also other size limits. for example, on Aaron's
// machine, the the length of a float or genType array seems to be
// capped at 1024 elements
console::log_2(
&ctx.get_parameter(WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
&JsValue::from("uniform vectors available")
);
// find indices of vertex attributes and uniforms
const SPHERE_MAX: usize = 200;
let position_index = ctx.get_attrib_location(&program, "position") as u32;
let sphere_cnt_loc = ctx.get_uniform_location(&program, "sphere_cnt");
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "sphere_list", Some("sp")
);
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "sphere_list", Some("lt")
);
let color_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "color_list", None
);
let highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "highlight_list", None
);
let resolution_loc = ctx.get_uniform_location(&program, "resolution");
let shortdim_loc = ctx.get_uniform_location(&program, "shortdim");
let opacity_loc = ctx.get_uniform_location(&program, "opacity");
let layer_threshold_loc = ctx.get_uniform_location(&program, "layer_threshold");
let debug_mode_loc = ctx.get_uniform_location(&program, "debug_mode");
// create a vertex array and bind it to the graphics context
let vertex_array = ctx.create_vertex_array().unwrap();
ctx.bind_vertex_array(Some(&vertex_array));
// set the vertex positions
const VERTEX_CNT: usize = 6;
let positions: [f32; 3*VERTEX_CNT] = [
// northwest triangle
-1.0, -1.0, 0.0,
-1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
// southeast triangle
-1.0, -1.0, 0.0,
1.0, 1.0, 0.0,
1.0, -1.0, 0.0
];
bind_vertex_attrib(&ctx, position_index, 3, &positions);
// set up a repainting routine
let (_, start_animation_loop, _) = create_raf(move || {
// get the time step
let time = performance.now();
let time_step = 0.001*(time - last_time);
last_time = time;
// get the navigation state
let pitch_up_val = pitch_up.get();
let pitch_down_val = pitch_down.get();
let yaw_right_val = yaw_right.get();
let yaw_left_val = yaw_left.get();
let roll_ccw_val = roll_ccw.get();
let roll_cw_val = roll_cw.get();
let zoom_in_val = zoom_in.get();
let zoom_out_val = zoom_out.get();
let turntable_val = turntable.get(); /* BENCHMARKING */
// get the manipulation state
let translate_neg_x_val = translate_neg_x.get();
let translate_pos_x_val = translate_pos_x.get();
let translate_neg_y_val = translate_neg_y.get();
let translate_pos_y_val = translate_pos_y.get();
let translate_neg_z_val = translate_neg_z.get();
let translate_pos_z_val = translate_pos_z.get();
// update the assembly's orientation
let ang_vel = {
let pitch = pitch_up_val - pitch_down_val;
let yaw = yaw_right_val - yaw_left_val;
let roll = roll_ccw_val - roll_cw_val;
if pitch != 0.0 || yaw != 0.0 || roll != 0.0 {
ROT_SPEED * Vector3::new(-pitch, yaw, roll).normalize()
} else {
Vector3::zeros()
}
} /* BENCHMARKING */ + if turntable_val {
Vector3::new(0.0, TURNTABLE_SPEED, 0.0)
} else {
Vector3::zeros()
};
let mut rotation_sp = rotation.fixed_view_mut::<3, 3>(0, 0);
rotation_sp.copy_from(
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
);
orientation = &rotation * &orientation;
// update the assembly's location
let zoom = zoom_out_val - zoom_in_val;
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
// manipulate the assembly
if state.selection.with(|sel| sel.len() == 1) {
let sel = state.selection.with(
|sel| *sel.into_iter().next().unwrap()
);
let rep = state.assembly.elements.with_untracked(
|elts| elts[sel].representation.get_clone_untracked()
);
let translate_x = translate_pos_x_val - translate_neg_x_val;
let translate_y = translate_pos_y_val - translate_neg_y_val;
let translate_z = translate_pos_z_val - translate_neg_z_val;
if translate_x != 0.0 || translate_y != 0.0 || translate_z != 0.0 {
let vel_field = {
let u = Vector3::new(translate_x, translate_y, translate_z).normalize();
DMatrix::from_column_slice(5, 5, &[
0.0, 0.0, 0.0, 0.0, u[0],
0.0, 0.0, 0.0, 0.0, u[1],
0.0, 0.0, 0.0, 0.0, u[2],
2.0*u[0], 2.0*u[1], 2.0*u[2], 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0
])
};
let elt_motion: DVector<f64> = time_step * TRANSLATION_SPEED * vel_field * rep;
assembly_for_raf.deform(
vec![
ElementMotion {
key: sel,
velocity: elt_motion.as_view()
}
]
);
scene_changed.set(true);
}
}
if scene_changed.get() {
/* INSTRUMENTS */
// measure mean frame interval
frames_since_last_sample += 1;
if frames_since_last_sample >= SAMPLE_PERIOD {
mean_frame_interval.set((time - last_sample_time) / (SAMPLE_PERIOD as f64));
last_sample_time = time;
frames_since_last_sample = 0;
}
// find the map from assembly space to world space
let location = {
let u = -location_z;
DMatrix::from_column_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, u,
0.0, 0.0, 2.0*u, 1.0, u*u,
0.0, 0.0, 0.0, 0.0, 1.0
])
};
let asm_to_world = &location * &orientation;
// get the assembly
let (
elt_cnt,
reps_world,
colors,
highlights
) = state.assembly.elements.with(|elts| {
(
// number of elements
elts.len() as i32,
// representation vectors in world coordinates
elts.iter().map(
|(_, elt)| elt.representation.with(|rep| &asm_to_world * rep)
).collect::<Vec<_>>(),
// colors
elts.iter().map(|(key, elt)| {
if state.selection.with(|sel| sel.contains(&key)) {
elt.color.map(|ch| 0.2 + 0.8*ch)
} else {
elt.color
}
}).collect::<Vec<_>>(),
// highlight levels
elts.iter().map(|(key, _)| {
if state.selection.with(|sel| sel.contains(&key)) {
1.0_f32
} else {
HIGHLIGHT
}
}).collect::<Vec<_>>()
)
});
// set the resolution
let width = canvas.width() as f32;
let height = canvas.height() as f32;
ctx.uniform2f(resolution_loc.as_ref(), width, height);
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// pass the assembly
ctx.uniform1i(sphere_cnt_loc.as_ref(), elt_cnt);
for n in 0..reps_world.len() {
let v = &reps_world[n];
ctx.uniform3f(
sphere_sp_locs[n].as_ref(),
v[0] as f32, v[1] as f32, v[2] as f32
);
ctx.uniform2f(
sphere_lt_locs[n].as_ref(),
v[3] as f32, v[4] as f32
);
ctx.uniform3fv_with_f32_array(
color_locs[n].as_ref(),
&colors[n]
);
ctx.uniform1f(
highlight_locs[n].as_ref(),
highlights[n]
);
}
// pass the display parameters
ctx.uniform1f(opacity_loc.as_ref(), OPACITY);
ctx.uniform1i(layer_threshold_loc.as_ref(), LAYER_THRESHOLD);
ctx.uniform1i(debug_mode_loc.as_ref(), DEBUG_MODE);
// draw the scene
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
// update the viewpoint
assembly_to_world.set(asm_to_world);
// clear the scene change flag
scene_changed.set(
pitch_up_val != 0.0
|| pitch_down_val != 0.0
|| yaw_left_val != 0.0
|| yaw_right_val != 0.0
|| roll_cw_val != 0.0
|| roll_ccw_val != 0.0
|| zoom_in_val != 0.0
|| zoom_out_val != 0.0
|| turntable_val /* BENCHMARKING */
);
} else {
frames_since_last_sample = 0;
mean_frame_interval.set(-1.0);
}
});
start_animation_loop();
});
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
let mut navigating = true;
let shift = event.shift_key();
match event.key().as_str() {
"ArrowUp" if shift => zoom_in.set(value),
"ArrowDown" if shift => zoom_out.set(value),
"ArrowUp" => pitch_up.set(value),
"ArrowDown" => pitch_down.set(value),
"ArrowRight" if shift => roll_cw.set(value),
"ArrowLeft" if shift => roll_ccw.set(value),
"ArrowRight" => yaw_right.set(value),
"ArrowLeft" => yaw_left.set(value),
_ => navigating = false
};
if navigating {
scene_changed.set(true);
event.prevent_default();
}
};
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
let mut manipulating = true;
let shift = event.shift_key();
match event.key().as_str() {
"d" | "D" => translate_pos_x.set(value),
"a" | "A" => translate_neg_x.set(value),
"w" | "W" if shift => translate_neg_z.set(value),
"s" | "S" if shift => translate_pos_z.set(value),
"w" | "W" => translate_pos_y.set(value),
"s" | "S" => translate_neg_y.set(value),
_ => manipulating = false
};
if manipulating {
event.prevent_default();
}
};
view! {
/* TO DO */
// switch back to integer-valued parameters when that becomes possible
// again
canvas(
ref=display,
width="600",
height="600",
tabindex="0",
on:keydown=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
roll_cw.set(yaw_right.get());
roll_ccw.set(yaw_left.get());
zoom_in.set(pitch_up.get());
zoom_out.set(pitch_down.get());
yaw_right.set(0.0);
yaw_left.set(0.0);
pitch_up.set(0.0);
pitch_down.set(0.0);
// swap manipulation inputs
translate_pos_z.set(translate_neg_y.get());
translate_neg_z.set(translate_pos_y.get());
translate_pos_y.set(0.0);
translate_neg_y.set(0.0);
} else {
if event.key() == "Enter" { /* BENCHMARKING */
turntable.set_fn(|turn| !turn);
scene_changed.set(true);
}
set_nav_signal(&event, 1.0);
set_manip_signal(&event, 1.0);
}
},
on:keyup=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
yaw_right.set(roll_cw.get());
yaw_left.set(roll_ccw.get());
pitch_up.set(zoom_in.get());
pitch_down.set(zoom_out.get());
roll_cw.set(0.0);
roll_ccw.set(0.0);
zoom_in.set(0.0);
zoom_out.set(0.0);
// swap manipulation inputs
translate_pos_y.set(translate_neg_z.get());
translate_neg_y.set(translate_pos_z.get());
translate_pos_z.set(0.0);
translate_neg_z.set(0.0);
} else {
set_nav_signal(&event, 0.0);
set_manip_signal(&event, 0.0);
}
},
on:blur=move |_| {
pitch_up.set(0.0);
pitch_down.set(0.0);
yaw_right.set(0.0);
yaw_left.set(0.0);
roll_ccw.set(0.0);
roll_cw.set(0.0);
},
on:click=move |event: MouseEvent| {
// find the nearest element along the pointer direction
let dir = event_dir(&event);
console::log_1(&JsValue::from(dir.to_string()));
let mut clicked: Option<(ElementKey, f64)> = None;
for (key, elt) in state.assembly.elements.get_clone_untracked() {
match assembly_to_world.with(|asm_to_world| elt.cast(dir, asm_to_world)) {
Some(depth) => match clicked {
Some((_, best_depth)) => {
if depth < best_depth {
clicked = Some((key, depth))
}
},
None => clicked = Some((key, depth))
}
None => ()
};
}
// if we clicked something, select it
match clicked {
Some((key, _)) => state.select(key, event.shift_key()),
None => state.selection.update(|sel| sel.clear())
};
}
)
}
}

