Compare commits
133 Commits
main
...
lang-trial
Author | SHA1 | Date | |
---|---|---|---|
|
5bec0306ce | ||
|
8cb73f88d0 | ||
|
eeb0f00534 | ||
|
8ce3e251d7 | ||
|
543f348cd8 | ||
|
0abcb995b5 | ||
|
d864ab5abe | ||
|
fb51e00503 | ||
|
144bfb8faf | ||
|
27ada6566b | ||
|
3665351e12 | ||
|
14fb6d01f0 | ||
|
0b3fe689cd | ||
|
6b0fad89dc | ||
|
0bd025dd14 | ||
|
4f30f31686 | ||
|
c376fcdad8 | ||
|
244f222eb0 | ||
|
42bdfabd91 | ||
|
12abef4076 | ||
|
d7dbee4c05 | ||
|
9d69a900e2 | ||
|
8a77cd7484 | ||
|
a26f1e3927 | ||
|
19a4d49497 | ||
|
71c10adbdd | ||
|
33c09917d0 | ||
|
b24dcc9af8 | ||
|
b040bbb7fe | ||
|
9007c8bc7c | ||
|
a7f9545a37 | ||
|
3764fde2f6 | ||
|
24dae6807b | ||
|
74c7f64b0c | ||
|
d0340c0b65 | ||
|
69a704d414 | ||
|
01f44324c1 | ||
|
96ffc59642 | ||
|
a02b76544a | ||
|
6e719f9943 | ||
|
d51d43f481 | ||
|
6d233b5ee9 | ||
|
5abd4ca6e1 | ||
|
ea640f4861 | ||
|
4728959ae0 | ||
|
2038103d80 | ||
|
bde42ebac0 | ||
|
e6cf08a9b3 | ||
|
7c77481f5e | ||
|
1ce609836b | ||
|
b185fd4b83 | ||
|
94e0d321d5 | ||
|
53d8c38047 | ||
|
7b3efbc385 | ||
|
25b09ebf92 | ||
|
3910b9f740 | ||
|
d538cbf716 | ||
|
4d5ea062a3 | ||
|
5652719642 | ||
|
f84d475580 | ||
|
77bc124170 | ||
|
023759a267 | ||
|
610fc451f0 | ||
|
93dd05c317 | ||
|
9efa99e8be | ||
|
828498b3de | ||
|
736ac50b07 | ||
|
ea354b6c2b | ||
|
d39244d308 | ||
|
7e94fef19e | ||
|
abc53b4705 | ||
|
17fefff61e | ||
|
133519cacb | ||
|
e7dde5800c | ||
|
242d630cc6 | ||
|
8eb1ebb8d2 | ||
|
05a824834d | ||
|
a113f33635 | ||
|
5ea32ac53c | ||
|
3eb4fc6c91 | ||
|
7aaf134a36 | ||
|
c933e07312 | ||
|
2b6c4f4720 | ||
|
5aadfecf6c | ||
|
4a28a47520 | ||
|
a3b1f4920c | ||
|
665cb30ce0 | ||
|
182b5bb9f6 | ||
|
b7b5b9386b | ||
|
06a9dda5bb | ||
|
69a9baa8ee | ||
|
3b10c95d5f | ||
|
3c34481519 | ||
|
d1ce91d2aa | ||
|
58a5c38e62 | ||
|
ef33b8ee10 | ||
|
717e5a6200 | ||
|
16826cf07c | ||
|
3170a933e4 | ||
|
f2000e5731 | ||
|
ba365174d3 | ||
|
ae5db0f9ea | ||
|
8d8bc9162c | ||
|
291d5c8ff6 | ||
|
e41bcc7e13 | ||
|
31d5e7e864 | ||
|
a450f701fb | ||
|
6cf07dc6a1 | ||
|
1f173708eb | ||
|
6f18d4efcc | ||
|
621c4c5776 | ||
|
b3b7c2026d | ||
|
af1d31f6e6 | ||
|
8e33987f59 | ||
|
06872a04af | ||
|
becefe0c47 | ||
|
34358a8728 | ||
|
95c0ff14b2 | ||
|
f97090c997 | ||
|
45aaaafc8f | ||
|
43cbf8a3a0 | ||
|
21f09c4a4d | ||
|
a3f3f6a31b | ||
|
65d23fb667 | ||
|
4e02ee16fc | ||
|
6349f298ae | ||
|
0731c7aac1 | ||
|
59a527af43 | ||
|
c29000d912 | ||
|
86dbd9ea45 | ||
|
463a3b21e1 | ||
|
4d5aa3b327 | ||
|
b864cf7866 |
48
README.md
48
README.md
@ -17,51 +17,3 @@ Note that currently this is just the barest beginnings of the project, more of a
|
||||
* Able to run in browser (so implemented in WASM-compatible language)
|
||||
|
||||
* Produce scalable graphics of 3D diagrams, and maybe STL files (or other fabricatable file format) as well.
|
||||
|
||||
## Prototype
|
||||
|
||||
The latest prototype is in the folder `app-proto`. It includes both a user interface and a numerical constraint-solving engine.
|
||||
|
||||
### Install the prerequisites
|
||||
|
||||
1. Install [`rustup`](https://rust-lang.github.io/rustup/): the officially recommended Rust toolchain manager
|
||||
* It's available on Ubuntu as a [Snap](https://snapcraft.io/rustup)
|
||||
2. Call `rustup default stable` to "download the latest stable release of Rust and set it as your default toolchain"
|
||||
* If you forget, the `rustup` [help system](https://github.com/rust-lang/rustup/blob/d9b3601c3feb2e88cf3f8ca4f7ab4fdad71441fd/src/errors.rs#L109-L112) will remind you
|
||||
3. Call `rustup target add wasm32-unknown-unknown` to add the [most generic 32-bit WebAssembly target](https://doc.rust-lang.org/nightly/rustc/platform-support/wasm32-unknown-unknown.html)
|
||||
4. Call `cargo install wasm-pack` to install the [WebAssembly toolchain](https://rustwasm.github.io/docs/wasm-pack/)
|
||||
5. Call `cargo install trunk` to install the [Trunk](https://trunkrs.dev/) web-build tool
|
||||
6. Add the `.cargo/bin` folder in your home directory to your executable search path
|
||||
* This lets you call Trunk, and other tools installed by Cargo, without specifying their paths
|
||||
* On POSIX systems, the search path is stored in the `PATH` environment variable
|
||||
|
||||
### Play with the prototype
|
||||
|
||||
1. Go into the `app-proto` folder
|
||||
2. Call `trunk serve --release` to build and serve the prototype
|
||||
* *The crates the prototype depends on will be downloaded and served automatically*
|
||||
* *For a faster build, at the expense of a much slower prototype, you can call `trunk serve` without the `--release` flag*
|
||||
3. In a web browser, visit one of the URLs listed under the message `INFO 📡 server listening at:`
|
||||
* *Touching any file in the `app-proto` folder will make Trunk rebuild and live-reload the prototype*
|
||||
4. Press *ctrl+C* in the shell where Trunk is running to stop serving the prototype
|
||||
|
||||
### Run the engine on some example problems
|
||||
|
||||
1. Go into the `app-proto` folder
|
||||
2. Call `./run-examples`
|
||||
* *For each example problem, the engine will print the value of the loss function at each optimization step*
|
||||
* *The first example that prints is the same as the Irisawa hexlet example from the Julia version of the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then*
|
||||
|
||||
```julia
|
||||
include("irisawa-hexlet.jl")
|
||||
for (step, scaled_loss) in enumerate(history_alt.scaled_loss)
|
||||
println(rpad(step-1, 4), " | ", scaled_loss)
|
||||
end
|
||||
```
|
||||
|
||||
*you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show*
|
||||
|
||||
### Run the automated tests
|
||||
|
||||
1. Go into the `app-proto` folder
|
||||
2. Call `cargo test`
|
||||
|
4
app-proto/.gitignore
vendored
4
app-proto/.gitignore
vendored
@ -1,4 +0,0 @@
|
||||
target
|
||||
dist
|
||||
profiling
|
||||
Cargo.lock
|
@ -1,25 +0,0 @@
|
||||
use dyna3::engine::{Q, irisawa::realize_irisawa_hexlet};
|
||||
|
||||
fn main() {
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
let (config, _, success, history) = realize_irisawa_hexlet(SCALED_TOL);
|
||||
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
|
||||
if success {
|
||||
println!("Target accuracy achieved!");
|
||||
} else {
|
||||
println!("Failed to reach target accuracy");
|
||||
}
|
||||
println!("Steps: {}", history.scaled_loss.len() - 1);
|
||||
println!("Loss: {}", history.scaled_loss.last().unwrap());
|
||||
if success {
|
||||
println!("\nChain diameters:");
|
||||
println!(" {} sun (given)", 1.0 / config[(3, 3)]);
|
||||
for k in 4..9 {
|
||||
println!(" {} sun", 1.0 / config[(3, k)]);
|
||||
}
|
||||
}
|
||||
println!("\nStep │ Loss\n─────┼────────────────────────────────");
|
||||
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
|
||||
println!("{:<4} │ {}", step, scaled_loss);
|
||||
}
|
||||
}
|
@ -1,38 +0,0 @@
|
||||
use nalgebra::DMatrix;
|
||||
|
||||
use dyna3::engine::{Q, point, realize_gram, sphere, PartialMatrix};
|
||||
|
||||
fn main() {
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for j in 0..2 {
|
||||
for k in j..2 {
|
||||
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
let guess = DMatrix::from_columns(&[
|
||||
point(0.0, 0.0, 2.0),
|
||||
sphere(0.0, 0.0, 0.0, 1.0)
|
||||
]);
|
||||
let frozen = [(3, 0)];
|
||||
println!();
|
||||
let (config, _, success, history) = realize_gram(
|
||||
&gram, guess, &frozen,
|
||||
1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
|
||||
print!("Configuration:{}", config);
|
||||
if success {
|
||||
println!("Target accuracy achieved!");
|
||||
} else {
|
||||
println!("Failed to reach target accuracy");
|
||||
}
|
||||
println!("Steps: {}", history.scaled_loss.len() - 1);
|
||||
println!("Loss: {}", history.scaled_loss.last().unwrap());
|
||||
println!("\nStep │ Loss\n─────┼────────────────────────────────");
|
||||
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
|
||||
println!("{:<4} │ {}", step, scaled_loss);
|
||||
}
|
||||
}
|
@ -1,40 +0,0 @@
|
||||
use nalgebra::DMatrix;
|
||||
|
||||
use dyna3::engine::{Q, realize_gram, sphere, PartialMatrix};
|
||||
|
||||
fn main() {
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for j in 0..3 {
|
||||
for k in j..3 {
|
||||
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
let guess = {
|
||||
let a: f64 = 0.75_f64.sqrt();
|
||||
DMatrix::from_columns(&[
|
||||
sphere(1.0, 0.0, 0.0, 1.0),
|
||||
sphere(-0.5, a, 0.0, 1.0),
|
||||
sphere(-0.5, -a, 0.0, 1.0)
|
||||
])
|
||||
};
|
||||
println!();
|
||||
let (config, _, success, history) = realize_gram(
|
||||
&gram, guess, &[],
|
||||
1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
|
||||
if success {
|
||||
println!("Target accuracy achieved!");
|
||||
} else {
|
||||
println!("Failed to reach target accuracy");
|
||||
}
|
||||
println!("Steps: {}", history.scaled_loss.len() - 1);
|
||||
println!("Loss: {}", history.scaled_loss.last().unwrap());
|
||||
println!("\nStep │ Loss\n─────┼────────────────────────────────");
|
||||
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
|
||||
println!("{:<4} │ {}", step, scaled_loss);
|
||||
}
|
||||
}
|
@ -1,11 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8"/>
|
||||
<title>dyna3</title>
|
||||
<link data-trunk rel="css" href="main.css"/>
|
||||
<link href="https://fonts.bunny.net/css?family=fira-sans:ital,wght@0,400;1,400&display=swap" rel="stylesheet">
|
||||
<link href="https://fonts.bunny.net/css?family=noto-emoji:wght@400&text=%f0%9f%94%97%e2%9a%a0&display=swap" rel="stylesheet">
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
@ -1,175 +0,0 @@
|
||||
:root {
|
||||
--text: #fcfcfc; /* almost white */
|
||||
--text-bright: white;
|
||||
--text-invalid: #f58fc2; /* bright pink */
|
||||
--border: #555; /* light gray */
|
||||
--border-focus: #aaa; /* bright gray */
|
||||
--border-invalid: #70495c; /* dusky pink */
|
||||
--selection-highlight: #444; /* medium gray */
|
||||
--page-background: #222; /* dark gray */
|
||||
--display-background: #020202; /* almost black */
|
||||
}
|
||||
|
||||
body {
|
||||
margin: 0px;
|
||||
color: var(--text);
|
||||
background-color: var(--page-background);
|
||||
font-family: 'Fira Sans', sans-serif;
|
||||
}
|
||||
|
||||
/* sidebar */
|
||||
|
||||
#sidebar {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
float: left;
|
||||
width: 450px;
|
||||
height: 100vh;
|
||||
margin: 0px;
|
||||
padding: 0px;
|
||||
border-width: 0px 1px 0px 0px;
|
||||
border-style: solid;
|
||||
border-color: var(--border);
|
||||
}
|
||||
|
||||
/* add-remove */
|
||||
|
||||
#add-remove {
|
||||
display: flex;
|
||||
gap: 8px;
|
||||
margin: 8px;
|
||||
}
|
||||
|
||||
#add-remove > button {
|
||||
width: 32px;
|
||||
height: 32px;
|
||||
font-size: large;
|
||||
}
|
||||
|
||||
/* KLUDGE */
|
||||
/*
|
||||
for convenience, we're using emoji as temporary icons for some buttons. these
|
||||
buttons need to be displayed in an emoji font
|
||||
*/
|
||||
#add-remove > button.emoji {
|
||||
font-family: 'Noto Emoji', sans-serif;
|
||||
}
|
||||
|
||||
/* outline */
|
||||
|
||||
#outline {
|
||||
flex-grow: 1;
|
||||
margin: 0px;
|
||||
padding: 0px;
|
||||
overflow-y: scroll;
|
||||
}
|
||||
|
||||
li {
|
||||
user-select: none;
|
||||
}
|
||||
|
||||
summary {
|
||||
display: flex;
|
||||
}
|
||||
|
||||
summary.selected {
|
||||
color: var(--text-bright);
|
||||
background-color: var(--selection-highlight);
|
||||
}
|
||||
|
||||
summary > div, .constraint {
|
||||
padding-top: 4px;
|
||||
padding-bottom: 4px;
|
||||
}
|
||||
|
||||
.element, .constraint {
|
||||
display: flex;
|
||||
flex-grow: 1;
|
||||
padding-left: 8px;
|
||||
padding-right: 8px;
|
||||
}
|
||||
|
||||
.element-switch {
|
||||
width: 18px;
|
||||
padding-left: 2px;
|
||||
text-align: center;
|
||||
}
|
||||
|
||||
details:has(li) .element-switch::after {
|
||||
content: '▸';
|
||||
}
|
||||
|
||||
details[open]:has(li) .element-switch::after {
|
||||
content: '▾';
|
||||
}
|
||||
|
||||
.element-label {
|
||||
flex-grow: 1;
|
||||
}
|
||||
|
||||
.constraint-label {
|
||||
flex-grow: 1;
|
||||
}
|
||||
|
||||
.element-representation {
|
||||
display: flex;
|
||||
}
|
||||
|
||||
.element-representation > div {
|
||||
padding: 2px 0px 0px 0px;
|
||||
font-size: 10pt;
|
||||
font-variant-numeric: tabular-nums;
|
||||
text-align: right;
|
||||
width: 56px;
|
||||
}
|
||||
|
||||
.constraint {
|
||||
font-style: italic;
|
||||
}
|
||||
|
||||
.constraint.invalid {
|
||||
color: var(--text-invalid);
|
||||
}
|
||||
|
||||
.constraint > input[type=checkbox] {