View File

@ -1,576 +0,0 @@
use lazy_static::lazy_static;
use nalgebra::{Const, DMatrix, DVector, DVectorView, Dyn, SymmetricEigen};
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
// --- elements ---
#[cfg(feature = "dev")]
pub fn point(x: f64, y: f64, z: f64) -> DVector<f64> {
DVector::from_column_slice(&[x, y, z, 0.5, 0.5*(x*x + y*y + z*z)])
}
// the sphere with the given center and radius, with inward-pointing normals
pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVector<f64> {
let center_norm_sq = center_x * center_x + center_y * center_y + center_z * center_z;
DVector::from_column_slice(&[
center_x / radius,
center_y / radius,
center_z / radius,
0.5 / radius,
0.5 * (center_norm_sq / radius - radius)
])
}
// the sphere of curvature `curv` whose closest point to the origin has position
// `off * dir` and normal `dir`, where `dir` is a unit vector. setting the
// curvature to zero gives a plane
pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f64) -> DVector<f64> {
let norm_sp = 1.0 + off * curv;
DVector::from_column_slice(&[
norm_sp * dir_x,
norm_sp * dir_y,
norm_sp * dir_z,
0.5 * curv,
off * (1.0 + 0.5 * off * curv)
])
}
// --- partial matrices ---
struct MatrixEntry {
index: (usize, usize),
value: f64
}
pub struct PartialMatrix(Vec<MatrixEntry>);
impl PartialMatrix {
pub fn new() -> PartialMatrix {
PartialMatrix(Vec::<MatrixEntry>::new())
}
pub fn push_sym(&mut self, row: usize, col: usize, value: f64) {
let PartialMatrix(entries) = self;
entries.push(MatrixEntry { index: (row, col), value: value });
if row != col {
entries.push(MatrixEntry { index: (col, row), value: value });
}
}
/* DEBUG */
pub fn log_to_console(&self) {
let PartialMatrix(entries) = self;
for ent in entries {
let ent_str = format!(" {} {} {}", ent.index.0, ent.index.1, ent.value);
console::log_1(&JsValue::from(ent_str.as_str()));
}
}
fn proj(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(a.nrows(), a.ncols());
let PartialMatrix(entries) = self;
for ent in entries {
result[ent.index] = a[ent.index];
}
result
}
fn sub_proj(&self, rhs: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
let PartialMatrix(entries) = self;
for ent in entries {
result[ent.index] = ent.value - rhs[ent.index];
}
result
}
}
// --- configuration subspaces ---
#[derive(Clone)]
pub struct ConfigSubspace {
assembly_dim: usize,
basis: Vec<DMatrix<f64>>
}
impl ConfigSubspace {
pub fn zero(assembly_dim: usize) -> ConfigSubspace {
ConfigSubspace {
assembly_dim: assembly_dim,
basis: Vec::new()
}
}
// approximate the kernel of a symmetric endomorphism of the configuration
// space for `assembly_dim` elements. we consider an eigenvector to be part
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
fn symmetric_kernel(a: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
const ELEMENT_DIM: usize = 5;
const THRESHOLD: f64 = 1.0e-4;
let eig = SymmetricEigen::new(a);
let eig_vecs = eig.eigenvectors.column_iter();
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
let basis = eig_pairs.filter_map(
|(λ, v)| (λ.abs() < THRESHOLD).then_some(
Into::<DMatrix<f64>>::into(
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
)
)
);
/* DEBUG */
// print the eigenvalues
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
console::log_1(&JsValue::from(
format!("Eigenvalues used to find kernel:{}", eig.eigenvalues)
));
ConfigSubspace {
assembly_dim: assembly_dim,
basis: basis.collect()
}
}
pub fn dim(&self) -> usize {
self.basis.len()
}
pub fn assembly_dim(&self) -> usize {
self.assembly_dim
}
// find the projection onto this subspace, with respect to the Euclidean
// inner product, of the motion where the element with the given column
// index has velocity `v`
pub fn proj(&self, v: &DVectorView<f64>, column_index: usize) -> DMatrix<f64> {
if self.dim() == 0 {
const ELEMENT_DIM: usize = 5;
DMatrix::zeros(ELEMENT_DIM, self.assembly_dim)
} else {
self.basis.iter().map(
|b| b.column(column_index).dot(&v) * b
).sum()
}
}
}
// --- descent history ---
pub struct DescentHistory {
pub config: Vec<DMatrix<f64>>,
pub scaled_loss: Vec<f64>,
pub neg_grad: Vec<DMatrix<f64>>,
pub min_eigval: Vec<f64>,
pub base_step: Vec<DMatrix<f64>>,
pub backoff_steps: Vec<i32>
}
impl DescentHistory {
fn new() -> DescentHistory {
DescentHistory {
config: Vec::<DMatrix<f64>>::new(),
scaled_loss: Vec::<f64>::new(),
neg_grad: Vec::<DMatrix<f64>>::new(),
min_eigval: Vec::<f64>::new(),
base_step: Vec::<DMatrix<f64>>::new(),
backoff_steps: Vec::<i32>::new(),
}
}
}
// --- gram matrix realization ---
// the Lorentz form
lazy_static! {
pub static ref Q: DMatrix<f64> = DMatrix::from_row_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, -2.0,
0.0, 0.0, 0.0, -2.0, 0.0
]);
}
struct SearchState {
config: DMatrix<f64>,
err_proj: DMatrix<f64>,
loss: f64
}
impl SearchState {
fn from_config(gram: &PartialMatrix, config: DMatrix<f64>) -> SearchState {
let err_proj = gram.sub_proj(&(config.tr_mul(&*Q) * &config));
let loss = err_proj.norm_squared();
SearchState {
config: config,
err_proj: err_proj,
loss: loss
}
}
}
fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(nrows, ncols);
result[index] = 1.0;
result
}
// use backtracking line search to find a better configuration
fn seek_better_config(
gram: &PartialMatrix,
state: &SearchState,
base_step: &DMatrix<f64>,
base_target_improvement: f64,
min_efficiency: f64,
backoff: f64,
max_backoff_steps: i32
) -> Option<(SearchState, i32)> {
let mut rate = 1.0;
for backoff_steps in 0..max_backoff_steps {
let trial_config = &state.config + rate * base_step;
let trial_state = SearchState::from_config(gram, trial_config);
let improvement = state.loss - trial_state.loss;
if improvement >= min_efficiency * rate * base_target_improvement {
return Some((trial_state, backoff_steps));
}
rate *= backoff;
}
None
}
// seek a matrix `config` for which `config' * Q * config` matches the partial
// matrix `gram`. use gradient descent starting from `guess`
pub fn realize_gram(
gram: &PartialMatrix,
guess: DMatrix<f64>,
frozen: &[(usize, usize)],
scaled_tol: f64,
min_efficiency: f64,
backoff: f64,
reg_scale: f64,
max_descent_steps: i32,
max_backoff_steps: i32
) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
// start the descent history
let mut history = DescentHistory::new();
// find the dimension of the search space
let element_dim = guess.nrows();
let assembly_dim = guess.ncols();
let total_dim = element_dim * assembly_dim;
// scale the tolerance
let scale_adjustment = (gram.0.len() as f64).sqrt();
let tol = scale_adjustment * scaled_tol;
// convert the frozen indices to stacked format
let frozen_stacked: Vec<usize> = frozen.into_iter().map(
|index| index.1*element_dim + index.0
).collect();
// use Newton's method with backtracking and gradient descent backup
let mut state = SearchState::from_config(gram, guess);
let mut hess = DMatrix::zeros(element_dim, assembly_dim);
for _ in 0..max_descent_steps {
// find the negative gradient of the loss function
let neg_grad = 4.0 * &*Q * &state.config * &state.err_proj;
let mut neg_grad_stacked = neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
history.neg_grad.push(neg_grad.clone());
// find the negative Hessian of the loss function
let mut hess_cols = Vec::<DVector<f64>>::with_capacity(total_dim);
for col in 0..assembly_dim {
for row in 0..element_dim {
let index = (row, col);
let basis_mat = basis_matrix(index, element_dim, assembly_dim);
let neg_d_err =
basis_mat.tr_mul(&*Q) * &state.config
+ state.config.tr_mul(&*Q) * &basis_mat;
let neg_d_err_proj = gram.proj(&neg_d_err);
let deriv_grad = 4.0 * &*Q * (
-&basis_mat * &state.err_proj
+ &state.config * &neg_d_err_proj
);
hess_cols.push(deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
}
}
hess = DMatrix::from_columns(hess_cols.as_slice());
// regularize the Hessian
let min_eigval = hess.symmetric_eigenvalues().min();
if min_eigval <= 0.0 {
hess -= reg_scale * min_eigval * DMatrix::identity(total_dim, total_dim);
}
history.min_eigval.push(min_eigval);
// project the negative gradient and negative Hessian onto the
// orthogonal complement of the frozen subspace
let zero_col = DVector::zeros(total_dim);
let zero_row = zero_col.transpose();
for &k in &frozen_stacked {
neg_grad_stacked[k] = 0.0;
hess.set_row(k, &zero_row);
hess.set_column(k, &zero_col);
hess[(k, k)] = 1.0;
}
// stop if the loss is tolerably low
history.config.push(state.config.clone());
history.scaled_loss.push(state.loss / scale_adjustment);
if state.loss < tol { break; }
// compute the Newton step
/*
we need to either handle or eliminate the case where the minimum
eigenvalue of the Hessian is zero, so the regularized Hessian is
singular. right now, this causes the Cholesky decomposition to return
`None`, leading to a panic when we unrap
*/
let base_step_stacked = hess.clone().cholesky().unwrap().solve(&neg_grad_stacked);
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
history.base_step.push(base_step.clone());
// use backtracking line search to find a better configuration
match seek_better_config(
gram, &state, &base_step, neg_grad.dot(&base_step),
min_efficiency, backoff, max_backoff_steps
) {
Some((better_state, backoff_steps)) => {
state = better_state;
history.backoff_steps.push(backoff_steps);
},
None => return (state.config, ConfigSubspace::zero(assembly_dim), false, history)
};
}
let success = state.loss < tol;
let tangent = if success {
ConfigSubspace::symmetric_kernel(hess, assembly_dim)
} else {
ConfigSubspace::zero(assembly_dim)
};
(state.config, tangent, success, history)
}
// --- tests ---
// this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article
// below includes a nice translation of the problem statement, which was
// recorded in Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and
// Present_)
//
// "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
// https://www.nippon.com/en/japan-topics/c12801/
//
#[cfg(feature = "dev")]
pub mod irisawa {
use std::{array, f64::consts::PI};
use super::*;
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for s in 0..9 {
// each sphere is represented by a spacelike vector
gram_to_be.push_sym(s, s, 1.0);
// the circumscribing sphere is tangent to all of the other
// spheres, with matching orientation
if s > 0 {
gram_to_be.push_sym(0, s, 1.0);
}
if s > 2 {
// each chain sphere is tangent to the "sun" and "moon"
// spheres, with opposing orientation
for n in 1..3 {
gram_to_be.push_sym(s, n, -1.0);
}
// each chain sphere is tangent to the next chain sphere,
// with opposing orientation
let s_next = 3 + (s-2) % 6;
gram_to_be.push_sym(s, s_next, -1.0);
}
}
gram_to_be
};
let guess = DMatrix::from_columns(
[
sphere(0.0, 0.0, 0.0, 15.0),
sphere(0.0, 0.0, -9.0, 5.0),
sphere(0.0, 0.0, 11.0, 3.0)
].into_iter().chain(
(1..=6).map(
|k| {
let ang = (k as f64) * PI/3.0;
sphere(9.0 * ang.cos(), 9.0 * ang.sin(), 0.0, 2.5)
}
)
).collect::<Vec<_>>().as_slice()
);
// the frozen entries fix the radii of the circumscribing sphere, the
// "sun" and "moon" spheres, and one of the chain spheres
let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k));
realize_gram(
&gram, guess, &frozen,
scaled_tol, 0.5, 0.9, 1.1, 200, 110
)
}
}
#[cfg(test)]
mod tests {
use super::{*, irisawa::realize_irisawa_hexlet};
#[test]
fn sub_proj_test() {
let target = PartialMatrix(vec![
MatrixEntry { index: (0, 0), value: 19.0 },
MatrixEntry { index: (0, 2), value: 39.0 },
MatrixEntry { index: (1, 1), value: 59.0 },
MatrixEntry { index: (1, 2), value: 69.0 }
]);
let attempt = DMatrix::<f64>::from_row_slice(2, 3, &[
1.0, 2.0, 3.0,
4.0, 5.0, 6.0
]);
let expected_result = DMatrix::<f64>::from_row_slice(2, 3, &[
18.0, 0.0, 36.0,
0.0, 54.0, 63.0
]);
assert_eq!(target.sub_proj(&attempt), expected_result);
}
#[test]
fn zero_loss_test() {
let gram = PartialMatrix({
let mut entries = Vec::<MatrixEntry>::new();
for j in 0..3 {
for k in 0..3 {
entries.push(MatrixEntry {
index: (j, k),
value: if j == k { 1.0 } else { -1.0 }
});
}
}
entries
});
let config = {
let a: f64 = 0.75_f64.sqrt();
DMatrix::from_columns(&[
sphere(1.0, 0.0, 0.0, a),
sphere(-0.5, a, 0.0, a),
sphere(-0.5, -a, 0.0, a)
])
};
let state = SearchState::from_config(&gram, config);
assert!(state.loss.abs() < f64::EPSILON);
}
#[test]
fn irisawa_hexlet_test() {
// solve Irisawa's problem
const SCALED_TOL: f64 = 1.0e-12;
let (config, _, _, _) = realize_irisawa_hexlet(SCALED_TOL);
// check against Irisawa's solution
let entry_tol = SCALED_TOL.sqrt();
let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0];
for (k, diam) in solution_diams.into_iter().enumerate() {
assert!((config[(3, k)] - 1.0 / diam).abs() < entry_tol);
}
}
#[test]
fn tangent_test() {
const SCALED_TOL: f64 = 1.0e-12;
const ELEMENT_DIM: usize = 5;
const ASSEMBLY_DIM: usize = 3;
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..3 {
for k in j..3 {
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
sphere(0.0, 0.0, 0.0, -2.0),
sphere(0.0, 0.0, 1.0, 1.0),
sphere(0.0, 0.0, -1.0, 1.0)
]);
let frozen: [_; 5] = std::array::from_fn(|k| (k, 0));
let (config, tangent, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(config, guess);
assert_eq!(success, true);
assert_eq!(history.scaled_loss.len(), 1);
// confirm that the tangent space has dimension five or less
let ConfigSubspace(ref tangent_basis) = tangent;
assert_eq!(tangent_basis.len(), 5);
// confirm that the tangent space contains all the motions we expect it
// to. since we've already bounded the dimension of the tangent space,
// this confirms that the tangent space is what we expect it to be
let tangent_motions = vec![
basis_matrix((0, 1), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((1, 1), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((0, 2), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((1, 2), ELEMENT_DIM, ASSEMBLY_DIM),
DMatrix::<f64>::from_column_slice(ELEMENT_DIM, 3, &[
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, -1.0, -0.25, -1.0,
0.0, 0.0, -1.0, 0.25, 1.0
])
];
let tol_sq = ((ELEMENT_DIM * ASSEMBLY_DIM) as f64) * SCALED_TOL * SCALED_TOL;
for motion in tangent_motions {
let motion_proj: DMatrix<_> = motion.column_iter().enumerate().map(
|(k, v)| tangent.proj(&v, k)
).sum();
assert!((motion - motion_proj).norm_squared() < tol_sq);
}
}
// at the frozen indices, the optimization steps should have exact zeros,
// and the realized configuration should match the initial guess
#[test]
fn frozen_entry_test() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..2 {
for k in j..2 {
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
let frozen = [(3, 0), (3, 1)];
println!();
let (config, _, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(success, true);
for base_step in history.base_step.into_iter() {
for index in frozen {
assert_eq!(base_step[index], 0.0);
}
}
for index in frozen {
assert_eq!(config[index], guess[index]);
}
}
}

View File

@ -1,7 +0,0 @@
#version 300 es
in vec4 position;
void main() {
gl_Position = position;
}

View File

@ -1,234 +0,0 @@
#version 300 es
precision highp float;
out vec4 outColor;
// --- inversive geometry ---
struct vecInv {
vec3 sp;
vec2 lt;
};
// --- uniforms ---
// assembly
const int SPHERE_MAX = 200;
uniform int sphere_cnt;
uniform vecInv sphere_list[SPHERE_MAX];
uniform vec3 color_list[SPHERE_MAX];
uniform float highlight_list[SPHERE_MAX];
// view
uniform vec2 resolution;
uniform float shortdim;
// controls
uniform float opacity;
uniform int layer_threshold;
uniform bool debug_mode;
// light and camera
const float focal_slope = 0.3;
const vec3 light_dir = normalize(vec3(2., 2., 1.));
const float ixn_threshold = 0.005;
const float INTERIOR_DIMMING = 0.7;
// --- sRGB ---
// map colors from RGB space to sRGB space, as specified in the sRGB standard
// (IEC 61966-2-1:1999)
//
// https://www.color.org/sRGB.pdf
// https://www.color.org/chardata/rgb/srgb.xalter
//
// in RGB space, color value is proportional to light intensity, so linear
// color-vector interpolation corresponds to physical light mixing. in sRGB
// space, the color encoding used by many monitors, we use more of the value
// interval to represent low intensities, and less of the interval to represent
// high intensities. this improves color quantization
float sRGB(float t) {
if (t <= 0.0031308) {
return 12.92*t;
} else {
return 1.055*pow(t, 5./12.) - 0.055;
}
}
vec3 sRGB(vec3 color) {
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
}
// --- shading ---
struct Fragment {
vec3 pt;
vec3 normal;
vec4 color;
};
Fragment sphere_shading(vecInv v, vec3 pt, vec3 base_color) {
// the expression for normal needs to be checked. it's supposed to give the
// negative gradient of the lorentz product between the impact point vector
// and the sphere vector with respect to the coordinates of the impact
// point. i calculated it in my head and decided that the result looked good
// enough for now
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
float incidence = dot(normal, light_dir);
float illum = mix(0.4, 1.0, max(incidence, 0.0));
return Fragment(pt, normal, vec4(illum * base_color, opacity));
}
float intersection_dist(Fragment a, Fragment b) {
float intersection_sin = length(cross(a.normal, b.normal));
vec3 disp = a.pt - b.pt;
return max(
abs(dot(a.normal, disp)),
abs(dot(b.normal, disp))
) / intersection_sin;
}
// --- ray-casting ---
struct TaggedDepth {
float depth;
float dimming;
int id;
};
// if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by
// the linear function `b*u + c`
const float DEG_THRESHOLD = 1e-9;
// the depths, represented as multiples of `dir`, where the line generated by
// `dir` hits the sphere represented by `v`. if both depths are positive, the
// smaller one is returned in the first component. if only one depth is
// positive, it could be returned in either component
vec2 sphere_cast(vecInv v, vec3 dir) {
float a = -v.lt.s * dot(dir, dir);
float b = dot(v.sp, dir);
float c = -v.lt.t;
float adjust = 4.*a*c/(b*b);
if (adjust < 1.) {
// as long as `b` is non-zero, the linear approximation of
//
// a*u^2 + b*u + c
//
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of the
// quadratic adjacent to `u_lin` is stored in `lin_root`. if both roots
// have the same sign, `lin_root` will be the one closer to `u = 0`
float square_rect_ratio = 1. + sqrt(1. - adjust);
float lin_root = -(2.*c)/b / square_rect_ratio;
if (abs(a) > DEG_THRESHOLD * abs(b)) {
return vec2(lin_root, -b/(2.*a) * square_rect_ratio);
} else {
return vec2(lin_root, -1.);
}
} else {
// the line through `dir` misses the sphere completely
return vec2(-1., -1.);
}
}
void main() {
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
vec3 dir = vec3(focal_slope * scr, -1.);
// cast rays through the spheres
const int LAYER_MAX = 12;
TaggedDepth top_hits [LAYER_MAX];
int layer_cnt = 0;
for (int id = 0; id < sphere_cnt; ++id) {
// find out where the ray hits the sphere
vec2 hit_depths = sphere_cast(sphere_list[id], dir);
// insertion-sort the points we hit into the hit list
float dimming = 1.;
for (int side = 0; side < 2; ++side) {
float depth = hit_depths[side];
if (depth > 0.) {
for (int layer = layer_cnt; layer >= 0; --layer) {
if (layer < 1 || top_hits[layer-1].depth <= depth) {
// we're not as close to the screen as the hit before
// the empty slot, so insert here
if (layer < LAYER_MAX) {
top_hits[layer] = TaggedDepth(depth, dimming, id);
}
break;
} else {
// we're closer to the screen than the hit before the
// empty slot, so move that hit into the empty slot
top_hits[layer] = top_hits[layer-1];
}
}
layer_cnt = min(layer_cnt + 1, LAYER_MAX);
dimming = INTERIOR_DIMMING;
}
}
}
/* DEBUG */
// in debug mode, show the layer count instead of the shaded image
if (debug_mode) {
// at the bottom of the screen, show the color scale instead of the
// layer count
if (gl_FragCoord.y < 10.) layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
// convert number to color
ivec3 bits = layer_cnt / ivec3(1, 2, 4);
vec3 color = mod(vec3(bits), 2.);
if (layer_cnt % 16 >= 8) {
color = mix(color, vec3(0.5), 0.5);
}
outColor = vec4(color, 1.);
return;
}
// composite the sphere fragments
vec3 color = vec3(0.);
int layer = layer_cnt - 1;
TaggedDepth hit = top_hits[layer];
Fragment frag_next = sphere_shading(
sphere_list[hit.id],
hit.depth * dir,
hit.dimming * color_list[hit.id]
);
float highlight_next = highlight_list[hit.id];
--layer;
for (; layer >= layer_threshold; --layer) {
// load the current fragment
Fragment frag = frag_next;
float highlight = highlight_next;
// shade the next fragment
hit = top_hits[layer];
frag_next = sphere_shading(
sphere_list[hit.id],
hit.depth * dir,
hit.dimming * color_list[hit.id]
);
highlight_next = highlight_list[hit.id];
// highlight intersections
float ixn_dist = intersection_dist(frag, frag_next);
float max_highlight = max(highlight, highlight_next);
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
frag.color = mix(frag.color, vec4(1.), ixn_highlight);
frag_next.color = mix(frag_next.color, vec4(1.), ixn_highlight);
// highlight cusps
float cusp_cos = abs(dot(dir, frag.normal));
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[hit.id].lt.s);
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
frag.color = mix(frag.color, vec4(1.), cusp_highlight);
// composite the current fragment
color = mix(color, frag.color.rgb, frag.color.a);
}
color = mix(color, frag_next.color.rgb, frag_next.color.a);
outColor = vec4(sRGB(color), 1.);
}