|
||||
margin: 0px 8px 0px 0px;
|
||||
}
|
||||
|
||||
.constraint > input[type=text] {
|
||||
color: inherit;
|
||||
background-color: inherit;
|
||||
border: 1px solid var(--border);
|
||||
border-radius: 2px;
|
||||
}
|
||||
|
||||
.constraint.invalid > input[type=text] {
|
||||
border-color: var(--border-invalid);
|
||||
}
|
||||
|
||||
.status {
|
||||
width: 20px;
|
||||
padding-left: 4px;
|
||||
text-align: center;
|
||||
font-family: 'Noto Emoji';
|
||||
font-style: normal;
|
||||
}
|
||||
|
||||
.invalid > .status::after, details:has(.invalid):not([open]) .status::after {
|
||||
content: '⚠';
|
||||
color: var(--text-invalid);
|
||||
}
|
||||
|
||||
/* display */
|
||||
|
||||
canvas {
|
||||
float: left;
|
||||
margin-left: 20px;
|
||||
margin-top: 20px;
|
||||
background-color: var(--display-background);
|
||||
border: 1px solid var(--border);
|
||||
border-radius: 16px;
|
||||
}
|
||||
|
||||
canvas:focus {
|
||||
border-color: var(--border-focus);
|
||||
}
|
@ -1,11 +0,0 @@
|
||||
#!/bin/sh
|
||||
|
||||
# run all Cargo examples, as described here:
|
||||
#
|
||||
# Karol Kuczmarski. "Add examples to your Rust libraries"
|
||||
# http://xion.io/post/code/rust-examples.html
|
||||
#
|
||||
|
||||
cargo run --example irisawa-hexlet
|
||||
cargo run --example three-spheres
|
||||
cargo run --example point-on-sphere
|
@ -1,240 +0,0 @@
|
||||
use sycamore::prelude::*;
|
||||
use web_sys::{console, wasm_bindgen::JsValue};
|
||||
|
||||
use crate::{engine, AppState, assembly::{Assembly, Constraint, Element}};
|
||||
|
||||
/* DEBUG */
|
||||
// load an example assembly for testing. this code will be removed once we've
|
||||
// built a more formal test assembly system
|
||||
fn load_gen_assemb(assembly: &Assembly) {
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
String::from("gemini_a"),
|
||||
String::from("Castor"),
|
||||
[1.00_f32, 0.25_f32, 0.00_f32],
|
||||
engine::sphere(0.5, 0.5, 0.0, 1.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
String::from("gemini_b"),
|
||||
String::from("Pollux"),
|
||||
[0.00_f32, 0.25_f32, 1.00_f32],
|
||||
engine::sphere(-0.5, -0.5, 0.0, 1.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
String::from("ursa_major"),
|
||||
String::from("Ursa major"),
|
||||
[0.25_f32, 0.00_f32, 1.00_f32],
|
||||
engine::sphere(-0.5, 0.5, 0.0, 0.75)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
String::from("ursa_minor"),
|
||||
String::from("Ursa minor"),
|
||||
[0.25_f32, 1.00_f32, 0.00_f32],
|
||||
engine::sphere(0.5, -0.5, 0.0, 0.5)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
String::from("moon_deimos"),
|
||||
String::from("Deimos"),
|
||||
[0.75_f32, 0.75_f32, 0.00_f32],
|
||||
engine::sphere(0.0, 0.15, 1.0, 0.25)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
String::from("moon_phobos"),
|
||||
String::from("Phobos"),
|
||||
[0.00_f32, 0.75_f32, 0.50_f32],
|
||||
engine::sphere(0.0, -0.15, -1.0, 0.25)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
/* DEBUG */
|
||||
// load an example assembly for testing. this code will be removed once we've
|
||||
// built a more formal test assembly system
|
||||
fn load_low_curv_assemb(assembly: &Assembly) {
|
||||
let a = 0.75_f64.sqrt();
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
"central".to_string(),
|
||||
"Central".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(0.0, 0.0, 0.0, 1.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
"assemb_plane".to_string(),
|
||||
"Assembly plane".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
"side1".to_string(),
|
||||
"Side 1".to_string(),
|
||||
[1.00_f32, 0.00_f32, 0.25_f32],
|
||||
engine::sphere_with_offset(1.0, 0.0, 0.0, 1.0, 0.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
"side2".to_string(),
|
||||
"Side 2".to_string(),
|
||||
[0.25_f32, 1.00_f32, 0.00_f32],
|
||||
engine::sphere_with_offset(-0.5, a, 0.0, 1.0, 0.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
"side3".to_string(),
|
||||
"Side 3".to_string(),
|
||||
[0.00_f32, 0.25_f32, 1.00_f32],
|
||||
engine::sphere_with_offset(-0.5, -a, 0.0, 1.0, 0.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
"corner1".to_string(),
|
||||
"Corner 1".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
"corner2".to_string(),
|
||||
"Corner 2".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0)
|
||||
)
|
||||
);
|
||||
let _ = assembly.try_insert_element(
|
||||
Element::new(
|
||||
String::from("corner3"),
|
||||
String::from("Corner 3"),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn AddRemove() -> View {
|
||||
/* DEBUG */
|
||||
let assembly_name = create_signal("general".to_string());
|
||||
create_effect(move || {
|
||||
// get name of chosen assembly
|
||||
let name = assembly_name.get_clone();
|
||||
console::log_1(
|
||||
&JsValue::from(format!("Showing assembly \"{}\"", name.clone()))
|
||||
);
|
||||
|
||||
batch(|| {
|
||||
let state = use_context::<AppState>();
|
||||
let assembly = &state.assembly;
|
||||
|
||||
// clear state
|
||||
assembly.elements.update(|elts| elts.clear());
|
||||
assembly.elements_by_id.update(|elts_by_id| elts_by_id.clear());
|
||||
state.selection.update(|sel| sel.clear());
|
||||
|
||||
// load assembly
|
||||
match name.as_str() {
|
||||
"general" => load_gen_assemb(assembly),
|
||||
"low-curv" => load_low_curv_assemb(assembly),
|
||||
_ => ()
|
||||
};
|
||||
});
|
||||
});
|
||||
|
||||
view! {
|
||||
div(id="add-remove") {
|
||||
button(
|
||||
on:click=|_| {
|
||||
let state = use_context::<AppState>();
|
||||
state.assembly.insert_new_element();
|
||||
|
||||
/* DEBUG */
|
||||
// print updated list of elements by identifier
|
||||
console::log_1(&JsValue::from("elements by identifier:"));
|
||||
for (id, key) in state.assembly.elements_by_id.get_clone().iter() {
|
||||
console::log_3(
|
||||
&JsValue::from(" "),
|
||||
&JsValue::from(id),
|
||||
&JsValue::from(*key)
|
||||
);
|
||||
}
|
||||
}
|
||||
) { "+" }
|
||||
button(
|
||||
class="emoji", /* KLUDGE */ // for convenience, we're using an emoji as a temporary icon for this button
|
||||
disabled={
|
||||
let state = use_context::<AppState>();
|
||||
state.selection.with(|sel| sel.len() != 2)
|
||||
},
|
||||
on:click=|_| {
|
||||
let state = use_context::<AppState>();
|
||||
let subjects = state.selection.with(
|
||||
|sel| {
|
||||
let subject_vec: Vec<_> = sel.into_iter().collect();
|
||||
(subject_vec[0].clone(), subject_vec[1].clone())
|
||||
}
|
||||
);
|
||||
let lorentz_prod = create_signal(0.0);
|
||||
let lorentz_prod_valid = create_signal(false);
|
||||
let active = create_signal(true);
|
||||
state.assembly.insert_constraint(Constraint {
|
||||
subjects: subjects,
|
||||
lorentz_prod: lorentz_prod,
|
||||
lorentz_prod_text: create_signal(String::new()),
|
||||
lorentz_prod_valid: lorentz_prod_valid,
|
||||
active: active,
|
||||
});
|
||||
state.selection.update(|sel| sel.clear());
|
||||
|
||||
/* DEBUG */
|
||||
// print updated constraint list
|
||||
console::log_1(&JsValue::from("Constraints:"));
|
||||
state.assembly.constraints.with(|csts| {
|
||||
for (_, cst) in csts.into_iter() {
|
||||
console::log_5(
|
||||
&JsValue::from(" "),
|
||||
&JsValue::from(cst.subjects.0),
|
||||
&JsValue::from(cst.subjects.1),
|
||||
&JsValue::from(":"),
|
||||
&JsValue::from(cst.lorentz_prod.get_untracked())
|
||||
);
|
||||
}
|
||||
});
|
||||
|
||||
// update the realization when the constraint becomes active
|
||||
// and valid, or is edited while active and valid
|
||||
create_effect(move || {
|
||||
console::log_1(&JsValue::from(
|
||||
format!("Constraint ({}, {}) updated", subjects.0, subjects.1)
|
||||
));
|
||||
lorentz_prod.track();
|
||||
if active.get() && lorentz_prod_valid.get() {
|
||||
state.assembly.realize();
|
||||
}
|
||||
});
|
||||
}
|
||||
) { "🔗" }
|
||||
select(bind:value=assembly_name) { /* DEBUG */ // example assembly chooser
|
||||
option(value="general") { "General" }
|
||||
option(value="low-curv") { "Low-curvature" }
|
||||
option(value="empty") { "Empty" }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,393 +0,0 @@
|
||||
use nalgebra::{DMatrix, DVector, DVectorView, Vector3};
|
||||
use rustc_hash::FxHashMap;
|
||||
use slab::Slab;
|
||||
use std::{collections::BTreeSet, sync::atomic::{AtomicU64, Ordering}};
|
||||
use sycamore::prelude::*;
|
||||
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
|
||||
|
||||
use crate::engine::{realize_gram, ConfigSubspace, PartialMatrix, Q};
|
||||
|
||||
// the types of the keys we use to access an assembly's elements and constraints
|
||||
pub type ElementKey = usize;
|
||||
pub type ConstraintKey = usize;
|
||||
|
||||
pub type ElementColor = [f32; 3];
|
||||
|
||||
/* KLUDGE */
|
||||
// we should reconsider this design when we build a system for switching between
|
||||
// assemblies. at that point, we might want to switch to hierarchical keys,
|
||||
// where each each element has a key that identifies it within its assembly and
|
||||
// each assembly has a key that identifies it within the sesssion
|
||||
static NEXT_ELEMENT_SERIAL: AtomicU64 = AtomicU64::new(0);
|
||||
|
||||
#[derive(Clone, PartialEq)]
|
||||
pub struct Element {
|
||||
pub id: String,
|
||||
pub label: String,
|
||||
pub color: ElementColor,
|
||||
pub representation: Signal<DVector<f64>>,
|
||||
pub constraints: Signal<BTreeSet<ConstraintKey>>,
|
||||
|
||||
// a serial number, assigned by `Element::new`, that uniquely identifies
|
||||
// each element
|
||||
pub serial: u64,
|
||||
|
||||
// the configuration matrix column index that was assigned to this element
|
||||
// last time the assembly was realized, or `None` if the element has never
|
||||
// been through a realization
|
||||
column_index: Option<usize>
|
||||
}
|
||||
|
||||
impl Element {
|
||||
pub fn new(
|
||||
id: String,
|
||||
label: String,
|
||||
color: ElementColor,
|
||||
representation: DVector<f64>
|
||||
) -> Element {
|
||||
// take the next serial number, panicking if that was the last number we
|
||||
// had left. the technique we use to panic on overflow is taken from
|
||||
// _Rust Atomics and Locks_, by Mara Bos
|
||||
//
|
||||
// https://marabos.nl/atomics/atomics.html#example-handle-overflow
|
||||
//
|
||||
let serial = NEXT_ELEMENT_SERIAL.fetch_update(
|
||||
Ordering::SeqCst, Ordering::SeqCst,
|
||||
|serial| serial.checked_add(1)
|
||||
).expect("Out of serial numbers for elements");
|
||||
|
||||
Element {
|
||||
id: id,
|
||||
label: label,
|
||||
color: color,
|
||||
representation: create_signal(representation),
|
||||
constraints: create_signal(BTreeSet::default()),
|
||||
serial: serial,
|
||||
column_index: None
|
||||
}
|
||||
}
|
||||
|
||||
// the smallest positive depth, represented as a multiple of `dir`, where
|
||||
// the line generated by `dir` hits the element (which is assumed to be a
|
||||
// sphere). returns `None` if the line misses the sphere. this function
|
||||
// should be kept synchronized with `sphere_cast` in `inversive.frag`, which
|
||||
// does essentially the same thing on the GPU side
|
||||
pub fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>) -> Option<f64> {
|
||||
// if `a/b` is less than this threshold, we approximate
|
||||
// `a*u^2 + b*u + c` by the linear function `b*u + c`
|
||||
const DEG_THRESHOLD: f64 = 1e-9;
|
||||
|
||||
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
|
||||
let a = -rep[3] * dir.norm_squared();
|
||||
let b = rep.rows_range(..3).dot(&dir);
|
||||
let c = -rep[4];
|
||||
|
||||
let adjust = 4.0*a*c/(b*b);
|
||||
if adjust < 1.0 {
|
||||
// as long as `b` is non-zero, the linear approximation of
|
||||
//
|
||||
// a*u^2 + b*u + c
|
||||
//
|
||||
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of
|
||||
// the quadratic adjacent to `u_lin` is stored in `lin_root`. if
|
||||
// both roots have the same sign, `lin_root` will be the one closer
|
||||
// to `u = 0`
|
||||
let square_rect_ratio = 1.0 + (1.0 - adjust).sqrt();
|
||||
let lin_root = -(2.0*c)/b / square_rect_ratio;
|
||||
if a.abs() > DEG_THRESHOLD * b.abs() {
|
||||
if lin_root > 0.0 {
|
||||
Some(lin_root)
|
||||
} else {
|
||||
let other_root = -b/(2.*a) * square_rect_ratio;
|
||||
(other_root > 0.0).then_some(other_root)
|
||||
}
|
||||
} else {
|
||||
(lin_root > 0.0).then_some(lin_root)
|
||||
}
|
||||
} else {
|
||||
// the line through `dir` misses the sphere completely
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Constraint {
|
||||
pub subjects: (ElementKey, ElementKey),
|
||||
pub lorentz_prod: Signal<f64>,
|
||||
pub lorentz_prod_text: Signal<String>,