View File

@ -1 +0,0 @@
pub mod engine;

View File

@ -1,64 +0,0 @@
mod add_remove;
mod assembly;
mod display;
mod engine;
mod outline;
use rustc_hash::FxHashSet;
use sycamore::prelude::*;
use add_remove::AddRemove;
use assembly::{Assembly, ElementKey};
use display::Display;
use outline::Outline;
#[derive(Clone)]
struct AppState {
assembly: Assembly,
selection: Signal<FxHashSet<ElementKey>>
}
impl AppState {
fn new() -> AppState {
AppState {
assembly: Assembly::new(),
selection: create_signal(FxHashSet::default())
}
}
// in single-selection mode, select the element with the given key. in
// multiple-selection mode, toggle whether the element with the given key
// is selected
fn select(&self, key: ElementKey, multi: bool) {
if multi {
self.selection.update(|sel| {
if !sel.remove(&key) {
sel.insert(key);
}
});
} else {
self.selection.update(|sel| {
sel.clear();
sel.insert(key);
});
}
}
}
fn main() {
// set the console error panic hook
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| {
provide_context(AppState::new());
view! {
div(id="sidebar") {
AddRemove {}
Outline {}
}
Display {}
}
});
}

View File

@ -1,196 +0,0 @@
use itertools::Itertools;
use sycamore::prelude::*;
use web_sys::{
Event,
HtmlInputElement,
KeyboardEvent,
MouseEvent,
wasm_bindgen::JsCast
};
use crate::{AppState, assembly, assembly::{Constraint, ConstraintKey, ElementKey}};
// an editable view of the Lorentz product representing a constraint
#[component(inline_props)]
fn LorentzProductInput(constraint: Constraint) -> View {
view! {
input(
r#type="text",
bind:value=constraint.lorentz_prod_text,
on:change=move |event: Event| {
let target: HtmlInputElement = event.target().unwrap().unchecked_into();
match target.value().parse::<f64>() {
Ok(lorentz_prod) => batch(|| {
constraint.lorentz_prod.set(lorentz_prod);
constraint.lorentz_prod_valid.set(true);
}),
Err(_) => constraint.lorentz_prod_valid.set(false)
};
}
)
}
}
// a list item that shows a constraint in an outline view of an element
#[component(inline_props)]
fn ConstraintOutlineItem(constraint_key: ConstraintKey, element_key: ElementKey) -> View {
let state = use_context::<AppState>();
let assembly = &state.assembly;
let constraint = assembly.constraints.with(|csts| csts[constraint_key].clone());
let other_subject = if constraint.subjects.0 == element_key {
constraint.subjects.1
} else {
constraint.subjects.0
};
let other_subject_label = assembly.elements.with(|elts| elts[other_subject].label.clone());
let class = constraint.lorentz_prod_valid.map(
|&lorentz_prod_valid| if lorentz_prod_valid { "constraint" } else { "constraint invalid" }
);
view! {
li(class=class.get()) {
input(r#type="checkbox", bind:checked=constraint.active)
div(class="constraint-label") { (other_subject_label) }
LorentzProductInput(constraint=constraint)
div(class="status")
}
}
}
// a list item that shows an element in an outline view of an assembly
#[component(inline_props)]
fn ElementOutlineItem(key: ElementKey, element: assembly::Element) -> View {
let state = use_context::<AppState>();
let class = state.selection.map(
move |sel| if sel.contains(&key) { "selected" } else { "" }
);
let label = element.label.clone();
let rep_components = element.representation.map(
|rep| rep.iter().map(
|u| format!("{:.3}", u).replace("-", "\u{2212}")
).collect()
);
let constrained = element.constraints.map(|csts| csts.len() > 0);
let constraint_list = element.constraints.map(
|csts| csts.clone().into_iter().collect()
);
let details_node = create_node_ref();
view! {
li {
details(ref=details_node) {
summary(
class=class.get(),
on:keydown={
move |event: KeyboardEvent| {
match event.key().as_str() {
"Enter" => {
state.select(key, event.shift_key());
event.prevent_default();
},
"ArrowRight" if constrained.get() => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.set_attribute("open", "");
},
"ArrowLeft" => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.remove_attribute("open");
},
_ => ()
}
}
}
) {
div(
class="element-switch",
on:click=|event: MouseEvent| event.stop_propagation()
)
div(
class="element",
on:click={
move |event: MouseEvent| {
if event.shift_key() {
state.selection.update(|sel| {
if !sel.remove(&key) {
sel.insert(key);
}
});
} else {
state.selection.update(|sel| {
sel.clear();
sel.insert(key);
});
}
event.stop_propagation();
event.prevent_default();
}
}
) {
div(class="element-label") { (label) }
div(class="element-representation") {
Indexed(
list=rep_components,
view=|coord_str| view! {
div { (coord_str) }
}
)
}
div(class="status")
}
}
ul(class="constraints") {
Keyed(
list=constraint_list,
view=move |cst_key| view! {
ConstraintOutlineItem(
constraint_key=cst_key,
element_key=key
)
},
key=|cst_key| cst_key.clone()
)
}
}
}
}
}
// a component that lists the elements of the current assembly, showing the
// constraints on each element as a collapsible sub-list. its implementation
// is based on Kate Morley's HTML + CSS tree views:
//
// https://iamkate.com/code/tree-views/
//
#[component]
pub fn Outline() -> View {
let state = use_context::<AppState>();
// list the elements alphabetically by ID
let element_list = state.assembly.elements.map(
|elts| elts
.clone()
.into_iter()
.sorted_by_key(|(_, elt)| elt.id.clone())
.collect()
);
view! {
ul(
id="outline",
on:click={
let state = use_context::<AppState>();
move |_| state.selection.update(|sel| sel.clear())
}
) {
Keyed(
list=element_list,
view=|(key, elt)| view! {
ElementOutlineItem(key=key, element=elt)
},
key=|(_, elt)| elt.serial
)
}
}
}

View File

@ -8,8 +8,7 @@ using Optim
export
rand_on_shell, Q, DescentHistory,
realize_gram_gradient, realize_gram_newton, realize_gram_optim,
realize_gram_alt_proj, realize_gram
realize_gram_gradient, realize_gram_newton, realize_gram_optim, realize_gram
# === guessing ===
@ -60,10 +59,11 @@ nullmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1;
unmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1; 1 1]]
# the Lorentz form
## [old] Q = diagm([1, 1, 1, 1, -1])
Q = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [0 -2; -2 0]]
# project a matrix onto the subspace of matrices whose entries vanish away from
# the given indices
# project a matrix onto the subspace of matrices whose entries vanish at the
# given indices
function proj_to_entries(mat, indices)
result = zeros(size(mat))
for (j, k) in indices
@ -144,7 +144,7 @@ function realize_gram_gradient(
break
end
# find the negative gradient of the loss function
# find negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
slope = norm(neg_grad)
dir = neg_grad / slope
@ -233,7 +233,7 @@ function realize_gram_newton(
break
end
# find the negative gradient of the loss function
# find the negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
@ -314,129 +314,6 @@ function realize_gram_optim(
)
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`, with an
# alternate technique for finding the projected base step from the unprojected
# Hessian
function realize_gram_alt_proj(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T},
frozen = CartesianIndex[];
scaled_tol = 1e-30,
min_efficiency = 0.5,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# convert the frozen indices to stacked format
frozen_stacked = [(index[2]-1)*element_dim + index[1] for index in frozen]
# initialize search state
L = copy(guess)
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# use Newton's method with backtracking and gradient descent backup
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess_sym = Hermitian(hess)
push!(history.hess, hess_sym)
# regularize the Hessian
min_eigval = minimum(eigvals(hess_sym))
push!(history.positive, min_eigval > 0)
if min_eigval <= 0
hess -= reg_scale * min_eigval * I
end
# compute the Newton step
neg_grad_stacked = reshape(neg_grad, total_dim)
for k in frozen_stacked
neg_grad_stacked[k] = 0
hess[k, :] .= 0
hess[:, k] .= 0
hess[k, k] = 1
end
base_step_stacked = Hermitian(hess) \ neg_grad_stacked
base_step = reshape(base_step_stacked, dims)
push!(history.base_step, base_step)
# store the current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, norm(neg_grad))
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
rate = one(T)
step_success = false
base_target_improvement = dot(neg_grad, base_step)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * base_target_improvement
history.backoff_steps[end] = backoff_steps
step_success = true
break
end
rate *= backoff
end
# if we've hit a wall, quit
if !step_success
return L_last, false, history
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, loss < tol, history
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`
function realize_gram(
@ -445,6 +322,7 @@ function realize_gram(
frozen = nothing;
scaled_tol = 1e-30,
min_efficiency = 0.5,
init_rate = 1.0,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
@ -475,19 +353,20 @@ function realize_gram(
unfrozen_stacked = reshape(is_unfrozen, total_dim)
end
# initialize search state
# initialize variables
grad_rate = init_rate
L = copy(guess)
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# use Newton's method with backtracking and gradient descent backup
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of the loss function
# find the negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
@ -542,7 +421,6 @@ function realize_gram(
empty!(history.last_line_loss)
rate = one(T)
step_success = false
base_target_improvement = dot(neg_grad, base_step)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
@ -551,7 +429,7 @@ function realize_gram(
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * base_target_improvement
if improvement >= min_efficiency * rate * dot(neg_grad, base_step)
history.backoff_steps[end] = backoff_steps
step_success = true
break

View File

@ -74,13 +74,4 @@ if success
for k in 5:9
println(" ", 1 / L[4,k], " sun")
end
end
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
end

View File

@ -64,13 +64,4 @@ else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
println("Loss: ", history.scaled_loss[end], "\n")

View File

@ -93,13 +93,4 @@ if success
infty = BigFloat[0, 0, 0, 0, 1]
radius_ratio = dot(infty, Engine.Q * L[:,5]) / dot(infty, Engine.Q * L[:,6])
println("\nCircumradius / inradius: ", radius_ratio)
end
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
end

View File

@ -0,0 +1,3 @@
target
dist
Cargo.lock

View File

@ -0,0 +1,16 @@
[package]
name = "rust-benchmark-native"
version = "0.1.0"
authors = ["Aaron"]
edition = "2021"
[dependencies]
cairo-rs = "0.20.1"
gtk = { package = "gtk4", version = "0.9.0" }
nalgebra = "0.33.0"
plotters = "0.3.6"
plotters-cairo = "0.7.0"
[profile.release]
opt-level = "s" # optimize for small code size
debug = true # include debug symbols

View File

@ -0,0 +1,105 @@
use nalgebra::{*, allocator::Allocator};
use std::f64::consts::{PI, E};
/* dynamic matrices */
pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>> {
// initialize the random matrix
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
let n = j*dim + k;
E*((n*n) as f64) % 2.0 - 1.0
}) * (3.0 / (dim as f64)).sqrt();
// initialize the rotation step
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
eigval_series.push(rand_mat.complex_eigenvalues());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
}
/* dynamic single float matrices */
/*pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>> {
// initialize the random matrix
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
let n = j*dim + k;
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
}) * (3.0_f32 / (dim as f32)).sqrt();
// initialize the rotation step
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
eigval_series.push(rand_mat.complex_eigenvalues());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
}*/
/* static matrices. should only be used when the dimension is really small */
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
where
N: ToTypenum + DimName + DimSub<U1>,
DefaultAllocator:
Allocator<N> +
Allocator<N, N> +
Allocator<<N as DimSub<U1>>::Output> +
Allocator<N, <N as DimSub<U1>>::Output>
{
// initialize the random matrix
let dim = N::try_to_usize().unwrap();
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
let n = j*dim + k;
E*((n*n) as f64) % 2.0 - 1.0
}) * (3.0 / (dim as f64)).sqrt();
/*let mut rand_mat = OMatrix::<f64, N, N>::identity();*/
// initialize the rotation step
let mut rot_step = OMatrix::<f64, N, N>::identity();
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
eigval_series.push(rand_mat.complex_eigenvalues());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
}*/

View File

@ -0,0 +1,104 @@
// based on Olivier Pelhatre's GTK 3 example, ported to GTK 4
//
// https://github.com/Ouam74/RUST_Real-time_plots_using_GTK-rs_and_Plotters-rs
//
// a self-contained component might draw on the example below, by StackOverflow
// user Nicolas
//
// https://stackoverflow.com/a/76548487
//
// here's a crash course in `plotters`
//
// https://plotters-rs.github.io/book/basic/basic_data_plotting.html
//
extern crate cairo;
use plotters::prelude::*;
use plotters_cairo::CairoBackend;
use gtk::{
glib,
prelude::*,
Adjustment,
Align,
Application,
ApplicationWindow,
Box,
DrawingArea,
Label,
Orientation,
Scale
};
use std::time::Instant;
mod engine;
fn main() -> glib::ExitCode {
let app = Application::builder()
.application_id("org.studioinfinity.rust-benchmark-native")
.build();
app.connect_activate(|app| {
const TIME_RES: usize = 100;
let start_time = Instant::now();
let eigval_series = engine::rand_eigval_series(60, TIME_RES);
let run_time = start_time.elapsed().as_millis();
// application state
let time_step = Adjustment::new(0.0, 0.0, TIME_RES as f64, 1.0, 0.0, 0.0);
// create the window.
let window = ApplicationWindow::builder()
.application(app)
.title("The circular law")
.build();
// create a vertical box
let container = Box::new(Orientation::Vertical, 5);
window.set_child(Some(&container));
// create the run time readout
let run_time_readout = Label::builder()
.margin_top(5)
.margin_start(10)
.halign(Align::Start)
.label(glib::gformat!("{} ms", run_time))
.build();
container.append(&run_time_readout);
// set up the drawing area
let drawing_area = DrawingArea::builder()
.content_width(600)
.content_height(600)
.build();
let time_step_for_draw = time_step.clone();
let draw_eigvals = move |_: &DrawingArea, context: &cairo::Context, width: i32, height: i32| {
let root = CairoBackend::new(&context, (width as u32, height as u32)).unwrap().into_drawing_area();
let _ = root.fill(&BLACK);
const R_DISP: f64 = 1.5;
let mut chart = ChartBuilder::on(&root)
.build_cartesian_2d(-R_DISP..R_DISP, -R_DISP..R_DISP)
.unwrap();
let time_step_val = (time_step_for_draw.value() as usize).min(TIME_RES-1);
let eigval_iter = eigval_series[time_step_val].iter();
let _ = chart.draw_series(
eigval_iter.map(|z| Circle::new((z.re, z.im), 3, WHITE.filled()))
);
let _ = root.present();
};
DrawingAreaExtManual::set_draw_func(&drawing_area, draw_eigvals);
container.append(&drawing_area);
// set up the time step slider
let time_step_scale = Scale::new(Orientation::Horizontal, Some(&time_step));
time_step_scale.connect_value_changed(move |_: &Scale| {
drawing_area.queue_draw();
});
container.append(&time_step_scale);
// show the window
window.present();
});
app.run()
}

3
lang-trials/rust-benchmark/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
target
dist
Cargo.lock

View File

@ -1,21 +1,15 @@
[package]
name = "dyna3"
name = "rust-benchmark"
version = "0.1.0"
authors = ["Aaron Fenyes", "Glen Whitney"]
authors = ["Aaron"]
edition = "2021"
[features]
default = ["console_error_panic_hook"]
dev = []
[dependencies]
itertools = "0.13.0"
js-sys = "0.3.70"
lazy_static = "1.5.0"
nalgebra = "0.33.0"
rustc-hash = "2.0.0"
slab = "0.4.9"
sycamore = "0.9.0-beta.3"
sycamore = "0.9.0-beta.2"
# The `console_error_panic_hook` crate provides better debugging of panics by
# logging them with `console.error`. This is great for development, but requires
@ -26,24 +20,13 @@ console_error_panic_hook = { version = "0.1.7", optional = true }
[dependencies.web-sys]
version = "0.3.69"
features = [
'DomRect',
'CanvasRenderingContext2d',
'HtmlCanvasElement',
'HtmlInputElement',
'Performance',
'WebGl2RenderingContext',
'WebGlBuffer',
'WebGlProgram',
'WebGlShader',
'WebGlUniformLocation',
'WebGlVertexArrayObject'
'Window',
'Performance'
]
# the self-dependency specifies features to use for tests and examples
#
# https://github.com/rust-lang/cargo/issues/2911#issuecomment-1483256987
#
[dev-dependencies]
dyna3 = { path = ".", default-features = false, features = ["dev"] }
wasm-bindgen-test = "0.3.34"
[profile.release]

View File

@ -0,0 +1,9 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<title>The circular law</title>
<link data-trunk rel="css" href="main.css"/>
</head>
<body></body>
</html>

View File

@ -0,0 +1,23 @@
body {
margin-left: 20px;
margin-top: 20px;
color: #fcfcfc;
background-color: #202020;
}
#app {
display: flex;
flex-direction: column;
width: 600px;
}
canvas {
float: left;
background-color: #020202;
border-radius: 10px;
margin-top: 5px;
}
input {
margin-top: 5px;
}

View File

@ -0,0 +1,13 @@
in profiling, most time is being spent in the `reflect` method:
f64:
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::h7899977a4ba0b1d3
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::hc337c3cb6e3b4061
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect_rows::h43d0f6838d0c2833
f32:
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::h0e8ec322f198f847
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::h9928bdd5e72743ea
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect_rows::h49f571fd8fc9b0f2
in one test, we spent 4000 ms in "WASM closure", but the enveloping "VoidFunction" takes 1300 ms longer. in another test, though, there's no overhang; the 7000 ms we spent in `rand_eigval_series` accounts for basically the entire load time, and matches the clock timing

View File

@ -0,0 +1,104 @@
use nalgebra::{*, allocator::Allocator};
use std::f64::consts::{PI, E};
/* dynamic matrices */
pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>> {
// initialize the random matrix
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
let n = j*dim + k;
E*((n*n) as f64) % 2.0 - 1.0
}) * (3.0 / (dim as f64)).sqrt();
// initialize the rotation step
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
eigval_series.push(rand_mat.complex_eigenvalues());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
}
/* dynamic single float matrices */
/*pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>> {
// initialize the random matrix
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
let n = j*dim + k;
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
}) * (3.0_f32 / (dim as f32)).sqrt();
// initialize the rotation step
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
eigval_series.push(rand_mat.complex_eigenvalues());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
}*/
/* static matrices. should only be used when the dimension is really small */
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
where
N: ToTypenum + DimName + DimSub<U1>,
DefaultAllocator:
Allocator<N> +
Allocator<N, N> +
Allocator<<N as DimSub<U1>>::Output> +
Allocator<N, <N as DimSub<U1>>::Output>
{
// initialize the random matrix
let dim = N::try_to_usize().unwrap();
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
let n = j*dim + k;
E*((n*n) as f64) % 2.0 - 1.0
}) * (3.0 / (dim as f64)).sqrt();
// initialize the rotation step
let mut rot_step = OMatrix::<f64, N, N>::identity();
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
eigval_series.push(rand_mat.complex_eigenvalues());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
}*/

View File

@ -0,0 +1,78 @@
use std::f64::consts::PI as PI;
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
use web_sys::window;
mod engine;
fn main() {
// set up a config option that forwards panic messages to `console.error`
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| {
let time_res: usize = 100;
let time_step = create_signal(0.0);
let run_time_report = create_signal(-1.0);
let display = create_node_ref();
on_mount(move || {
let performance = window().unwrap().performance().unwrap();
let start_time = performance.now();
/*let eigval_series = engine::rand_eigval_series::<U60>(time_res);*/
let eigval_series = engine::rand_eigval_series(60, time_res);
let run_time = performance.now() - start_time;
run_time_report.set(run_time);
let canvas = display
.get::<DomNode>()
.unchecked_into::<web_sys::HtmlCanvasElement>();
let ctx = canvas
.get_context("2d")
.unwrap()
.unwrap()
.dyn_into::<web_sys::CanvasRenderingContext2d>()
.unwrap();
ctx.set_fill_style(&JsValue::from("white"));
create_effect(move || {
// center and normalize the coordinate system
let width = canvas.width() as f64;
let height = canvas.height() as f64;
ctx.set_transform(1.0, 0.0, 0.0, -1.0, 0.5*width, 0.5*height).unwrap();
// clear the previous frame
ctx.clear_rect(-0.5*width, -0.5*width, width, height);
// find the resolution
const R_DISP: f64 = 1.5;
let res = width / (2.0*R_DISP);
// draw the eigenvalues
let eigvals = &eigval_series[time_step.get() as usize];
for n in 0..eigvals.len() {
ctx.begin_path();
ctx.arc(
/* typecast only needed for single float version */
res * f64::from(eigvals[n].re),
res * f64::from(eigvals[n].im),
3.0,
0.0, 2.0*PI
).unwrap();
ctx.fill();
}
});
});
view! {
div(id="app") {
div { (run_time_report.get()) " ms" }
canvas(ref=display, width="600", height="600")
input(
type="range",
max=(time_res - 1).to_string(),
bind:valueAsNumber=time_step
)
}
}
});
}

3
lang-trials/rust/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
target
dist
Cargo.lock

View File

@ -0,0 +1,32 @@
[package]
name = "sycamore-trial"
version = "0.1.0"
authors = ["Aaron"]
edition = "2021"
[features]
default = ["console_error_panic_hook"]
[dependencies]
nalgebra = "0.33.0"
sycamore = "0.9.0-beta.2"
# The `console_error_panic_hook` crate provides better debugging of panics by
# logging them with `console.error`. This is great for development, but requires
# all the `std::fmt` and `std::panicking` infrastructure, so isn't great for
# code size when deploying.
console_error_panic_hook = { version = "0.1.7", optional = true }
[dependencies.web-sys]
version = "0.3.69"
features = [
'CanvasRenderingContext2d',
'HtmlCanvasElement',
]
[dev-dependencies]
wasm-bindgen-test = "0.3.34"
[profile.release]
# Tell `rustc` to optimize for small code size.
opt-level = "s"

View File

@ -0,0 +1,8 @@
<!DOCTYPE html>
<html>
<head>
<title>Lattice circle</title>
<link data-trunk rel="css" href="main.css"/>
</head>
<body></body>
</html>

50
lang-trials/rust/main.css Normal file
View File

@ -0,0 +1,50 @@
body {
margin-left: 20px;
margin-top: 20px;
color: #fcfcfc;
background-color: #202020;
}
input {
color: inherit;
background-color: #020202;
border: 1px solid #606060;
min-width: 40px;
border-radius: 4px;
}
input.point-1 {
border-color: #ba5d09;
}
input.point-2 {
border-color: #0e8a06;
}
input.point-3 {
border-color: #8951fb;
}
#data-panel {
float: left;
margin-left: 20px;
display: grid;
grid-template-columns: auto auto;
gap: 10px 10px;
width: 120px;
}
#data-panel > div {
text-align: center;
}
#result-display {
margin-top: 10px;
font-weight: bold;
}
canvas {
float: left;
background-color: #020202;
border-radius: 10px;
}