|
||||
pub lorentz_prod_valid: Signal<bool>,
|
||||
pub active: Signal<bool>
|
||||
}
|
||||
|
||||
pub struct ElementMotion<'a> {
|
||||
pub key: ElementKey,
|
||||
pub velocity: DVectorView<'a, f64>
|
||||
}
|
||||
|
||||
type AssemblyMotion<'a> = Vec<ElementMotion<'a>>;
|
||||
|
||||
// a complete, view-independent description of an assembly
|
||||
#[derive(Clone)]
|
||||
pub struct Assembly {
|
||||
// elements and constraints
|
||||
pub elements: Signal<Slab<Element>>,
|
||||
pub constraints: Signal<Slab<Constraint>>,
|
||||
|
||||
// solution variety tangent space. the basis vectors are stored in
|
||||
// configuration matrix format, ordered according to the elements' column
|
||||
// indices. when you realize the assembly, every element that's present
|
||||
// during realization gets a column index and is reflected in the tangent
|
||||
// space. since the methods in this module never assign column indices
|
||||
// without later realizing the assembly, we get the following invariant:
|
||||
//
|
||||
// (1) if an element has a column index, its tangent motions can be found
|
||||
// in that column of the tangent space basis matrices
|
||||
//
|
||||
pub tangent: Signal<ConfigSubspace>,
|
||||
|
||||
// indexing
|
||||
pub elements_by_id: Signal<FxHashMap<String, ElementKey>>
|
||||
}
|
||||
|
||||
impl Assembly {
|
||||
pub fn new() -> Assembly {
|
||||
Assembly {
|
||||
elements: create_signal(Slab::new()),
|
||||
constraints: create_signal(Slab::new()),
|
||||
tangent: create_signal(ConfigSubspace::zero(0)),
|
||||
elements_by_id: create_signal(FxHashMap::default())
|
||||
}
|
||||
}
|
||||
|
||||
// --- inserting elements and constraints ---
|
||||
|
||||
// insert an element into the assembly without checking whether we already
|
||||
// have an element with the same identifier. any element that does have the
|
||||
// same identifier will get kicked out of the `elements_by_id` index
|
||||
fn insert_element_unchecked(&self, elt: Element) {
|
||||
let id = elt.id.clone();
|
||||
let key = self.elements.update(|elts| elts.insert(elt));
|
||||
self.elements_by_id.update(|elts_by_id| elts_by_id.insert(id, key));
|
||||
}
|
||||
|
||||
pub fn try_insert_element(&self, elt: Element) -> bool {
|
||||
let can_insert = self.elements_by_id.with_untracked(
|
||||
|elts_by_id| !elts_by_id.contains_key(&elt.id)
|
||||
);
|
||||
if can_insert {
|
||||
self.insert_element_unchecked(elt);
|
||||
}
|
||||
can_insert
|
||||
}
|
||||
|
||||
pub fn insert_new_element(&self) {
|
||||
// find the next unused identifier in the default sequence
|
||||
let mut id_num = 1;
|
||||
let mut id = format!("sphere{}", id_num);
|
||||
while self.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id.contains_key(&id)
|
||||
) {
|
||||
id_num += 1;
|
||||
id = format!("sphere{}", id_num);
|
||||
}
|
||||
|
||||
// create and insert a new element
|
||||
self.insert_element_unchecked(
|
||||
Element::new(
|
||||
id,
|
||||
format!("Sphere {}", id_num),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
DVector::<f64>::from_column_slice(&[0.0, 0.0, 0.0, 0.5, -0.5])
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
pub fn insert_constraint(&self, constraint: Constraint) {
|
||||
let subjects = constraint.subjects;
|
||||
let key = self.constraints.update(|csts| csts.insert(constraint));
|
||||
let subject_constraints = self.elements.with(
|
||||
|elts| (elts[subjects.0].constraints, elts[subjects.1].constraints)
|
||||
);
|
||||
subject_constraints.0.update(|csts| csts.insert(key));
|
||||
subject_constraints.1.update(|csts| csts.insert(key));
|
||||
}
|
||||
|
||||
// --- realization ---
|
||||
|
||||
pub fn realize(&self) {
|
||||
// index the elements
|
||||
self.elements.update_silent(|elts| {
|
||||
for (index, (_, elt)) in elts.into_iter().enumerate() {
|
||||
elt.column_index = Some(index);
|
||||
}
|
||||
});
|
||||
|
||||
// set up the Gram matrix and the initial configuration matrix
|
||||
let (gram, guess) = self.elements.with_untracked(|elts| {
|
||||
// set up the off-diagonal part of the Gram matrix
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
self.constraints.with_untracked(|csts| {
|
||||
for (_, cst) in csts {
|
||||
if cst.active.get_untracked() && cst.lorentz_prod_valid.get_untracked() {
|
||||
let subjects = cst.subjects;
|
||||
let row = elts[subjects.0].column_index.unwrap();
|
||||
let col = elts[subjects.1].column_index.unwrap();
|
||||
gram_to_be.push_sym(row, col, cst.lorentz_prod.get_untracked());
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// set up the initial configuration matrix and the diagonal of the
|
||||
// Gram matrix
|
||||
let mut guess_to_be = DMatrix::<f64>::zeros(5, elts.len());
|
||||
for (_, elt) in elts {
|
||||
let index = elt.column_index.unwrap();
|
||||
gram_to_be.push_sym(index, index, 1.0);
|
||||
guess_to_be.set_column(index, &elt.representation.get_clone_untracked());
|
||||
}
|
||||
|
||||
(gram_to_be, guess_to_be)
|
||||
});
|
||||
|
||||
/* DEBUG */
|
||||
// log the Gram matrix
|
||||
console::log_1(&JsValue::from("Gram matrix:"));
|
||||
gram.log_to_console();
|
||||
|
||||
/* DEBUG */
|
||||
// log the initial configuration matrix
|
||||
console::log_1(&JsValue::from("Old configuration:"));
|
||||
for j in 0..guess.nrows() {
|
||||
let mut row_str = String::new();
|
||||
for k in 0..guess.ncols() {
|
||||
row_str.push_str(format!(" {:>8.3}", guess[(j, k)]).as_str());
|
||||
}
|
||||
console::log_1(&JsValue::from(row_str));
|
||||
}
|
||||
|
||||
// look for a configuration with the given Gram matrix
|
||||
let (config, tangent, success, history) = realize_gram(
|
||||
&gram, guess, &[],
|
||||
1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
|
||||
/* DEBUG */
|
||||
// report the outcome of the search
|
||||
console::log_1(&JsValue::from(
|
||||
if success {
|
||||
"Target accuracy achieved!"
|
||||
} else {
|
||||
"Failed to reach target accuracy"
|
||||
}
|
||||
));
|
||||
console::log_2(&JsValue::from("Steps:"), &JsValue::from(history.scaled_loss.len() - 1));
|
||||
console::log_2(&JsValue::from("Loss:"), &JsValue::from(*history.scaled_loss.last().unwrap()));
|
||||
console::log_2(&JsValue::from("Tangent dimension:"), &JsValue::from(tangent.dim()));
|
||||
|
||||
if success {
|
||||
// read out the solution
|
||||
for (_, elt) in self.elements.get_clone_untracked() {
|
||||
elt.representation.update(
|
||||
|rep| rep.set_column(0, &config.column(elt.column_index.unwrap()))
|
||||
);
|
||||
}
|
||||
|
||||
// save the tangent space
|
||||
self.tangent.set_silent(tangent);
|
||||
}
|
||||
}
|
||||
|
||||
// --- deformation ---
|
||||
|
||||
// project the given motion to the tangent space of the solution variety and
|
||||
// move the assembly along it. the implementation is based on invariant (1)
|
||||
// from above and the following additional invariant:
|
||||
//
|
||||
// (2) if an element is affected by a constraint, it has a column index
|
||||
//
|
||||
// we have this invariant because the assembly gets realized each time you
|
||||
// add a constraint
|
||||
pub fn deform(&self, motion: AssemblyMotion) {
|
||||
/* KLUDGE */
|
||||
// when the tangent space is zero, deformation won't do anything, but
|
||||
// the attempt to deform should be registered in the UI. this console
|
||||
// message will do for now
|
||||
if self.tangent.with(|tan| tan.dim() <= 0 && tan.assembly_dim() > 0) {
|
||||
console::log_1(&JsValue::from("The assembly is rigid"));
|
||||
}
|
||||
|
||||
// give a column index to each moving element that doesn't have one yet.
|
||||
// this temporarily breaks invariant (1), but the invariant will be
|
||||
// restored when we realize the assembly at the end of the deformation.
|
||||
// in the process, we find out how many matrix columns we'll need to
|
||||
// hold the deformation
|
||||
let realized_dim = self.tangent.with(|tan| tan.assembly_dim());
|
||||
let motion_dim = self.elements.update_silent(|elts| {
|
||||
let mut next_column_index = realized_dim;
|
||||
for elt_motion in motion.iter() {
|
||||
let moving_elt = &mut elts[elt_motion.key];
|
||||
if moving_elt.column_index.is_none() {
|
||||
moving_elt.column_index = Some(next_column_index);
|
||||
next_column_index += 1;
|
||||
}
|
||||
}
|
||||
next_column_index
|
||||
});
|
||||
|
||||
// project the element motions onto the tangent space of the solution
|
||||
// variety and sum them to get a deformation of the whole assembly. the
|
||||
// matrix `motion_proj` that holds the deformation has extra columns for
|
||||
// any moving elements that aren't reflected in the saved tangent space
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
let mut motion_proj = DMatrix::zeros(ELEMENT_DIM, motion_dim);
|
||||
for elt_motion in motion {
|
||||
// we can unwrap the column index because we know that every moving
|
||||
// element has one at this point
|
||||
let column_index = self.elements.with_untracked(
|
||||
|elts| elts[elt_motion.key].column_index.unwrap()
|
||||
);
|
||||
|
||||
if column_index < realized_dim {
|
||||
// this element had a column index when we started, so by
|
||||
// invariant (1), it's reflected in the tangent space
|
||||
let mut target_columns = motion_proj.columns_mut(0, realized_dim);
|
||||
target_columns += self.tangent.with(
|
||||
|tan| tan.proj(&elt_motion.velocity, column_index)
|
||||
);
|
||||
} else {
|
||||
// this element didn't have a column index when we started, so
|
||||
// by invariant (2), it's unconstrained
|
||||
let mut target_column = motion_proj.column_mut(column_index);
|
||||
target_column += elt_motion.velocity;
|
||||
}
|
||||
}
|
||||
|
||||
// step each element along the mass shell geodesic that matches its
|
||||
// velocity in the deformation found above
|
||||
/* KLUDGE */
|
||||
// since our test assemblies only include spheres, we assume that every
|
||||
// element is on the 1 mass shell
|
||||
for (_, elt) in self.elements.get_clone_untracked() {
|
||||
elt.representation.update_silent(|rep| {
|
||||
match elt.column_index {
|
||||
Some(column_index) => {
|
||||
let rep_next = &*rep + motion_proj.column(column_index);
|
||||
let normalizer = rep_next.dot(&(&*Q * &rep_next));
|
||||
rep.set_column(0, &(rep_next / normalizer));
|
||||
},
|
||||
None => {
|
||||
console::log_1(&JsValue::from(
|
||||
format!("No velocity to unpack for fresh element \"{}\"", elt.id)
|
||||
))
|
||||
}
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
// bring the configuration back onto the solution variety. this also
|
||||
// gets the elements' column indices and the saved tangent space back in
|
||||
// sync
|
||||
self.realize();
|
||||
}
|
||||
}
|
@ -1,603 +0,0 @@
|
||||
use core::array;
|
||||
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
|
||||
use sycamore::{prelude::*, motion::create_raf};
|
||||
use web_sys::{
|
||||
console,
|
||||
window,
|
||||
Element,
|
||||
KeyboardEvent,
|
||||
MouseEvent,
|
||||
WebGl2RenderingContext,
|
||||
WebGlProgram,
|
||||
WebGlShader,
|
||||
WebGlUniformLocation,
|
||||
wasm_bindgen::{JsCast, JsValue}
|
||||
};
|
||||
|
||||
use crate::{AppState, assembly::{ElementKey, ElementMotion}};
|
||||
|
||||
fn compile_shader(
|
||||
context: &WebGl2RenderingContext,
|
||||
shader_type: u32,
|
||||
source: &str,
|
||||
) -> WebGlShader {
|
||||
let shader = context.create_shader(shader_type).unwrap();
|
||||
context.shader_source(&shader, source);
|
||||
context.compile_shader(&shader);
|
||||
shader
|
||||
}
|
||||
|
||||
fn get_uniform_array_locations<const N: usize>(
|
||||
context: &WebGl2RenderingContext,
|
||||
program: &WebGlProgram,
|
||||
var_name: &str,
|
||||
member_name_opt: Option<&str>
|
||||
) -> [Option<WebGlUniformLocation>; N] {
|
||||
array::from_fn(|n| {
|
||||
let name = match member_name_opt {
|
||||
Some(member_name) => format!("{var_name}[{n}].{member_name}"),
|
||||
None => format!("{var_name}[{n}]")
|
||||
};
|
||||
context.get_uniform_location(&program, name.as_str())
|
||||
})
|
||||
}
|
||||
|
||||
// load the given data into the vertex input of the given name
|
||||
fn bind_vertex_attrib(
|
||||
context: &WebGl2RenderingContext,
|
||||
index: u32,
|
||||
size: i32,
|
||||
data: &[f32]
|
||||
) {
|
||||
// create a data buffer and bind it to ARRAY_BUFFER
|
||||
let buffer = context.create_buffer().unwrap();
|
||||
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, Some(&buffer));
|
||||
|
||||
// load the given data into the buffer. the function `Float32Array::view`
|
||||
// creates a raw view into our module's `WebAssembly.Memory` buffer.
|
||||
// allocating more memory will change the buffer, invalidating the view.
|
||||
// that means we have to make sure we don't allocate any memory until the
|
||||
// view is dropped
|
||||
unsafe {
|
||||
context.buffer_data_with_array_buffer_view(
|
||||
WebGl2RenderingContext::ARRAY_BUFFER,
|
||||
&js_sys::Float32Array::view(&data),
|
||||
WebGl2RenderingContext::STATIC_DRAW,
|
||||
);
|
||||
}
|
||||
|
||||
// allow the target attribute to be used
|
||||
context.enable_vertex_attrib_array(index);
|
||||
|
||||
// take whatever's bound to ARRAY_BUFFER---here, the data buffer created
|
||||
// above---and bind it to the target attribute
|
||||
//
|
||||
// https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/vertexAttribPointer
|
||||
//
|
||||
context.vertex_attrib_pointer_with_i32(
|
||||
index,
|
||||
size,
|
||||
WebGl2RenderingContext::FLOAT,
|
||||
false, // don't normalize
|
||||
0, // zero stride
|
||||
0, // zero offset
|
||||
);
|
||||
}
|
||||
|
||||
// the direction in camera space that a mouse event is pointing along
|
||||
fn event_dir(event: &MouseEvent) -> Vector3<f64> {
|
||||
let target: Element = event.target().unwrap().unchecked_into();
|
||||
let rect = target.get_bounding_client_rect();
|
||||
let width = rect.width();
|
||||
let height = rect.height();
|
||||
let shortdim = width.min(height);
|
||||
|
||||
// this constant should be kept synchronized with `inversive.frag`
|
||||
const FOCAL_SLOPE: f64 = 0.3;
|
||||
|
||||
Vector3::new(
|
||||
FOCAL_SLOPE * (2.0*(f64::from(event.client_x()) - rect.left()) - width) / shortdim,
|
||||
FOCAL_SLOPE * (2.0*(rect.bottom() - f64::from(event.client_y())) - height) / shortdim,
|
||||
-1.0
|
||||
)
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn Display() -> View {
|
||||
let state = use_context::<AppState>();
|
||||
|
||||
// canvas
|
||||
let display = create_node_ref();
|
||||
|
||||
// viewpoint
|
||||
let assembly_to_world = create_signal(DMatrix::<f64>::identity(5, 5));
|
||||
|
||||
// navigation
|
||||
let pitch_up = create_signal(0.0);
|
||||
let pitch_down = create_signal(0.0);
|
||||
let yaw_right = create_signal(0.0);
|
||||
let yaw_left = create_signal(0.0);
|
||||
let roll_ccw = create_signal(0.0);
|
||||
let roll_cw = create_signal(0.0);
|
||||
let zoom_in = create_signal(0.0);
|
||||
let zoom_out = create_signal(0.0);
|
||||
let turntable = create_signal(false); /* BENCHMARKING */
|
||||
|
||||
// manipulation
|
||||
let translate_neg_x = create_signal(0.0);
|
||||
let translate_pos_x = create_signal(0.0);
|
||||
let translate_neg_y = create_signal(0.0);
|
||||
let translate_pos_y = create_signal(0.0);
|
||||
let translate_neg_z = create_signal(0.0);
|
||||
let translate_pos_z = create_signal(0.0);
|
||||
|
||||
// change listener
|
||||
let scene_changed = create_signal(true);
|
||||
create_effect(move || {
|
||||
state.assembly.elements.with(|elts| {
|
||||
for (_, elt) in elts {
|
||||
elt.representation.track();
|
||||
}
|
||||
});
|
||||
state.selection.track();
|
||||
scene_changed.set(true);
|
||||
});
|
||||
|
||||
/* INSTRUMENTS */
|
||||
const SAMPLE_PERIOD: i32 = 60;
|
||||
let mut last_sample_time = 0.0;
|
||||
let mut frames_since_last_sample = 0;
|
||||
let mean_frame_interval = create_signal(0.0);
|
||||
|
||||
let assembly_for_raf = state.assembly.clone();
|
||||
on_mount(move || {
|
||||
// timing
|
||||
let mut last_time = 0.0;
|
||||
|
||||
// viewpoint
|
||||
const ROT_SPEED: f64 = 0.4; // in radians per second
|
||||
const ZOOM_SPEED: f64 = 0.15; // multiplicative rate per second
|
||||
const TURNTABLE_SPEED: f64 = 0.1; /* BENCHMARKING */
|
||||
let mut orientation = DMatrix::<f64>::identity(5, 5);
|
||||
let mut rotation = DMatrix::<f64>::identity(5, 5);
|
||||
let mut location_z: f64 = 5.0;
|
||||
|
||||
// manipulation
|
||||
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
|
||||
|
||||
// display parameters
|
||||
const OPACITY: f32 = 0.5; /* SCAFFOLDING */
|
||||
const HIGHLIGHT: f32 = 0.2; /* SCAFFOLDING */
|
||||
const LAYER_THRESHOLD: i32 = 0; /* DEBUG */
|
||||
const DEBUG_MODE: i32 = 0; /* DEBUG */
|
||||
|
||||
/* INSTRUMENTS */
|
||||
let performance = window().unwrap().performance().unwrap();
|
||||
|
||||
// get the display canvas
|
||||
let canvas = display.get().unchecked_into::<web_sys::HtmlCanvasElement>();
|
||||
let ctx = canvas
|
||||
.get_context("webgl2")
|
||||
.unwrap()
|
||||
.unwrap()
|
||||
.dyn_into::<WebGl2RenderingContext>()
|
||||
.unwrap();
|
||||
|
||||
// compile and attach the vertex and fragment shaders
|
||||
let vertex_shader = compile_shader(
|
||||
&ctx,
|
||||
WebGl2RenderingContext::VERTEX_SHADER,
|
||||
include_str!("identity.vert"),
|
||||
);
|
||||
let fragment_shader = compile_shader(
|
||||
&ctx,
|
||||
WebGl2RenderingContext::FRAGMENT_SHADER,
|
||||
include_str!("inversive.frag"),
|
||||
);
|
||||
let program = ctx.create_program().unwrap();
|
||||
ctx.attach_shader(&program, &vertex_shader);
|
||||
ctx.attach_shader(&program, &fragment_shader);
|
||||
ctx.link_program(&program);
|
||||
let link_status = ctx
|
||||
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
|
||||
.as_bool()
|
||||
.unwrap();
|
||||
let link_msg = if link_status {
|
||||
"Linked successfully"
|
||||
} else {
|
||||
"Linking failed"
|
||||
};
|
||||
console::log_1(&JsValue::from(link_msg));
|
||||
ctx.use_program(Some(&program));
|
||||
|
||||
/* DEBUG */
|
||||
// print the maximum number of vectors that can be passed as
|
||||
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
|
||||
// requires this maximum to be at least 224, as discussed in the
|
||||
// documentation of the GL_MAX_FRAGMENT_UNIFORM_VECTORS parameter
|
||||
// here:
|
||||
//
|
||||
// https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glGet.xhtml
|
||||
//
|
||||
// there are also other size limits. for example, on Aaron's
|
||||
// machine, the the length of a float or genType array seems to be
|
||||
// capped at 1024 elements
|
||||
console::log_2(
|
||||
&ctx.get_parameter(WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
|
||||
&JsValue::from("uniform vectors available")
|
||||
);
|
||||
|
||||
// find indices of vertex attributes and uniforms
|
||||
const SPHERE_MAX: usize = 200;
|
||||
let position_index = ctx.get_attrib_location(&program, "position") as u32;
|
||||
let sphere_cnt_loc = ctx.get_uniform_location(&program, "sphere_cnt");
|
||||
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &program, "sphere_list", Some("sp")
|
||||
);
|
||||
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &program, "sphere_list", Some("lt")
|
||||
);
|
||||
let color_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &program, "color_list", None
|
||||
);
|
||||
let highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &program, "highlight_list", None
|
||||
);
|
||||
let resolution_loc = ctx.get_uniform_location(&program, "resolution");
|
||||
let shortdim_loc = ctx.get_uniform_location(&program, "shortdim");
|
||||
let opacity_loc = ctx.get_uniform_location(&program, "opacity");
|
||||
let layer_threshold_loc = ctx.get_uniform_location(&program, "layer_threshold");
|
||||
let debug_mode_loc = ctx.get_uniform_location(&program, "debug_mode");
|
||||
|
||||
// create a vertex array and bind it to the graphics context
|
||||
let vertex_array = ctx.create_vertex_array().unwrap();
|
||||
ctx.bind_vertex_array(Some(&vertex_array));
|
||||
|
||||
// set the vertex positions
|
||||
const VERTEX_CNT: usize = 6;
|
||||
let positions: [f32; 3*VERTEX_CNT] = [
|
||||
// northwest triangle
|
||||
-1.0, -1.0, 0.0,
|
||||
-1.0, 1.0, 0.0,
|
||||
1.0, 1.0, 0.0,
|
||||
// southeast triangle
|
||||
-1.0, -1.0, 0.0,
|
||||
1.0, 1.0, 0.0,
|
||||
1.0, -1.0, 0.0
|
||||
];
|
||||
bind_vertex_attrib(&ctx, position_index, 3, &positions);
|
||||
|
||||
// set up a repainting routine
|
||||
let (_, start_animation_loop, _) = create_raf(move || {
|
||||
// get the time step
|
||||
let time = performance.now();
|
||||
let time_step = 0.001*(time - last_time);
|
||||
last_time = time;
|
||||
|
||||
// get the navigation state
|
||||
let pitch_up_val = pitch_up.get();
|
||||
let pitch_down_val = pitch_down.get();
|
||||
let yaw_right_val = yaw_right.get();
|
||||
let yaw_left_val = yaw_left.get();
|
||||
let roll_ccw_val = roll_ccw.get();
|
||||
let roll_cw_val = roll_cw.get();
|
||||
let zoom_in_val = zoom_in.get();
|
||||
let zoom_out_val = zoom_out.get();
|
||||
let turntable_val = turntable.get(); /* BENCHMARKING */
|
||||
|
||||
// get the manipulation state
|
||||
let translate_neg_x_val = translate_neg_x.get();
|
||||
let translate_pos_x_val = translate_pos_x.get();
|
||||
let translate_neg_y_val = translate_neg_y.get();
|
||||
let translate_pos_y_val = translate_pos_y.get();
|
||||
let translate_neg_z_val = translate_neg_z.get();
|
||||
let translate_pos_z_val = translate_pos_z.get();
|
||||
|
||||
// update the assembly's orientation
|
||||
let ang_vel = {
|
||||
let pitch = pitch_up_val - pitch_down_val;
|
||||
let yaw = yaw_right_val - yaw_left_val;
|
||||
let roll = roll_ccw_val - roll_cw_val;
|
||||
if pitch != 0.0 || yaw != 0.0 || roll != 0.0 {
|
||||
ROT_SPEED * Vector3::new(-pitch, yaw, roll).normalize()
|
||||
} else {
|
||||
Vector3::zeros()
|
||||
}
|
||||
} /* BENCHMARKING */ + if turntable_val {
|
||||
Vector3::new(0.0, TURNTABLE_SPEED, 0.0)
|
||||
} else {
|
||||
Vector3::zeros()
|
||||
};
|
||||
let mut rotation_sp = rotation.fixed_view_mut::<3, 3>(0, 0);
|
||||
rotation_sp.copy_from(
|
||||
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
|
||||
);
|
||||
orientation = &rotation * &orientation;
|
||||
|
||||
// update the assembly's location
|
||||
let zoom = zoom_out_val - zoom_in_val;
|
||||
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
|
||||
|
||||
// manipulate the assembly
|
||||
if state.selection.with(|sel| sel.len() == 1) {
|
||||
let sel = state.selection.with(
|
||||
|sel| *sel.into_iter().next().unwrap()
|
||||
);
|
||||
let rep = state.assembly.elements.with_untracked(
|
||||
|elts| elts[sel].representation.get_clone_untracked()
|
||||
);
|
||||
let translate_x = translate_pos_x_val - translate_neg_x_val;
|
||||
let translate_y = translate_pos_y_val - translate_neg_y_val;
|
||||
let translate_z = translate_pos_z_val - translate_neg_z_val;
|
||||
if translate_x != 0.0 || translate_y != 0.0 || translate_z != 0.0 {
|
||||
let vel_field = {
|
||||
let u = Vector3::new(translate_x, translate_y, translate_z).normalize();
|
||||
DMatrix::from_column_slice(5, 5, &[
|
||||
0.0, 0.0, 0.0, 0.0, u[0],
|
||||
0.0, 0.0, 0.0, 0.0, u[1],
|
||||
0.0, 0.0, 0.0, 0.0, u[2],
|
||||
2.0*u[0], 2.0*u[1], 2.0*u[2], 0.0, 0.0,
|
||||
0.0, 0.0, 0.0, 0.0, 0.0
|
||||
])
|
||||
};
|
||||
let elt_motion: DVector<f64> = time_step * TRANSLATION_SPEED * vel_field * rep;
|
||||
assembly_for_raf.deform(
|
||||
vec![
|
||||
ElementMotion {
|
||||
key: sel,
|
||||
velocity: elt_motion.as_view()
|
||||
}
|
||||
]
|
||||
);
|
||||
scene_changed.set(true);
|
||||
}
|
||||
}
|
||||
|
||||
if scene_changed.get() {
|
||||
/* INSTRUMENTS */
|
||||
// measure mean frame interval
|
||||
frames_since_last_sample += 1;
|
||||
if frames_since_last_sample >= SAMPLE_PERIOD {
|
||||