View File

@ -0,0 +1,38 @@
use nalgebra::*;
pub struct Circle {
pub center_x: f64,
pub center_y: f64,
pub radius: f64,
}
// construct the circle through the points given by the columns of `points`
pub fn circ_thru(points: Matrix2x3<f64>) -> Option<Circle> {
// build the matrix that maps the circle's coefficient vector to the
// negative of the linear part of the circle's equation, evaluated at the
// given points
let neg_lin_part = stack![2.0*points.transpose(), Vector3::repeat(1.0)];
// find the quadrdatic part of the circle's equation, evaluated at the given
// points
let quad_part = Vector3::from_iterator(
points.column_iter().map(|v| v.dot(&v))
);
// find the circle's coefficient vector, and from there its center and
// radius
match neg_lin_part.lu().solve(&quad_part) {
None => None,
Some(coeffs) => {
let center_x = coeffs[0];
let center_y = coeffs[1];
Some(Circle {
center_x: center_x,
center_y: center_y,
radius: (
coeffs[2] + center_x*center_x + center_y*center_y
).sqrt(),
})
}
}
}

View File

@ -0,0 +1,114 @@
use nalgebra::Matrix2x3;
use std::f64::consts::PI as PI;
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
mod engine;
fn main() {
// set up a config option that forwards panic messages to `console.error`
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| {
let data = [-1.0, 0.0, 0.0, -1.0, 1.0, 0.0].map(|n| create_signal(n));
let display = create_node_ref();
on_mount(move || {
let canvas = display
.get::<DomNode>()
.unchecked_into::<web_sys::HtmlCanvasElement>();
let ctx = canvas
.get_context("2d")
.unwrap()
.unwrap()
.dyn_into::<web_sys::CanvasRenderingContext2d>()
.unwrap();
create_effect(move || {
// center and normalize the coordinate system
let width = canvas.width() as f64;
let height = canvas.height() as f64;
ctx.set_transform(1.0, 0.0, 0.0, -1.0, 0.5*width, 0.5*height).unwrap();
// clear the previous frame
ctx.clear_rect(-0.5*width, -0.5*width, width, height);
// find the resolution
const R_DISP: f64 = 5.0;
let res = width / (2.0*R_DISP);
// set colors
let highlight_style = JsValue::from("white");
let grid_style = JsValue::from("#404040");
let point_fill_styles = ["#ba5d09", "#0e8a06", "#8951fb"];
let point_stroke_styles = ["#f89142", "#58c145", "#c396fc"];
// draw the grid
let r_grid = (R_DISP - 0.01).floor() as i32;
let edge_scr = res * R_DISP;
ctx.set_stroke_style(&grid_style);
for t in -r_grid ..= r_grid {
let t_scr = res * (t as f64);
// draw horizontal grid line
ctx.begin_path();
ctx.move_to(-edge_scr, t_scr);
ctx.line_to(edge_scr, t_scr);
ctx.stroke();
// draw vertical grid line
ctx.begin_path();
ctx.move_to(t_scr, -edge_scr);
ctx.line_to(t_scr, edge_scr);
ctx.stroke();
}
// find and draw the circle through the given points
let data_vals = data.map(|sig| sig.get()).to_vec();
let points = Matrix2x3::from_vec(data_vals);
if let Some(circ) = engine::circ_thru(points) {
ctx.begin_path();
ctx.set_stroke_style(&highlight_style);
ctx.arc(
res * circ.center_x,
res * circ.center_y,
res * circ.radius,
0.0, 2.0*PI
).unwrap();
ctx.stroke();
}
// draw the data points
for n in 0..3 {
ctx.begin_path();
ctx.set_fill_style(&JsValue::from(point_fill_styles[n]));
ctx.set_stroke_style(&JsValue::from(point_stroke_styles[n]));
let ind_x = 2*n;
let ind_y = ind_x + 1;
ctx.arc(
res * data[ind_x].get(),
res * data[ind_y].get(),
3.0,
0.0, 2.0*PI
).unwrap();
ctx.fill();
ctx.stroke();
}
});
});
view! {
canvas(ref=display, width="600", height="600")
div(id="data-panel") {
div { "x" }
div { "y" }
input(type="number", class="point-1", bind:valueAsNumber=data[0])
input(type="number", class="point-1", bind:valueAsNumber=data[1])
input(type="number", class="point-2", bind:valueAsNumber=data[2])
input(type="number", class="point-2", bind:valueAsNumber=data[3])
input(type="number", class="point-3", bind:valueAsNumber=data[4])
input(type="number", class="point-3", bind:valueAsNumber=data[5])
}
}
});
}

View File

@ -0,0 +1,2 @@
target
sbt.json

View File

@ -0,0 +1,9 @@
enablePlugins(ScalaJSPlugin)
name := "Circular Law"
scalaVersion := "3.4.2"
scalaJSUseMainModuleInitializer := true
libraryDependencies += "com.raquo" %%% "laminar" % "17.0.0"
libraryDependencies += "ai.dragonfly" %%% "slash" % "0.3.1"
libraryDependencies += "org.scala-js" %%% "scalajs-dom" % "2.8.0"

View File

@ -0,0 +1,10 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>The circular law</title>
<script type="text/javascript" src="./target/scala-3.4.2/circular-law-opt/main.js"></script>
<link rel="stylesheet" href="main.css"/>
</head>
<body></body>
</html>

View File

@ -0,0 +1,23 @@
body {
margin-left: 20px;
margin-top: 20px;
color: #fcfcfc;
background-color: #202020;
}
#app {
display: flex;
flex-direction: column;
width: 600px;
}
canvas {
float: left;
background-color: #020202;
border-radius: 10px;
margin-top: 5px;
}
input {
margin-top: 5px;
}

View File

@ -0,0 +1 @@
sbt.version=1.10.1

View File

@ -0,0 +1 @@
addSbtPlugin("org.scala-js" % "sbt-scalajs" % "1.16.0")

View File

@ -0,0 +1,99 @@
import com.raquo.laminar.api.L.{*, given}
import narr.*
import org.scalajs.dom
import org.scalajs.dom.document
import scala.collection.mutable.ArrayBuffer
import scala.math.{cos, sin}
import slash.matrix.Matrix
import slash.matrix.decomposition.Eigen
object CircularLawApp:
val canvas = canvasTag(widthAttr := 600, heightAttr := 600)
val ctx = canvas.ref.getContext("2d").asInstanceOf[dom.CanvasRenderingContext2D]
val (eigvalSeries, runTimeReport) = randEigvalSeries[60]()
val timeStepState = Var("0")
def draw(timeStep: String): Unit =
// center and normalize the coordinate system
val width = canvas.ref.width
val height = canvas.ref.height
ctx.setTransform(1d, 0d, 0d, -1d, 0.5*width, 0.5*height)
// clear the previous frame
ctx.clearRect(-0.5*width, -0.5*width, width, height)
// find the resolution
val rDisp: Double = 1.5
val res = width / (2*rDisp)
// draw the eigenvalues
val eigvals = eigvalSeries(timeStep.toInt)
for n <- 0 to eigvals(0).length-1 do
ctx.beginPath()
ctx.arc(
res * eigvals(0)(n),
res * eigvals(1)(n),
3d,
0d, 2*math.Pi
)
ctx.fill()
def complexEigenvalues[N <: Int](mat: Matrix[N, N])(using ValueOf[N]): (NArray[Double], NArray[Double]) =
val eigen = Eigen(mat)
(
eigen.realEigenvalues.asInstanceOf[NArray[Double]],
eigen.imaginaryEigenvalues.asInstanceOf[NArray[Double]]
)
def randEigvalSeries[N <: Int]()(using ValueOf[N]): (ArrayBuffer[(NArray[Double], NArray[Double])], String) =
// start timing
val startTime = System.currentTimeMillis()
// initialize the random matrix step
val dim: Int = valueOf[N]
var randMat = new Matrix[N, N](
NArray.tabulate(dim*dim)(k => (math.E*k*k) % 2 - 1)
).times(math.sqrt(3d / dim))
// initialize the rotation step
val timeRes = 100
val maxFreq = 4
val rotStep = Matrix.identity[N, N]
for n <- 0 to dim by 2 do
val ang = math.Pi * (n % maxFreq) / timeRes
val cos_ang = cos(ang)
val sin_ang = sin(ang)
rotStep(n, n) = cos_ang
rotStep(n+1, n) = sin_ang
rotStep(n, n+1) = -sin_ang
rotStep(n+1, n+1) = cos_ang
// find the eigenvalues
val eigvalSeries = ArrayBuffer(complexEigenvalues(randMat))
for _ <- 1 to timeRes-1 do
randMat = rotStep * randMat
eigvalSeries += complexEigenvalues(randMat)
// finish timing
val runTime = System.currentTimeMillis() - startTime
(eigvalSeries, runTime.toString() + " ms")
def main(args: Array[String]): Unit =
ctx.fillStyle = "white"
lazy val app = div(
idAttr := "app",
div(runTimeReport),
canvas,
input(
typ := "range",
maxAttr := (eigvalSeries.length-1).toString,
controlled(
value <-- timeStepState.signal,
onInput.mapToValue --> timeStepState.writer
),
timeStepState.signal --> draw
)
)
renderOnDomContentLoaded(document.body, app)

2
lang-trials/scala/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
target
sbt.json

View File

@ -0,0 +1,12 @@
enablePlugins(ScalaJSPlugin)
name := "Lattice Circle"
scalaVersion := "3.4.2"
// This is an application with a main method
scalaJSUseMainModuleInitializer := true
libraryDependencies += "com.raquo" %%% "laminar" % "17.0.0"
/*libraryDependencies += "org.scalanlp" %% "breeze" % "2.1.0"*/
libraryDependencies += "ai.dragonfly" %%% "slash" % "0.3.1"
libraryDependencies += "org.scala-js" %%% "scalajs-dom" % "2.8.0"

View File

@ -0,0 +1,10 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Lattice circle</title>
<script type="text/javascript" src="./target/scala-3.4.2/lattice-circle-fastopt/main.js"></script>
<link rel="stylesheet" href="main.css"/>
</head>
<body></body>
</html>

View File

@ -0,0 +1,45 @@
body {
margin-left: 20px;
margin-top: 20px;
color: #fcfcfc;
background-color: #202020;
}
input {
color: inherit;
background-color: #020202;
border: 1px solid #606060;
min-width: 40px;
border-radius: 4px;
}
input.point-1 {
border-color: #ba5d09;
}
input.point-2 {
border-color: #0e8a06;
}
input.point-3 {
border-color: #8951fb;
}
#data-panel {
float: left;
margin-left: 20px;
display: grid;
grid-template-columns: auto auto;
gap: 10px 10px;
width: 120px;
}
#data-panel > div {
text-align: center;
}
canvas {
float: left;
background-color: #020202;
border-radius: 10px;
}

View File

@ -0,0 +1 @@
sbt.version=1.10.1

View File

@ -0,0 +1 @@
addSbtPlugin("org.scala-js" % "sbt-scalajs" % "1.16.0")