mean_frame_interval.set((time - last_sample_time) / (SAMPLE_PERIOD as f64));
|
||||
last_sample_time = time;
|
||||
frames_since_last_sample = 0;
|
||||
}
|
||||
|
||||
// find the map from assembly space to world space
|
||||
let location = {
|
||||
let u = -location_z;
|
||||
DMatrix::from_column_slice(5, 5, &[
|
||||
1.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, 1.0, 0.0, u,
|
||||
0.0, 0.0, 2.0*u, 1.0, u*u,
|
||||
0.0, 0.0, 0.0, 0.0, 1.0
|
||||
])
|
||||
};
|
||||
let asm_to_world = &location * &orientation;
|
||||
|
||||
// get the assembly
|
||||
let (
|
||||
elt_cnt,
|
||||
reps_world,
|
||||
colors,
|
||||
highlights
|
||||
) = state.assembly.elements.with(|elts| {
|
||||
(
|
||||
// number of elements
|
||||
elts.len() as i32,
|
||||
|
||||
// representation vectors in world coordinates
|
||||
elts.iter().map(
|
||||
|(_, elt)| elt.representation.with(|rep| &asm_to_world * rep)
|
||||
).collect::<Vec<_>>(),
|
||||
|
||||
// colors
|
||||
elts.iter().map(|(key, elt)| {
|
||||
if state.selection.with(|sel| sel.contains(&key)) {
|
||||
elt.color.map(|ch| 0.2 + 0.8*ch)
|
||||
} else {
|
||||
elt.color
|
||||
}
|
||||
}).collect::<Vec<_>>(),
|
||||
|
||||
// highlight levels
|
||||
elts.iter().map(|(key, _)| {
|
||||
if state.selection.with(|sel| sel.contains(&key)) {
|
||||
1.0_f32
|
||||
} else {
|
||||
HIGHLIGHT
|
||||
}
|
||||
}).collect::<Vec<_>>()
|
||||
)
|
||||
});
|
||||
|
||||
// set the resolution
|
||||
let width = canvas.width() as f32;
|
||||
let height = canvas.height() as f32;
|
||||
ctx.uniform2f(resolution_loc.as_ref(), width, height);
|
||||
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
|
||||
|
||||
// pass the assembly
|
||||
ctx.uniform1i(sphere_cnt_loc.as_ref(), elt_cnt);
|
||||
for n in 0..reps_world.len() {
|
||||
let v = &reps_world[n];
|
||||
ctx.uniform3f(
|
||||
sphere_sp_locs[n].as_ref(),
|
||||
v[0] as f32, v[1] as f32, v[2] as f32
|
||||
);
|
||||
ctx.uniform2f(
|
||||
sphere_lt_locs[n].as_ref(),
|
||||
v[3] as f32, v[4] as f32
|
||||
);
|
||||
ctx.uniform3fv_with_f32_array(
|
||||
color_locs[n].as_ref(),
|
||||
&colors[n]
|
||||
);
|
||||
ctx.uniform1f(
|
||||
highlight_locs[n].as_ref(),
|
||||
highlights[n]
|
||||
);
|
||||
}
|
||||
|
||||
// pass the display parameters
|
||||
ctx.uniform1f(opacity_loc.as_ref(), OPACITY);
|
||||
ctx.uniform1i(layer_threshold_loc.as_ref(), LAYER_THRESHOLD);
|
||||
ctx.uniform1i(debug_mode_loc.as_ref(), DEBUG_MODE);
|
||||
|
||||
// draw the scene
|
||||
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
|
||||
|
||||
// update the viewpoint
|
||||
assembly_to_world.set(asm_to_world);
|
||||
|
||||
// clear the scene change flag
|
||||
scene_changed.set(
|
||||
pitch_up_val != 0.0
|
||||
|| pitch_down_val != 0.0
|
||||
|| yaw_left_val != 0.0
|
||||
|| yaw_right_val != 0.0
|
||||
|| roll_cw_val != 0.0
|
||||
|| roll_ccw_val != 0.0
|
||||
|| zoom_in_val != 0.0
|
||||
|| zoom_out_val != 0.0
|
||||
|| turntable_val /* BENCHMARKING */
|
||||
);
|
||||
} else {
|
||||
frames_since_last_sample = 0;
|
||||
mean_frame_interval.set(-1.0);
|
||||
}
|
||||
});
|
||||
start_animation_loop();
|
||||
});
|
||||
|
||||
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
|
||||
let mut navigating = true;
|
||||
let shift = event.shift_key();
|
||||
match event.key().as_str() {
|
||||
"ArrowUp" if shift => zoom_in.set(value),
|
||||
"ArrowDown" if shift => zoom_out.set(value),
|
||||
"ArrowUp" => pitch_up.set(value),
|
||||
"ArrowDown" => pitch_down.set(value),
|
||||
"ArrowRight" if shift => roll_cw.set(value),
|
||||
"ArrowLeft" if shift => roll_ccw.set(value),
|
||||
"ArrowRight" => yaw_right.set(value),
|
||||
"ArrowLeft" => yaw_left.set(value),
|
||||
_ => navigating = false
|
||||
};
|
||||
if navigating {
|
||||
scene_changed.set(true);
|
||||
event.prevent_default();
|
||||
}
|
||||
};
|
||||
|
||||
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
|
||||
let mut manipulating = true;
|
||||
let shift = event.shift_key();
|
||||
match event.key().as_str() {
|
||||
"d" | "D" => translate_pos_x.set(value),
|
||||
"a" | "A" => translate_neg_x.set(value),
|
||||
"w" | "W" if shift => translate_neg_z.set(value),
|
||||
"s" | "S" if shift => translate_pos_z.set(value),
|
||||
"w" | "W" => translate_pos_y.set(value),
|
||||
"s" | "S" => translate_neg_y.set(value),
|
||||
_ => manipulating = false
|
||||
};
|
||||
if manipulating {
|
||||
event.prevent_default();
|
||||
}
|
||||
};
|
||||
|
||||
view! {
|
||||
/* TO DO */
|
||||
// switch back to integer-valued parameters when that becomes possible
|
||||
// again
|
||||
canvas(
|
||||
ref=display,
|
||||
width="600",
|
||||
height="600",
|
||||
tabindex="0",
|
||||
on:keydown=move |event: KeyboardEvent| {
|
||||
if event.key() == "Shift" {
|
||||
// swap navigation inputs
|
||||
roll_cw.set(yaw_right.get());
|
||||
roll_ccw.set(yaw_left.get());
|
||||
zoom_in.set(pitch_up.get());
|
||||
zoom_out.set(pitch_down.get());
|
||||
yaw_right.set(0.0);
|
||||
yaw_left.set(0.0);
|
||||
pitch_up.set(0.0);
|
||||
pitch_down.set(0.0);
|
||||
|
||||
// swap manipulation inputs
|
||||
translate_pos_z.set(translate_neg_y.get());
|
||||
translate_neg_z.set(translate_pos_y.get());
|
||||
translate_pos_y.set(0.0);
|
||||
translate_neg_y.set(0.0);
|
||||
} else {
|
||||
if event.key() == "Enter" { /* BENCHMARKING */
|
||||
turntable.set_fn(|turn| !turn);
|
||||
scene_changed.set(true);
|
||||
}
|
||||
set_nav_signal(&event, 1.0);
|
||||
set_manip_signal(&event, 1.0);
|
||||
}
|
||||
},
|
||||
on:keyup=move |event: KeyboardEvent| {
|
||||
if event.key() == "Shift" {
|
||||
// swap navigation inputs
|
||||
yaw_right.set(roll_cw.get());
|
||||
yaw_left.set(roll_ccw.get());
|
||||
pitch_up.set(zoom_in.get());
|
||||
pitch_down.set(zoom_out.get());
|
||||
roll_cw.set(0.0);
|
||||
roll_ccw.set(0.0);
|
||||
zoom_in.set(0.0);
|
||||
zoom_out.set(0.0);
|
||||
|
||||
// swap manipulation inputs
|
||||
translate_pos_y.set(translate_neg_z.get());
|
||||
translate_neg_y.set(translate_pos_z.get());
|
||||
translate_pos_z.set(0.0);
|
||||
translate_neg_z.set(0.0);
|
||||
} else {
|
||||
set_nav_signal(&event, 0.0);
|
||||
set_manip_signal(&event, 0.0);
|
||||
}
|
||||
},
|
||||
on:blur=move |_| {
|
||||
pitch_up.set(0.0);
|
||||
pitch_down.set(0.0);
|
||||
yaw_right.set(0.0);
|
||||
yaw_left.set(0.0);
|
||||
roll_ccw.set(0.0);
|
||||
roll_cw.set(0.0);
|
||||
},
|
||||
on:click=move |event: MouseEvent| {
|
||||
// find the nearest element along the pointer direction
|
||||
let dir = event_dir(&event);
|
||||
console::log_1(&JsValue::from(dir.to_string()));
|
||||
let mut clicked: Option<(ElementKey, f64)> = None;
|
||||
for (key, elt) in state.assembly.elements.get_clone_untracked() {
|
||||
match assembly_to_world.with(|asm_to_world| elt.cast(dir, asm_to_world)) {
|
||||
Some(depth) => match clicked {
|
||||
Some((_, best_depth)) => {
|
||||
if depth < best_depth {
|
||||
clicked = Some((key, depth))
|
||||
}
|
||||
},
|
||||
None => clicked = Some((key, depth))
|
||||
}
|
||||
None => ()
|
||||
};
|
||||
}
|
||||
|
||||
// if we clicked something, select it
|
||||
match clicked {
|
||||
Some((key, _)) => state.select(key, event.shift_key()),
|
||||
None => state.selection.update(|sel| sel.clear())
|
||||
};
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
@ -1,576 +0,0 @@
|
||||
use lazy_static::lazy_static;
|
||||
use nalgebra::{Const, DMatrix, DVector, DVectorView, Dyn, SymmetricEigen};
|
||||
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
|
||||
|
||||
// --- elements ---
|
||||
|
||||
#[cfg(feature = "dev")]
|
||||
pub fn point(x: f64, y: f64, z: f64) -> DVector<f64> {
|
||||
DVector::from_column_slice(&[x, y, z, 0.5, 0.5*(x*x + y*y + z*z)])
|
||||
}
|
||||
|
||||
// the sphere with the given center and radius, with inward-pointing normals
|
||||
pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVector<f64> {
|
||||
let center_norm_sq = center_x * center_x + center_y * center_y + center_z * center_z;
|
||||
DVector::from_column_slice(&[
|
||||
center_x / radius,
|
||||
center_y / radius,
|
||||
center_z / radius,
|
||||
0.5 / radius,
|
||||
0.5 * (center_norm_sq / radius - radius)
|
||||
])
|
||||
}
|
||||
|
||||
// the sphere of curvature `curv` whose closest point to the origin has position
|
||||
// `off * dir` and normal `dir`, where `dir` is a unit vector. setting the
|
||||
// curvature to zero gives a plane
|
||||
pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f64) -> DVector<f64> {
|
||||
let norm_sp = 1.0 + off * curv;
|
||||
DVector::from_column_slice(&[
|
||||
norm_sp * dir_x,
|
||||
norm_sp * dir_y,
|
||||
norm_sp * dir_z,
|
||||
0.5 * curv,
|
||||
off * (1.0 + 0.5 * off * curv)
|
||||
])
|
||||
}
|
||||
|
||||
// --- partial matrices ---
|
||||
|
||||
struct MatrixEntry {
|
||||
index: (usize, usize),
|
||||
value: f64
|
||||
}
|
||||
|
||||
pub struct PartialMatrix(Vec<MatrixEntry>);
|
||||
|
||||
impl PartialMatrix {
|
||||
pub fn new() -> PartialMatrix {
|
||||
PartialMatrix(Vec::<MatrixEntry>::new())
|
||||
}
|
||||
|
||||
pub fn push_sym(&mut self, row: usize, col: usize, value: f64) {
|
||||
let PartialMatrix(entries) = self;
|
||||
entries.push(MatrixEntry { index: (row, col), value: value });
|
||||
if row != col {
|
||||
entries.push(MatrixEntry { index: (col, row), value: value });
|
||||
}
|
||||
}
|
||||
|
||||
/* DEBUG */
|
||||
pub fn log_to_console(&self) {
|
||||
let PartialMatrix(entries) = self;
|
||||
for ent in entries {
|
||||
let ent_str = format!(" {} {} {}", ent.index.0, ent.index.1, ent.value);
|
||||
console::log_1(&JsValue::from(ent_str.as_str()));
|
||||
}
|
||||
}
|
||||
|
||||
fn proj(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
|
||||
let mut result = DMatrix::<f64>::zeros(a.nrows(), a.ncols());
|
||||
let PartialMatrix(entries) = self;
|
||||
for ent in entries {
|
||||
result[ent.index] = a[ent.index];
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
fn sub_proj(&self, rhs: &DMatrix<f64>) -> DMatrix<f64> {
|
||||
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
|
||||
let PartialMatrix(entries) = self;
|
||||
for ent in entries {
|
||||
result[ent.index] = ent.value - rhs[ent.index];
|
||||
}
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
// --- configuration subspaces ---
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct ConfigSubspace {
|
||||
assembly_dim: usize,
|
||||
basis: Vec<DMatrix<f64>>
|
||||
}
|
||||
|
||||
impl ConfigSubspace {
|
||||
pub fn zero(assembly_dim: usize) -> ConfigSubspace {
|
||||
ConfigSubspace {
|
||||
assembly_dim: assembly_dim,
|
||||
basis: Vec::new()
|
||||
}
|
||||
}
|
||||
|
||||
// approximate the kernel of a symmetric endomorphism of the configuration
|
||||
// space for `assembly_dim` elements. we consider an eigenvector to be part
|
||||
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
|
||||
fn symmetric_kernel(a: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
const THRESHOLD: f64 = 1.0e-4;
|
||||
let eig = SymmetricEigen::new(a);
|
||||
let eig_vecs = eig.eigenvectors.column_iter();
|
||||
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
|
||||
let basis = eig_pairs.filter_map(
|
||||
|(λ, v)| (λ.abs() < THRESHOLD).then_some(
|
||||
Into::<DMatrix<f64>>::into(
|
||||
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
/* DEBUG */
|
||||
// print the eigenvalues
|
||||
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
|
||||
console::log_1(&JsValue::from(
|
||||
format!("Eigenvalues used to find kernel:{}", eig.eigenvalues)
|
||||
));
|
||||
|
||||
ConfigSubspace {
|
||||
assembly_dim: assembly_dim,
|
||||
basis: basis.collect()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn dim(&self) -> usize {
|
||||
self.basis.len()
|
||||
}
|
||||
|
||||
pub fn assembly_dim(&self) -> usize {
|
||||
self.assembly_dim
|
||||
}
|
||||
|
||||
// find the projection onto this subspace, with respect to the Euclidean
|
||||
// inner product, of the motion where the element with the given column
|
||||
// index has velocity `v`
|
||||
pub fn proj(&self, v: &DVectorView<f64>, column_index: usize) -> DMatrix<f64> {
|
||||
if self.dim() == 0 {
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
DMatrix::zeros(ELEMENT_DIM, self.assembly_dim)
|
||||
} else {
|
||||
self.basis.iter().map(
|
||||
|b| b.column(column_index).dot(&v) * b
|
||||
).sum()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --- descent history ---
|
||||
|
||||
pub struct DescentHistory {
|
||||
pub config: Vec<DMatrix<f64>>,
|
||||
pub scaled_loss: Vec<f64>,
|
||||
pub neg_grad: Vec<DMatrix<f64>>,
|
||||
pub min_eigval: Vec<f64>,
|
||||
pub base_step: Vec<DMatrix<f64>>,
|
||||
pub backoff_steps: Vec<i32>
|
||||
}
|
||||
|
||||
impl DescentHistory {
|
||||
fn new() -> DescentHistory {
|
||||
DescentHistory {
|
||||
config: Vec::<DMatrix<f64>>::new(),
|
||||
scaled_loss: Vec::<f64>::new(),
|
||||
neg_grad: Vec::<DMatrix<f64>>::new(),
|
||||
min_eigval: Vec::<f64>::new(),
|
||||
base_step: Vec::<DMatrix<f64>>::new(),
|
||||
backoff_steps: Vec::<i32>::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --- gram matrix realization ---
|
||||
|
||||
// the Lorentz form
|
||||
lazy_static! {
|
||||
pub static ref Q: DMatrix<f64> = DMatrix::from_row_slice(5, 5, &[
|
||||
1.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, 1.0, 0.0, 0.0,
|
||||
0.0, 0.0, 0.0, 0.0, -2.0,
|
||||
0.0, 0.0, 0.0, -2.0, 0.0
|
||||
]);
|
||||
}
|
||||
|
||||
struct SearchState {
|
||||
config: DMatrix<f64>,
|
||||
err_proj: DMatrix<f64>,
|
||||
loss: f64
|
||||
}
|
||||
|
||||
impl SearchState {
|
||||
fn from_config(gram: &PartialMatrix, config: DMatrix<f64>) -> SearchState {
|
||||
let err_proj = gram.sub_proj(&(config.tr_mul(&*Q) * &config));
|
||||
let loss = err_proj.norm_squared();
|
||||
SearchState {
|
||||
config: config,
|
||||
err_proj: err_proj,
|
||||
loss: loss
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f64> {
|
||||
let mut result = DMatrix::<f64>::zeros(nrows, ncols);
|
||||
result[index] = 1.0;
|
||||
result
|
||||
}
|
||||
|
||||
// use backtracking line search to find a better configuration
|
||||
fn seek_better_config(
|
||||
gram: &PartialMatrix,
|
||||
state: &SearchState,
|
||||
base_step: &DMatrix<f64>,
|
||||
base_target_improvement: f64,
|
||||
min_efficiency: f64,
|
||||
backoff: f64,
|
||||
max_backoff_steps: i32
|
||||
) -> Option<(SearchState, i32)> {
|
||||
let mut rate = 1.0;
|
||||
for backoff_steps in 0..max_backoff_steps {
|
||||
let trial_config = &state.config + rate * base_step;
|
||||
let trial_state = SearchState::from_config(gram, trial_config);
|
||||
let improvement = state.loss - trial_state.loss;
|
||||
if improvement >= min_efficiency * rate * base_target_improvement {
|
||||
return Some((trial_state, backoff_steps));
|
||||
}
|
||||
rate *= backoff;
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
// seek a matrix `config` for which `config' * Q * config` matches the partial
|
||||
// matrix `gram`. use gradient descent starting from `guess`
|
||||
pub fn realize_gram(
|
||||
gram: &PartialMatrix,
|
||||
guess: DMatrix<f64>,
|
||||
frozen: &[(usize, usize)],
|
||||
scaled_tol: f64,
|
||||
min_efficiency: f64,
|
||||
backoff: f64,
|
||||
reg_scale: f64,
|
||||
max_descent_steps: i32,
|
||||
max_backoff_steps: i32
|
||||
) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
|
||||
// start the descent history
|
||||
let mut history = DescentHistory::new();
|
||||
|
||||
// find the dimension of the search space
|
||||
let element_dim = guess.nrows();
|
||||
let assembly_dim = guess.ncols();
|
||||
let total_dim = element_dim * assembly_dim;
|
||||
|
||||
// scale the tolerance
|
||||
let scale_adjustment = (gram.0.len() as f64).sqrt();
|
||||
let tol = scale_adjustment * scaled_tol;
|
||||
|
||||
// convert the frozen indices to stacked format
|
||||
let frozen_stacked: Vec<usize> = frozen.into_iter().map(
|
||||
|index| index.1*element_dim + index.0
|
||||
).collect();
|
||||
|
||||
// use Newton's method with backtracking and gradient descent backup
|
||||
let mut state = SearchState::from_config(gram, guess);
|
||||
let mut hess = DMatrix::zeros(element_dim, assembly_dim);
|
||||
for _ in 0..max_descent_steps {
|
||||
// find the negative gradient of the loss function
|
||||
let neg_grad = 4.0 * &*Q * &state.config * &state.err_proj;
|
||||
let mut neg_grad_stacked = neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
|
||||
history.neg_grad.push(neg_grad.clone());
|
||||
|
||||
// find the negative Hessian of the loss function
|
||||
let mut hess_cols = Vec::<DVector<f64>>::with_capacity(total_dim);
|
||||
for col in 0..assembly_dim {
|
||||
for row in 0..element_dim {
|
||||
let index = (row, col);
|
||||
let basis_mat = basis_matrix(index, element_dim, assembly_dim);
|
||||
let neg_d_err =
|
||||
basis_mat.tr_mul(&*Q) * &state.config
|
||||
+ state.config.tr_mul(&*Q) * &basis_mat;
|
||||
let neg_d_err_proj = gram.proj(&neg_d_err);
|
||||
let deriv_grad = 4.0 * &*Q * (
|
||||
-&basis_mat * &state.err_proj
|
||||
+ &state.config * &neg_d_err_proj
|
||||
);
|
||||
hess_cols.push(deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
|
||||
}
|
||||
}
|
||||
hess = DMatrix::from_columns(hess_cols.as_slice());
|
||||
|
||||
// regularize the Hessian
|
||||
let min_eigval = hess.symmetric_eigenvalues().min();
|
||||
if min_eigval <= 0.0 {
|
||||
hess -= reg_scale * min_eigval * DMatrix::identity(total_dim, total_dim);
|
||||
}
|
||||
history.min_eigval.push(min_eigval);
|
||||
|
||||
// project the negative gradient and negative Hessian onto the
|
||||
// orthogonal complement of the frozen subspace
|
||||
let zero_col = DVector::zeros(total_dim);
|
||||
let zero_row = zero_col.transpose();
|
||||
for &k in &frozen_stacked {
|
||||
neg_grad_stacked[k] = 0.0;
|
||||
hess.set_row(k, &zero_row);
|
||||
hess.set_column(k, &zero_col);
|
||||
hess[(k, k)] = 1.0;
|
||||
}
|
||||
|
||||
// stop if the loss is tolerably low
|
||||
history.config.push(state.config.clone());
|
||||
history.scaled_loss.push(state.loss / scale_adjustment);
|
||||
if state.loss < tol { break; }
|
||||
|
||||
// compute the Newton step
|
||||
/*
|
||||
we need to either handle or eliminate the case where the minimum
|
||||
eigenvalue of the Hessian is zero, so the regularized Hessian is
|
||||
singular. right now, this causes the Cholesky decomposition to return
|
||||
`None`, leading to a panic when we unrap
|
||||
*/
|
||||
let base_step_stacked = hess.clone().cholesky().unwrap().solve(&neg_grad_stacked);
|
||||
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
|
||||
history.base_step.push(base_step.clone());
|
||||
|
||||
// use backtracking line search to find a better configuration
|
||||
match seek_better_config(
|
||||
gram, &state, &base_step, neg_grad.dot(&base_step),
|
||||
min_efficiency, backoff, max_backoff_steps
|
||||
) {
|
||||
Some((better_state, backoff_steps)) => {
|
||||
state = better_state;
|
||||
history.backoff_steps.push(backoff_steps);
|
||||
},
|
||||
None => return (state.config, ConfigSubspace::zero(assembly_dim), false, history)
|
||||
};
|
||||
}
|
||||
let success = state.loss < tol;
|
||||
let tangent = if success {
|
||||
ConfigSubspace::symmetric_kernel(hess, assembly_dim)
|
||||
} else {
|
||||
ConfigSubspace::zero(assembly_dim)
|
||||
};
|
||||
(state.config, tangent, success, history)
|
||||
}
|
||||
|
||||
// --- tests ---
|
||||
|
||||
// this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article
|
||||
// below includes a nice translation of the problem statement, which was
|
||||
// recorded in Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and
|
||||
// Present_)
|
||||
//
|
||||
// "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
|
||||
// https://www.nippon.com/en/japan-topics/c12801/
|
||||
//
|
||||
#[cfg(feature = "dev")]
|
||||
pub mod irisawa {
|
||||
use std::{array, f64::consts::PI};
|
||||
|
||||
use super::*;
|
||||
|
||||
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for s in 0..9 {
|
||||
// each sphere is represented by a spacelike vector
|
||||
gram_to_be.push_sym(s, s, 1.0);
|
||||
|
||||
// the circumscribing sphere is tangent to all of the other
|
||||
// spheres, with matching orientation
|
||||
if s > 0 {
|
||||
gram_to_be.push_sym(0, s, 1.0);
|
||||
}
|
||||
|
||||
if s > 2 {
|
||||
// each chain sphere is tangent to the "sun" and "moon"
|
||||
// spheres, with opposing orientation
|
||||
for n in 1..3 {
|
||||
gram_to_be.push_sym(s, n, -1.0);
|
||||
}
|
||||
|
||||
// each chain sphere is tangent to the next chain sphere,
|
||||
// with opposing orientation
|
||||
let s_next = 3 + (s-2) % 6;
|
||||
gram_to_be.push_sym(s, s_next, -1.0);
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
|
||||
let guess = DMatrix::from_columns(
|
||||
[
|
||||
sphere(0.0, 0.0, 0.0, 15.0),
|
||||
sphere(0.0, 0.0, -9.0, 5.0),
|
||||
sphere(0.0, 0.0, 11.0, 3.0)
|
||||
].into_iter().chain(
|
||||
(1..=6).map(
|
||||
|k| {
|
||||
let ang = (k as f64) * PI/3.0;
|
||||
sphere(9.0 * ang.cos(), 9.0 * ang.sin(), 0.0, 2.5)
|
||||
}
|
||||
)
|
||||
).collect::<Vec<_>>().as_slice()
|
||||
);
|
||||
|
||||
// the frozen entries fix the radii of the circumscribing sphere, the
|
||||
// "sun" and "moon" spheres, and one of the chain spheres
|
||||
let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k));
|
||||
|
||||
realize_gram(
|
||||
&gram, guess, &frozen,
|
||||
scaled_tol, 0.5, 0.9, 1.1, 200, 110
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::{*, irisawa::realize_irisawa_hexlet};
|
||||
|
||||
#[test]
|
||||
fn sub_proj_test() {
|
||||
let target = PartialMatrix(vec![
|
||||
MatrixEntry { index: (0, 0), value: 19.0 },
|
||||
MatrixEntry { index: (0, 2), value: 39.0 },
|
||||
MatrixEntry { index: (1, 1), value: 59.0 },
|
||||
MatrixEntry { index: (1, 2), value: 69.0 }
|
||||
]);
|
||||
let attempt = DMatrix::<f64>::from_row_slice(2, 3, &[
|
||||
1.0, 2.0, 3.0,
|
||||
4.0, 5.0, 6.0
|
||||
]);
|
||||
let expected_result = DMatrix::<f64>::from_row_slice(2, 3, &[
|
||||
18.0, 0.0, 36.0,
|
||||
0.0, 54.0, 63.0
|
||||
]);
|
||||
assert_eq!(target.sub_proj(&attempt), expected_result);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn zero_loss_test() {
|
||||
let gram = PartialMatrix({
|
||||
let mut entries = Vec::<MatrixEntry>::new();
|
||||
for j in 0..3 {
|
||||
for k in 0..3 {
|
||||
entries.push(MatrixEntry {
|
||||
index: (j, k),
|
||||
value: if j == k { 1.0 } else { -1.0 }