View File

@ -0,0 +1,160 @@
// based on the Laminar example app
//
// https://github.com/raquo/laminar-examples/blob/master/src/main/scala/App.scala
//
// and Li Haoyi's example canvas app
//
// http://www.lihaoyi.com/hands-on-scala-js/#MakingaCanvasApp
//
import com.raquo.laminar.api.L.{*, given}
import narr.*
import org.scalajs.dom
import org.scalajs.dom.document
import scala.math
import slash.matrix.*
class Circle(var centerX: Double, var centerY: Double, var radius: Double)
object LatticeCircleApp:
val canvas = canvasTag(widthAttr := 600, heightAttr := 600)
val ctx = canvas.ref.getContext("2d").asInstanceOf[dom.CanvasRenderingContext2D]
val data = List("-1", "0", "0", "-1", "1", "0").map(Var(_))
def circThru(points: Matrix[3, 2]): Option[Circle] =
// build the matrix that maps the circle's coefficient vector to the
// negative of the linear part of the circle's equation, evaluated at the
// given points
val negLinPart = Matrix.ones[3, 3]
negLinPart.setMatrix(0, 0, points * 2.0)
// find the quadrdatic part of the circle's equation, evaluated at the given
// points
val quadPart = Matrix[3, 1](
NArray.tabulate[Double](3)(
k => points(k, 0)*points(k, 0) + points(k, 1)*points(k, 1)
)
)
// find the circle's coefficient vector, and from there its center and
// radius
try
val coeffs = negLinPart.solve(quadPart)
val centerX = coeffs(0, 0)
val centerY = coeffs(1, 0)
Some(Circle(
centerX,
centerY,
math.sqrt(coeffs(2, 0) + centerX*centerX + centerY*centerY)
))
catch
_ => return None
def draw(): Unit =
// center and normalize the coordinate system
val width = canvas.ref.width
val height = canvas.ref.height
ctx.setTransform(1.0, 0.0, 0.0, -1.0, 0.5*width, 0.5*height)
// clear the previous frame
ctx.clearRect(-0.5*width, -0.5*width, width, height)
// find the resolution
val rDisp = 5.0
val res = width / (2.0*rDisp)
// set colors
val highlightStyle = "white"
val gridStyle = "#404040"
val pointFillStyles = List("#ba5d09", "#0e8a06", "#8951fb")
val pointStrokeStyles = List("#f89142", "#58c145", "#c396fc")
// draw the grid
val rGrid = (rDisp - 0.01).floor.toInt
val edgeScr = res * rDisp
ctx.strokeStyle = gridStyle
for t <- -rGrid to rGrid do
val tScr = res * t
// draw horizontal grid line
ctx.beginPath();
ctx.moveTo(-edgeScr, tScr)
ctx.lineTo(edgeScr, tScr)
ctx.stroke()
// draw vertical grid line
ctx.beginPath();
ctx.moveTo(tScr, -edgeScr)
ctx.lineTo(tScr, edgeScr)
ctx.stroke()
// find and draw the circle through the given points
val dataNow = NArray.tabulate(6)(n =>
try
data(n).signal.now().toDouble
catch
_ => Double.NaN
)
if dataNow.forall(t => t == t.floor) then
// all of the coordinates are integer and non-NaN
val points = Matrix[3, 2](dataNow)
circThru(points) match
case Some(circ) =>
ctx.beginPath()
ctx.strokeStyle = highlightStyle
ctx.arc(
res * circ.centerX,
res * circ.centerY,
res * circ.radius,
0.0, 2.0*math.Pi
)
ctx.stroke()
case None =>
// draw the data points
for n <- 0 to 2 do
val indX = 2*n
val indY = indX + 1
if
dataNow(indX) == dataNow(indX).floor &&
dataNow(indY) == dataNow(indY).floor
then
ctx.beginPath()
ctx.fillStyle = pointFillStyles(n)
ctx.strokeStyle = pointStrokeStyles(n)
ctx.arc(
res * dataNow(indX),
res * dataNow(indY),
3.0,
0.0, 2.0*math.Pi
)
ctx.fill()
ctx.stroke()
def coordInput(n: Int): Input =
input(
typ := "number",
cls := s"point-${(1.0 + 0.5*n).floor.toInt}",
controlled(
value <-- data(n).signal,
onInput.mapToValue --> data(n).writer
),
data(n).signal --> { _ => draw() }
)
def main(args: Array[String]): Unit =
lazy val app = div(
canvas,
div(
idAttr := "data-panel",
div("x"),
div("y"),
coordInput(0),
coordInput(1),
coordInput(2),
coordInput(3),
coordInput(4),
coordInput(5)
)
)
renderOnDomContentLoaded(document.body, app)