|
||||
});
|
||||
}
|
||||
}
|
||||
entries
|
||||
});
|
||||
let config = {
|
||||
let a: f64 = 0.75_f64.sqrt();
|
||||
DMatrix::from_columns(&[
|
||||
sphere(1.0, 0.0, 0.0, a),
|
||||
sphere(-0.5, a, 0.0, a),
|
||||
sphere(-0.5, -a, 0.0, a)
|
||||
])
|
||||
};
|
||||
let state = SearchState::from_config(&gram, config);
|
||||
assert!(state.loss.abs() < f64::EPSILON);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn irisawa_hexlet_test() {
|
||||
// solve Irisawa's problem
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
let (config, _, _, _) = realize_irisawa_hexlet(SCALED_TOL);
|
||||
|
||||
// check against Irisawa's solution
|
||||
let entry_tol = SCALED_TOL.sqrt();
|
||||
let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0];
|
||||
for (k, diam) in solution_diams.into_iter().enumerate() {
|
||||
assert!((config[(3, k)] - 1.0 / diam).abs() < entry_tol);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn tangent_test() {
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
const ASSEMBLY_DIM: usize = 3;
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for j in 0..3 {
|
||||
for k in j..3 {
|
||||
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
let guess = DMatrix::from_columns(&[
|
||||
sphere(0.0, 0.0, 0.0, -2.0),
|
||||
sphere(0.0, 0.0, 1.0, 1.0),
|
||||
sphere(0.0, 0.0, -1.0, 1.0)
|
||||
]);
|
||||
let frozen: [_; 5] = std::array::from_fn(|k| (k, 0));
|
||||
let (config, tangent, success, history) = realize_gram(
|
||||
&gram, guess.clone(), &frozen,
|
||||
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
assert_eq!(config, guess);
|
||||
assert_eq!(success, true);
|
||||
assert_eq!(history.scaled_loss.len(), 1);
|
||||
|
||||
// confirm that the tangent space has dimension five or less
|
||||
let ConfigSubspace(ref tangent_basis) = tangent;
|
||||
assert_eq!(tangent_basis.len(), 5);
|
||||
|
||||
// confirm that the tangent space contains all the motions we expect it
|
||||
// to. since we've already bounded the dimension of the tangent space,
|
||||
// this confirms that the tangent space is what we expect it to be
|
||||
let tangent_motions = vec![
|
||||
basis_matrix((0, 1), ELEMENT_DIM, ASSEMBLY_DIM),
|
||||
basis_matrix((1, 1), ELEMENT_DIM, ASSEMBLY_DIM),
|
||||
basis_matrix((0, 2), ELEMENT_DIM, ASSEMBLY_DIM),
|
||||
basis_matrix((1, 2), ELEMENT_DIM, ASSEMBLY_DIM),
|
||||
DMatrix::<f64>::from_column_slice(ELEMENT_DIM, 3, &[
|
||||
0.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, -1.0, -0.25, -1.0,
|
||||
0.0, 0.0, -1.0, 0.25, 1.0
|
||||
])
|
||||
];
|
||||
let tol_sq = ((ELEMENT_DIM * ASSEMBLY_DIM) as f64) * SCALED_TOL * SCALED_TOL;
|
||||
for motion in tangent_motions {
|
||||
let motion_proj: DMatrix<_> = motion.column_iter().enumerate().map(
|
||||
|(k, v)| tangent.proj(&v, k)
|
||||
).sum();
|
||||
assert!((motion - motion_proj).norm_squared() < tol_sq);
|
||||
}
|
||||
}
|
||||
|
||||
// at the frozen indices, the optimization steps should have exact zeros,
|
||||
// and the realized configuration should match the initial guess
|
||||
#[test]
|
||||
fn frozen_entry_test() {
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for j in 0..2 {
|
||||
for k in j..2 {
|
||||
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
let guess = DMatrix::from_columns(&[
|
||||
point(0.0, 0.0, 2.0),
|
||||
sphere(0.0, 0.0, 0.0, 1.0)
|
||||
]);
|
||||
let frozen = [(3, 0), (3, 1)];
|
||||
println!();
|
||||
let (config, _, success, history) = realize_gram(
|
||||
&gram, guess.clone(), &frozen,
|
||||
1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
assert_eq!(success, true);
|
||||
for base_step in history.base_step.into_iter() {
|
||||
for index in frozen {
|
||||
assert_eq!(base_step[index], 0.0);
|
||||
}
|
||||
}
|
||||
for index in frozen {
|
||||
assert_eq!(config[index], guess[index]);
|
||||
}
|
||||
}
|
||||
}
|
@ -1,7 +0,0 @@
|
||||
#version 300 es
|
||||
|
||||
in vec4 position;
|
||||
|
||||
void main() {
|
||||
gl_Position = position;
|
||||
}
|
@ -1,234 +0,0 @@
|
||||
#version 300 es
|
||||
|
||||
precision highp float;
|
||||
|
||||
out vec4 outColor;
|
||||
|
||||
// --- inversive geometry ---
|
||||
|
||||
struct vecInv {
|
||||
vec3 sp;
|
||||
vec2 lt;
|
||||
};
|
||||
|
||||
// --- uniforms ---
|
||||
|
||||
// assembly
|
||||
const int SPHERE_MAX = 200;
|
||||
uniform int sphere_cnt;
|
||||
uniform vecInv sphere_list[SPHERE_MAX];
|
||||
uniform vec3 color_list[SPHERE_MAX];
|
||||
uniform float highlight_list[SPHERE_MAX];
|
||||
|
||||
// view
|
||||
uniform vec2 resolution;
|
||||
uniform float shortdim;
|
||||
|
||||
// controls
|
||||
uniform float opacity;
|
||||
uniform int layer_threshold;
|
||||
uniform bool debug_mode;
|
||||
|
||||
// light and camera
|
||||
const float focal_slope = 0.3;
|
||||
const vec3 light_dir = normalize(vec3(2., 2., 1.));
|
||||
const float ixn_threshold = 0.005;
|
||||
const float INTERIOR_DIMMING = 0.7;
|
||||
|
||||
// --- sRGB ---
|
||||
|
||||
// map colors from RGB space to sRGB space, as specified in the sRGB standard
|
||||
// (IEC 61966-2-1:1999)
|
||||
//
|
||||
// https://www.color.org/sRGB.pdf
|
||||
// https://www.color.org/chardata/rgb/srgb.xalter
|
||||
//
|
||||
// in RGB space, color value is proportional to light intensity, so linear
|
||||
// color-vector interpolation corresponds to physical light mixing. in sRGB
|
||||
// space, the color encoding used by many monitors, we use more of the value
|
||||
// interval to represent low intensities, and less of the interval to represent
|
||||
// high intensities. this improves color quantization
|
||||
|
||||
float sRGB(float t) {
|
||||
if (t <= 0.0031308) {
|
||||
return 12.92*t;
|
||||
} else {
|
||||
return 1.055*pow(t, 5./12.) - 0.055;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 sRGB(vec3 color) {
|
||||
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
|
||||
}
|
||||
|
||||
// --- shading ---
|
||||
|
||||
struct Fragment {
|
||||
vec3 pt;
|
||||
vec3 normal;
|
||||
vec4 color;
|
||||
};
|
||||
|
||||
Fragment sphere_shading(vecInv v, vec3 pt, vec3 base_color) {
|
||||
// the expression for normal needs to be checked. it's supposed to give the
|
||||
// negative gradient of the lorentz product between the impact point vector
|
||||
// and the sphere vector with respect to the coordinates of the impact
|
||||
// point. i calculated it in my head and decided that the result looked good
|
||||
// enough for now
|
||||
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
|
||||
|
||||
float incidence = dot(normal, light_dir);
|
||||
float illum = mix(0.4, 1.0, max(incidence, 0.0));
|
||||
return Fragment(pt, normal, vec4(illum * base_color, opacity));
|
||||
}
|
||||
|
||||
float intersection_dist(Fragment a, Fragment b) {
|
||||
float intersection_sin = length(cross(a.normal, b.normal));
|
||||
vec3 disp = a.pt - b.pt;
|
||||
return max(
|
||||
abs(dot(a.normal, disp)),
|
||||
abs(dot(b.normal, disp))
|
||||
) / intersection_sin;
|
||||
}
|
||||
|
||||
// --- ray-casting ---
|
||||
|
||||
struct TaggedDepth {
|
||||
float depth;
|
||||
float dimming;
|
||||
int id;
|
||||
};
|
||||
|
||||
// if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by
|
||||
// the linear function `b*u + c`
|
||||
const float DEG_THRESHOLD = 1e-9;
|
||||
|
||||
// the depths, represented as multiples of `dir`, where the line generated by
|
||||
// `dir` hits the sphere represented by `v`. if both depths are positive, the
|
||||
// smaller one is returned in the first component. if only one depth is
|
||||
// positive, it could be returned in either component
|
||||
vec2 sphere_cast(vecInv v, vec3 dir) {
|
||||
float a = -v.lt.s * dot(dir, dir);
|
||||
float b = dot(v.sp, dir);
|
||||
float c = -v.lt.t;
|
||||
|
||||
float adjust = 4.*a*c/(b*b);
|
||||
if (adjust < 1.) {
|
||||
// as long as `b` is non-zero, the linear approximation of
|
||||
//
|
||||
// a*u^2 + b*u + c
|
||||
//
|
||||
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of the
|
||||
// quadratic adjacent to `u_lin` is stored in `lin_root`. if both roots
|
||||
// have the same sign, `lin_root` will be the one closer to `u = 0`
|
||||
float square_rect_ratio = 1. + sqrt(1. - adjust);
|
||||
float lin_root = -(2.*c)/b / square_rect_ratio;
|
||||
if (abs(a) > DEG_THRESHOLD * abs(b)) {
|
||||
return vec2(lin_root, -b/(2.*a) * square_rect_ratio);
|
||||
} else {
|
||||
return vec2(lin_root, -1.);
|
||||
}
|
||||
} else {
|
||||
// the line through `dir` misses the sphere completely
|
||||
return vec2(-1., -1.);
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
|
||||
vec3 dir = vec3(focal_slope * scr, -1.);
|
||||
|
||||
// cast rays through the spheres
|
||||
const int LAYER_MAX = 12;
|
||||
TaggedDepth top_hits [LAYER_MAX];
|
||||
int layer_cnt = 0;
|
||||
for (int id = 0; id < sphere_cnt; ++id) {
|
||||
// find out where the ray hits the sphere
|
||||
vec2 hit_depths = sphere_cast(sphere_list[id], dir);
|
||||
|
||||
// insertion-sort the points we hit into the hit list
|
||||
float dimming = 1.;
|
||||
for (int side = 0; side < 2; ++side) {
|
||||
float depth = hit_depths[side];
|
||||
if (depth > 0.) {
|
||||
for (int layer = layer_cnt; layer >= 0; --layer) {
|
||||
if (layer < 1 || top_hits[layer-1].depth <= depth) {
|
||||
// we're not as close to the screen as the hit before
|
||||
// the empty slot, so insert here
|
||||
if (layer < LAYER_MAX) {
|
||||
top_hits[layer] = TaggedDepth(depth, dimming, id);
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
// we're closer to the screen than the hit before the
|
||||
// empty slot, so move that hit into the empty slot
|
||||
top_hits[layer] = top_hits[layer-1];
|
||||
}
|
||||
}
|
||||
layer_cnt = min(layer_cnt + 1, LAYER_MAX);
|
||||
dimming = INTERIOR_DIMMING;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* DEBUG */
|
||||
// in debug mode, show the layer count instead of the shaded image
|
||||
if (debug_mode) {
|
||||
// at the bottom of the screen, show the color scale instead of the
|
||||
// layer count
|
||||
if (gl_FragCoord.y < 10.) layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
|
||||
|
||||
// convert number to color
|
||||
ivec3 bits = layer_cnt / ivec3(1, 2, 4);
|
||||
vec3 color = mod(vec3(bits), 2.);
|
||||
if (layer_cnt % 16 >= 8) {
|
||||
color = mix(color, vec3(0.5), 0.5);
|
||||
}
|
||||
outColor = vec4(color, 1.);
|
||||
return;
|
||||
}
|
||||
|
||||
// composite the sphere fragments
|
||||
vec3 color = vec3(0.);
|
||||
int layer = layer_cnt - 1;
|
||||
TaggedDepth hit = top_hits[layer];
|
||||
Fragment frag_next = sphere_shading(
|
||||
sphere_list[hit.id],
|
||||
hit.depth * dir,
|
||||
hit.dimming * color_list[hit.id]
|
||||
);
|
||||
float highlight_next = highlight_list[hit.id];
|
||||
--layer;
|
||||
for (; layer >= layer_threshold; --layer) {
|
||||
// load the current fragment
|
||||
Fragment frag = frag_next;
|
||||
float highlight = highlight_next;
|
||||
|
||||
// shade the next fragment
|
||||
hit = top_hits[layer];
|
||||
frag_next = sphere_shading(
|
||||
sphere_list[hit.id],
|
||||
hit.depth * dir,
|
||||
hit.dimming * color_list[hit.id]
|
||||
);
|
||||
highlight_next = highlight_list[hit.id];
|
||||
|
||||
// highlight intersections