View File

@ -2,29 +2,28 @@
(proposed by Alex Kontorovich as a practical system for doing 3D geometric calculations)
These coordinates are of form $I=(c, b, x, y, z)$ where we think of $c$ as the co-radius, $b$ as the "bend" (reciprocal radius), and $x, y, z$ as the "Euclidean" part, which we abbreviate $E_I$. There is an underlying basic quadratic form $Q(I_1,I_2) = (c_1b_2+c_2b_1)/2 - x_1x_2 -y_1y_2-z_1z_2$ which aids in calculation/verification of coordinates in this representation. We have:
These coordinates are of form $I=(c, r, x, y, z)$ where we think of $c$ as the co-radius, $r$ as the radius, and $x, y, z$ as the "Euclidean" part, which we abbreviate $E_I$. There is an underlying basic quadratic form $Q(I_1,I_2) = (c_1r_2+c_2r_1)/2 - x_1x_2 -y_1y_2-z_1z_2$ which aids in calculation/verification of coordinates in this representation. We have:
| Entity or Relationship | Representation | Comments/questions |
| ---------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Sphere $s$ with radius $r>0$ centered on $P = (x,y,z)$ | $I_s = (\frac1{c}, \frac1{r}, \frac{x}{r}, \frac{y}{r}, \frac{z}{r})$ satisfying $Q(I_s,I_s) = -1,$ i.e., $c = r/(\|P\|^2 - r^2)$. | Note that $1/c = \|P\|^2/r - r$, so there is no trouble if $\|P\| = r$; we just get first coordinate to be 0. Using the point representation $I_P$ from below, let's orient the sphere so that its normals point into the "positive side," where $Q(I_P, I_s) > 0$. The vector $I_s$ then represents a sphere with outward normals, while $-I_s$ represents one with inward normals. |
| Plane $p$ with unit normal $(x,y,z)$ through the (Euclidean) point $(sx,sy,sz)$ | $I_p = (-2s, 0, -x, -y, -z)$ | Note that $Q(I_p, I_p)$ is still $-1$. We orient planes using the same convention we use for spheres. For example, $(-2, 0, -1/\sqrt3, -1/\sqrt3, -1/\sqrt3)$ and $(2, 0, 1/\sqrt3, 1/\sqrt3, 1/\sqrt3)$ represent planes that coincide in space, which have their normals pointing away from and toward the origin, respectively. Note that the ray from $(sx, sy, sz) \in p$ in direction $(-x, -y, -z)$ is the ray perpendicular to the plane through the origin; since $(-x, -y, -z)$ is a unit vector, $(sx, sy, sz)$ and hence $p$ is at distance $s$ from the origin. These coordinates are essentially the limit of a sphere's coordinates as its radius goes to infinity, or equivalently, as its bend goes to 0. |
| Point $P$ with Euclidean coordinates $(x,y,z)$ | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$. This gives us the freedom to choose a different normalization. For example, we could scale the representation shown here by $(\|P\|^2+1)^{-1}$, putting it on the sphere where the light cone intersects the plane where the first two coordinates sum to $1$. |
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by (some normalization of) the above case. |
| Point $P$ lies on sphere or plane given by $I$ | $Q(I_P, I) = 0$ | Actually also works if $I$ is the coordinates of a point, in which case "lies on" simply means "coincides with". |
| Sphere/planes represented by $I$ and $J$ are tangent | If $I$ and $J$ have the same orientation where they touch, $Q(I,J) = -1$. If they have opposing orientations, $Q(I,J) = 1$. | For example, the $xy$ plane with normal $-e_z$, represented by $(0,0,0,0,1)$, is tangent with matching orientation to the unit sphere centered at $(0,0,1)$ with outward normals, represented by $(0,1,0,0,1).$ Accordingly, their $Q$ - product is $-1$. |
| Sphere/planes represented by $I$ and $J$ intersect (respectively, don't intersect) | $\lvert Q(I,J)\rvert \le (\text{resp. }>)\; 1$ | Follows from the angle formula and the tangency condition, at least conceptually. One subtlety: parallel planes have $Q$ - product $\pm 1$, because they intersect at infinity (and in fact, are "tangent" there)! |
| $P$ is center of sphere rep'd by $I$ | $Q(I, I_P) = -r/2$, where $1/r = 2Q(I_\infty, I)$ is the signed bend of the sphere, and $I_P$ is normalized in the standard way, which is to set $Q(I_\infty, I_P) = 1/2$ | This relationship is equivalent to both of the following. (1) The point $P$ has signed distance $-r$ from the sphere. (2) Inversion across the sphere maps $\infty$ to $P$. |
| Distance between points $P$ and $R$ is $d$ | $Q(I_P, I_R) = d^2/2$ | If $P$ and $R$ are represented by non-normalized vectors $V_P$ and $V_R$, the relation becomes $Q(V_P, V_R) = 2\,Q(V_P, I_\infty)\,Q(V_R, I_\infty)\,d^2$. This version of the relation makes it easier to see why $d$ goes to infinity as $P$ or $R$ approaches the point at infinity. |
| Signed distance between point rep'd by $V$ and sphere/plane rep'd by $I$ is $d$ | In general, $\frac{Q(I, V)}{2Q(I_\infty, V)} = Q(I_\infty, I)\,d^2 + d$. When $V$ is normalized in the usual way, this simplifies to $Q(I, V) = d^2/r + d$ for a sphere of radius $r$, and to $Q(I, V) = d$ for a plane. | We can use a Euclidean motion, represented linearly by a Lorentz transformation that fixes $I_\infty$, to put the point on the $z$ axis and put the nearest point on the sphere/plane at the origin with its normal pointing in the positive $z$ direction. Then the sphere/plane is represented by $I = (0, 1/r, 0, 0, -1)$, and the point can be represented by any multiple of $I_P = (d^2, 1, 0, 0, d)$, giving $Q(I, I_P) = d^2/2r + d.$ We turn this into a general expression by writing it in terms of Lorentz-invariant quantities and making it independent of the normalization of $I_P$. |
| Distance between sphere/planes rep by $I$ and $J$ | Note that for any two Euclidean-concentric spheres rep by $I$ and $J$ with radius $r$ and $s,$ $Q(I,J) = -\frac12\left(\frac rs + \frac sr\right)$ depends only on the ratio of $r$ and $s$. So this can't give something that determines the Euclidean distance between the two spheres, which presumably grows as the two spheres are blown up proportionally. For another example, for any two parallel planes, $Q(I,J) = \pm1$. | Alex had said: $Q(I,J)=\cosh(d/2)^2$ maybe where d is distance in usual hyperbolic metric. Or maybe $\cosh(d)$. That may be right depending on what's meant by the hyperbolic metric there, but it seems like it won't determine a reasonable Euclidean distance between planes, which should differ between different pairs of parallel planes. |
| Sphere centered on point $P$ through point $R$ | | Probably just calculate distance etc. |
| Plane rep'd by $I$ goes through center of sphere rep'd by $J$ | This is equivalent to the plane being perpendicular to the sphere: that is, $Q(I, J) = 0$. | |
| Dihedral angle between planes or spheres rep by $I$ and $J$ | $\theta = \arccos(Q(I,J))$ | Aaron Fenyes points out: The angle between spheres in $S^3$ matches the angle between the planes they bound in $R^{(1,4)}$, which matches the angle between the spacelike vectors perpendicular to those planes. So we should have $Q(I,J) = \cos(\theta)$. Note that when the spheres do not intersect, we can interpret this as the "imaginary angle" between them, via $\cosh(t) = \cos(it)$. |
| Points $R, P, S$ are collinear | Maybe just cross product of two differences is 0. Or, $R,P,S,\infty$ lie on a circle, or equivalently, $I_R,I_P,I_S,I_\infty$ span a plane (rather than a three-space). Or we can add two planes constrained to be perpendicular with one constrained to contain the origin, and all three points constrained to lie on both. But that's a lot of auxiliary entities and constraints... | $R,P,S$ lying on a line isn't a conformal property, but $R,P,S,\infty$ lying on a circle is. |
| Plane through noncollinear $R, P, S$ | Should be, just solve $Q(I, I_R) = 0$ etc. | |
| circle | Maybe concentric sphere and the containing plane? Note it is easy to constrain the relationship between those two: they must be perpendicular. | Defn: circle is intersection of two spheres. That does cover lines. But you lose the canonicalness |
| line | Maybe two perpendicular containing planes? Maybe the plane perpendicular to the line and through origin, together with the point of the line on that plane? Or maybe just as a bag of collinear points? | The first is the limiting case of the possible circle rep, but it is not canonical. However, there is a distinguished "standard" choice we could make: always choose one plane to contain the origin and the line, and the other to be the perpendicular plane containing the line. That choice or Plücker coordinates might be the best we can do. If we use the standardized perpendicular planes choice, then adding a line would be equivalent to adding two planes and the two constraints that one contains the origin and the other is perpendicular to it. That doesn't seem so bad. The second convention (perpendicular plane through the origin and a point on it) appears to be canonical, but there doesn't seem to be a circle representation that tends to it in the limit. |
| Inversion of entity represented by $v$ across sphere $s$, rep'd by $I_s$ | $v \mapsto v + 2Q(I_s, v)\,I_s$ | This is just an educated guess, but its behavior is consistent with inversion in at least two ways. (1) It fixes points on $s$ and spheres perpendicular to $s$. (2) It preserves dihedral angles with $s$. |
| Entity or Relationship | Representation | Comments/questions |
| ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Sphere s with radius r>0 centered on P = (x,y,z) | $I_s = (1/c, 1/r, x/r, y/r, z/r)$ satisfying $Q(I_s,I_s) = -1$, i.e., $c = r/(\|P\|^2 - r^2)$. | Can also write $I_s = (\|P\|^2/r - r, 1/r, x/r. y/r, z/r)$—so there is no trouble if $\|E_{I_s}\| = r$, just get first coordinate to be 0. |
| Plane p with unit normal (x,y,z) through the point s(x,y,z) | $I_p = (-2s, 0, -x, -y, -z)$ | Note $Q(I_p, I_p)$ is still 1. |
| Point P with Euclidean coordinates (x,y,z) | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$.  Because of this we might choose  some other scaling of the inversive coordinates, say $(\||P\||,1/\||P\||,x/\||P\||,y/\||P\||,z/\||P\||)$ instead, but that fails at the origin, and likely won't have some of the other nice properties listed below.  Note that scaling just the co-radius by $s$ and the radius by $1/s$ (which still preserves $Q=0$) dilates by a factor of $s$ about the origin, so that $(\|P\|, \|P\|, x, y, z)$, which might look symmetric, would actually have to represent the Euclidean point $(x/\||P\||, y/\||P\||, z/\||P\||)$ . |
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by the above case. |
| P lies on sphere or plane given by I | $Q(I_P, I) = 0$ | |
| Sphere/planes represented by I and J are tangent | If $I$ and $J$ have the same orientation where they touch, $Q(I,J) = -1$. If they have opposing orientations, $Q(I,J) = 1$. | For example, the $xy$ plane with normal $-e_z$, represented by $(0,0,0,0,1)$, is tangent with matching orientation to the unit sphere centered at $(0,0,1)$ with outward normals, represented by $(0,1,0,0,1)$. Accordingly, their $Q$-product is 1. |
| Sphere/planes represented by I and J intersect (respectively, don't intersect) | $\|Q(I,J)\| < (\text{resp. }>)\; 1$ | Follows from the angle formula, at least conceptually. |
| P is center of sphere represented by I | Well, $Q(I_P, I)$ comes out to be $(\|P\|^2/r - r + \|P\|^2/r)/2 - \|P\|^2/r$ or just $-r/2$ . | Is it if and only if ?   No this probably doesn't work because center is not conformal quantity. |
| Distance between P and R is d | $Q(I_P, I_R) = d^2/2$ | |
| Distance between P and sphere/plane rep by I | | In the very simple case of a plane $I$ rep'd by $(2s, 0, x, y, z)$ and a point $P$ that lies on its perpendicular through the origin, rep'd by $(r^2, 1, rx, ry, rz)$ we get $Q(I, I_p) = s-r$, which is indeed the signed distance between $I$ and $P$. Not sure if this generalizes to other combinations? |
| Distance between sphere/planes rep by I and J | Note that for any two Euclidean-concentric spheres rep by $I$ and $J$ with radius $r$ and $s,$ $Q(I,J) = -\frac12\left(\frac rs  + \frac sr\right)$ depends only on the ratio of $r$ and $s$. So this can't give something that determines the Euclidean distance between the two spheres, which presumably grows as the two spheres are blown up proportionally. For another example, for any two parallel planes, $Q(I,J) = \pm1$. | Alex had said: $Q(I,J)=\cosh(d/2)^2$ maybe where d is distance in usual hyperbolic metric. Or maybe $\cosh(d)$. That may be right depending on what's meant by the hyperbolic metric there, but it seems like it won't determine a reasonable Euclidean distance between planes, which should differ between different pairs of parallel planes. |
| Sphere centered on P through R | | Probably just calculate distance etc. |
| Plane rep'd by I goes through center of sphere rep'd by J | I think this is equivalent to the plane being perpendicular to the sphere, i.e. $Q(I,J) = 0$. | |
| Dihedral angle between planes (or spheres?) rep by I and J | $\theta = \arccos(Q(I,J))$ | Aaron Fenyes points out: The angle between spheres in $S^3$ matches the angle between the planes they bound in $R^{(1,4)}$, which matches the angle between the spacelike vectors perpendicular to those planes. So we should have $Q(I,J) = \cos(\theta)$. Note that when the spheres do not intersect, we can interpret this as the "imaginary angle" between them, via $\cosh(t) = \cos(it)$. |
| R, P, S are collinear | Maybe just cross product of two differences is 0. Or, $R,P,S,\infty$ lie on a circle, or equivalently, $I_R,I_P,I_S,I_\infty$ span a plane (rather than a three-space). | $R,P,S$ lying on a line isn't a conformal property, but $R,P,S,\infty$ lying on a circle is. |
| Plane through noncollinear R, P, S | Should be, just solve $Q(I, I_R) = 0$ etc. | |
| circle | Maybe concentric sphere and the containing plane? Note it is easy to constrain the relationship between those two: they must be perpendicular. | Defn: circle is intersection of two spheres. That does cover lines. But you lose the canonicalness |
| line | Maybe two perpendicular containing planes? Maybe the plane perpendicular to the line and through origin, together with the point of the line on that plane? Or maybe just as a bag of collinear points? | The first is the limiting case of the possible circle rep, but it is not canonical. The second appears to be canonical, but I don't see a circle rep that corresponds to it. |
The unification of spheres/planes is indeed attractive for a project like Dyna3. The relationship between this representation and Geometric Algebras is a bit murky; likely it somehow fits under the Geometric Algebra umbrella.
@ -41,25 +40,3 @@ I will have to work out formulas for the Euclidean distance between two entities
In this vein, it seems as though if J1 and J2 are the reps of two points, then Q(J1,J2) = d^2/2. So then the sphere centered at J1 through J2 is (J1-(2Q(J1,J2),0,0,0,0))/sqrt(2Q(J1,J2)). Ugh has a sqrt in it. Similarly for sphere centered at J3 through J2, (J3-(2Q(J3,J2),0000))/sqrt(2Q(J3,J2)). J1,J2,J3 are collinear if these spheres are tangent, i.e. if those vectors have Q-inner-product 1, which is to say Q(J1,J3) - Q(J1,J2) - Q(J3,J2) = 2sqrt(Q(J1,J2)Q(J2,J3)). But maybe that's not the simplest way of putting it. After all, we can just say that the cross-product of the two differences is 0; that has no square roots in it.
One conceivable way to canonicalize lines is to use the *perpendicular* plane that goes through the origin, that's uniquely defined, and anyway just amounts to I = (0,0,d) where d is the ordinary direction vector of the line; and a point J in that plane that the line goes through, which just amounts to J=(r^2,1,E) with Q(I,J) = 0, i.e. E\dot d = 0. It's also the point on the line closest to the origin. The reason that we don't usually use that point as the companion to the direction vector is that the resulting set of six coordinates is not homogeneous. But here that's not an issue, since we have our standard point coordinates and plane coordinates; and for a plane through the origin, only two of the direction coordinates are really free, and then we have the one dot-product relation, so only two of the point coordinates are really free, giving us the correct dimensionality of 4 for the set of lines. So in some sense this says that we could take naively as coordinates for a line the projection of the unit direction vector to the xy plane and the projection of the line's closest point to the origin to the xy plane. That doesn't seem to have any weird gimbal locks or discontinuities or anything. And with these coordinates, you can test if the point E=x,y,z is on the line (dx,dy,cx,cy) by extending (dx,dy) to d via dz = sqrt(1-dx^2 - dy^2), extending (cx,cy) to c by determining cz via d\dot c = 0, and then checking if d\cross(E-c) = 0. And you can see if two lines are parallel just by checking if they have the same direction vector, and if not, you can see if they are coplanar by projecting both of their closest points perpendicularly onto the line in the direction of the cross product of their directions, and if the projections match they are coplanar.
#### Engine Conventions
The coordinate conventions used in the engine are different from the ones used in these notes. Marking the engine vectors and coordinates with $'$, we have
$$I' = (x', y', z', b', c'),$$
where
$$
\begin{align*}
x' & = x & b' & = b/2 \\
y' & = y & c' & = c/2. \\
z' & = z
\end{align*}
$$
The engine uses the quadratic form $Q' = -Q$, which is expressed in engine coordinates as
$$Q'(I'_1, I'_2) = x'_1 x'_2 + y'_1 y'_2 + z'_1 z'_2 - 2(b'_1c'_2 + c'_1 b'_2).$$
In the `engine` module, the matrix of $Q'$ is encoded in the lazy static variable `Q`.
In the engine's coordinate conventions, a sphere with radius $r > 0$ centered on $P = (P_x, P_y, P_z)$ is represented by the vector
$$I'_s = \left(\frac{P_x}{r}, \frac{P_y}{r}, \frac{P_z}{r}, \frac1{2r}, \frac{\|P\|^2 - r^2}{2r}\right),$$
which has the normalization $Q'(I'_s, I'_s) = 1$. The point $P$ is represented by the vector
$$I'_P = \left(P_x, P_y, P_z, \frac{1}{2}, \frac{\|P\|^2}{2}\right).$$
In the `engine` module, these formulas are encoded in the `sphere` and `point` functions.