|
||||
float ixn_dist = intersection_dist(frag, frag_next);
|
||||
float max_highlight = max(highlight, highlight_next);
|
||||
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
|
||||
frag.color = mix(frag.color, vec4(1.), ixn_highlight);
|
||||
frag_next.color = mix(frag_next.color, vec4(1.), ixn_highlight);
|
||||
|
||||
// highlight cusps
|
||||
float cusp_cos = abs(dot(dir, frag.normal));
|
||||
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[hit.id].lt.s);
|
||||
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
|
||||
frag.color = mix(frag.color, vec4(1.), cusp_highlight);
|
||||
|
||||
// composite the current fragment
|
||||
color = mix(color, frag.color.rgb, frag.color.a);
|
||||
}
|
||||
color = mix(color, frag_next.color.rgb, frag_next.color.a);
|
||||
outColor = vec4(sRGB(color), 1.);
|
||||
}
|
@ -1 +0,0 @@
|
||||
pub mod engine;
|
@ -1,64 +0,0 @@
|
||||
mod add_remove;
|
||||
mod assembly;
|
||||
mod display;
|
||||
mod engine;
|
||||
mod outline;
|
||||
|
||||
use rustc_hash::FxHashSet;
|
||||
use sycamore::prelude::*;
|
||||
|
||||
use add_remove::AddRemove;
|
||||
use assembly::{Assembly, ElementKey};
|
||||
use display::Display;
|
||||
use outline::Outline;
|
||||
|
||||
#[derive(Clone)]
|
||||
struct AppState {
|
||||
assembly: Assembly,
|
||||
selection: Signal<FxHashSet<ElementKey>>
|
||||
}
|
||||
|
||||
impl AppState {
|
||||
fn new() -> AppState {
|
||||
AppState {
|
||||
assembly: Assembly::new(),
|
||||
selection: create_signal(FxHashSet::default())
|
||||
}
|
||||
}
|
||||
|
||||
// in single-selection mode, select the element with the given key. in
|
||||
// multiple-selection mode, toggle whether the element with the given key
|
||||
// is selected
|
||||
fn select(&self, key: ElementKey, multi: bool) {
|
||||
if multi {
|
||||
self.selection.update(|sel| {
|
||||
if !sel.remove(&key) {
|
||||
sel.insert(key);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
self.selection.update(|sel| {
|
||||
sel.clear();
|
||||
sel.insert(key);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// set the console error panic hook
|
||||
#[cfg(feature = "console_error_panic_hook")]
|
||||
console_error_panic_hook::set_once();
|
||||
|
||||
sycamore::render(|| {
|
||||
provide_context(AppState::new());
|
||||
|
||||
view! {
|
||||
div(id="sidebar") {
|
||||
AddRemove {}
|
||||
Outline {}
|
||||
}
|
||||
Display {}
|
||||
}
|
||||
});
|
||||
}
|
@ -1,196 +0,0 @@
|
||||
use itertools::Itertools;
|
||||
use sycamore::prelude::*;
|
||||
use web_sys::{
|
||||
Event,
|
||||
HtmlInputElement,
|
||||
KeyboardEvent,
|
||||
MouseEvent,
|
||||
wasm_bindgen::JsCast
|
||||
};
|
||||
|
||||
use crate::{AppState, assembly, assembly::{Constraint, ConstraintKey, ElementKey}};
|
||||
|
||||
// an editable view of the Lorentz product representing a constraint
|
||||
#[component(inline_props)]
|
||||
fn LorentzProductInput(constraint: Constraint) -> View {
|
||||
view! {
|
||||
input(
|
||||
r#type="text",
|
||||
bind:value=constraint.lorentz_prod_text,
|
||||
on:change=move |event: Event| {
|
||||
let target: HtmlInputElement = event.target().unwrap().unchecked_into();
|
||||
match target.value().parse::<f64>() {
|
||||
Ok(lorentz_prod) => batch(|| {
|
||||
constraint.lorentz_prod.set(lorentz_prod);
|
||||
constraint.lorentz_prod_valid.set(true);
|
||||
}),
|
||||
Err(_) => constraint.lorentz_prod_valid.set(false)
|
||||
};
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// a list item that shows a constraint in an outline view of an element
|
||||
#[component(inline_props)]
|
||||
fn ConstraintOutlineItem(constraint_key: ConstraintKey, element_key: ElementKey) -> View {
|
||||
let state = use_context::<AppState>();
|
||||
let assembly = &state.assembly;
|
||||
let constraint = assembly.constraints.with(|csts| csts[constraint_key].clone());
|
||||
let other_subject = if constraint.subjects.0 == element_key {
|
||||
constraint.subjects.1
|
||||
} else {
|
||||
constraint.subjects.0
|
||||
};
|
||||
let other_subject_label = assembly.elements.with(|elts| elts[other_subject].label.clone());
|
||||
let class = constraint.lorentz_prod_valid.map(
|
||||
|&lorentz_prod_valid| if lorentz_prod_valid { "constraint" } else { "constraint invalid" }
|
||||
);
|
||||
view! {
|
||||
li(class=class.get()) {
|
||||
input(r#type="checkbox", bind:checked=constraint.active)
|
||||
div(class="constraint-label") { (other_subject_label) }
|
||||
LorentzProductInput(constraint=constraint)
|
||||
div(class="status")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// a list item that shows an element in an outline view of an assembly
|
||||
#[component(inline_props)]
|
||||
fn ElementOutlineItem(key: ElementKey, element: assembly::Element) -> View {
|
||||
let state = use_context::<AppState>();
|
||||
let class = state.selection.map(
|
||||
move |sel| if sel.contains(&key) { "selected" } else { "" }
|
||||
);
|
||||
let label = element.label.clone();
|
||||
let rep_components = element.representation.map(
|
||||
|rep| rep.iter().map(
|
||||
|u| format!("{:.3}", u).replace("-", "\u{2212}")
|
||||
).collect()
|
||||
);
|
||||
let constrained = element.constraints.map(|csts| csts.len() > 0);
|
||||
let constraint_list = element.constraints.map(
|
||||
|csts| csts.clone().into_iter().collect()
|
||||
);
|
||||
let details_node = create_node_ref();
|
||||
view! {
|
||||
li {
|
||||
details(ref=details_node) {
|
||||
summary(
|
||||
class=class.get(),
|
||||
on:keydown={
|
||||
move |event: KeyboardEvent| {
|
||||
match event.key().as_str() {
|
||||
"Enter" => {
|
||||
state.select(key, event.shift_key());
|
||||
event.prevent_default();
|
||||
},
|
||||
"ArrowRight" if constrained.get() => {
|
||||
let _ = details_node
|
||||
.get()
|
||||
.unchecked_into::<web_sys::Element>()
|
||||
.set_attribute("open", "");
|
||||
},
|
||||
"ArrowLeft" => {
|
||||
let _ = details_node
|
||||
.get()
|
||||
.unchecked_into::<web_sys::Element>()
|
||||
.remove_attribute("open");
|
||||
},
|
||||
_ => ()
|
||||
}
|
||||
}
|
||||
}
|
||||
) {
|
||||
div(
|
||||
class="element-switch",
|
||||
on:click=|event: MouseEvent| event.stop_propagation()
|
||||
)
|
||||
div(
|
||||
class="element",
|
||||
on:click={
|
||||
move |event: MouseEvent| {
|
||||
if event.shift_key() {
|
||||
state.selection.update(|sel| {
|
||||
if !sel.remove(&key) {
|
||||
sel.insert(key);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
state.selection.update(|sel| {
|
||||
sel.clear();
|
||||
sel.insert(key);
|
||||
});
|
||||
}
|
||||
event.stop_propagation();
|
||||
event.prevent_default();
|
||||
}
|
||||
}
|
||||
) {
|
||||
div(class="element-label") { (label) }
|
||||
div(class="element-representation") {
|
||||
Indexed(
|
||||
list=rep_components,
|
||||
view=|coord_str| view! {
|
||||
div { (coord_str) }
|
||||
}
|
||||
)
|
||||
}
|
||||
div(class="status")
|
||||
}
|
||||
}
|
||||
ul(class="constraints") {
|
||||
Keyed(
|
||||
list=constraint_list,
|
||||
view=move |cst_key| view! {
|
||||
ConstraintOutlineItem(
|
||||
constraint_key=cst_key,
|
||||
element_key=key
|
||||
)
|
||||
},
|
||||
key=|cst_key| cst_key.clone()
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// a component that lists the elements of the current assembly, showing the
|
||||
// constraints on each element as a collapsible sub-list. its implementation
|
||||
// is based on Kate Morley's HTML + CSS tree views:
|
||||
//
|
||||
// https://iamkate.com/code/tree-views/
|
||||
//
|
||||
#[component]
|
||||
pub fn Outline() -> View {
|
||||
let state = use_context::<AppState>();
|
||||
|
||||
// list the elements alphabetically by ID
|
||||
let element_list = state.assembly.elements.map(
|
||||
|elts| elts
|
||||
.clone()
|
||||
.into_iter()
|
||||
.sorted_by_key(|(_, elt)| elt.id.clone())
|
||||
.collect()
|
||||
);
|
||||
|
||||
view! {
|
||||
ul(
|
||||
id="outline",
|
||||
on:click={
|
||||
let state = use_context::<AppState>();
|
||||
move |_| state.selection.update(|sel| sel.clear())
|
||||
}
|
||||
) {
|
||||
Keyed(
|
||||
list=element_list,
|
||||
view=|(key, elt)| view! {
|
||||
ElementOutlineItem(key=key, element=elt)
|
||||
},
|
||||
key=|(_, elt)| elt.serial
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
@ -8,8 +8,7 @@ using Optim
|
||||
|
||||
export
|
||||
rand_on_shell, Q, DescentHistory,
|
||||
realize_gram_gradient, realize_gram_newton, realize_gram_optim,
|
||||
realize_gram_alt_proj, realize_gram
|
||||
realize_gram_gradient, realize_gram_newton, realize_gram_optim, realize_gram
|
||||
|
||||
# === guessing ===
|
||||
|
||||
@ -60,10 +59,11 @@ nullmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1;
|
||||
unmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1; 1 1]]
|
||||
|
||||
# the Lorentz form
|
||||
## [old] Q = diagm([1, 1, 1, 1, -1])
|
||||
Q = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [0 -2; -2 0]]
|
||||
|
||||
# project a matrix onto the subspace of matrices whose entries vanish away from
|
||||
# the given indices
|
||||
# project a matrix onto the subspace of matrices whose entries vanish at the
|
||||
# given indices
|
||||
function proj_to_entries(mat, indices)
|
||||
result = zeros(size(mat))
|
||||
for (j, k) in indices
|
||||
@ -144,7 +144,7 @@ function realize_gram_gradient(
|
||||
break
|
||||
end
|
||||
|
||||
# find the negative gradient of the loss function
|
||||
# find negative gradient of loss function
|
||||
neg_grad = 4*Q*L*Δ_proj
|
||||
slope = norm(neg_grad)
|
||||
dir = neg_grad / slope
|
||||
@ -233,7 +233,7 @@ function realize_gram_newton(
|
||||
break
|
||||
end
|
||||
|
||||
# find the negative gradient of the loss function
|
||||
# find the negative gradient of loss function
|
||||
neg_grad = 4*Q*L*Δ_proj
|
||||
|
||||
# find the negative Hessian of the loss function
|
||||
@ -314,129 +314,6 @@ function realize_gram_optim(
|
||||
)
|
||||
end
|
||||
|
||||
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
|
||||
# explicit entry of `gram`. use gradient descent starting from `guess`, with an
|
||||
# alternate technique for finding the projected base step from the unprojected
|
||||
# Hessian
|
||||
function realize_gram_alt_proj(
|
||||
gram::SparseMatrixCSC{T, <:Any},
|
||||
guess::Matrix{T},
|
||||
frozen = CartesianIndex[];
|
||||
scaled_tol = 1e-30,
|
||||
min_efficiency = 0.5,
|
||||
backoff = 0.9,
|
||||
reg_scale = 1.1,
|
||||
max_descent_steps = 200,
|
||||
max_backoff_steps = 110
|
||||
) where T <: Number
|
||||
# start history
|
||||
history = DescentHistory{T}()
|
||||
|
||||
# find the dimension of the search space
|
||||
dims = size(guess)
|
||||
element_dim, construction_dim = dims
|
||||
total_dim = element_dim * construction_dim
|
||||
|
||||
# list the constrained entries of the gram matrix
|
||||
J, K, _ = findnz(gram)
|
||||
constrained = zip(J, K)
|
||||
|
||||
# scale the tolerance
|
||||
scale_adjustment = sqrt(T(length(constrained)))
|
||||
tol = scale_adjustment * scaled_tol
|
||||
|
||||
# convert the frozen indices to stacked format
|
||||
frozen_stacked = [(index[2]-1)*element_dim + index[1] for index in frozen]
|
||||
|
||||
# initialize search state
|
||||
L = copy(guess)
|
||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||
loss = dot(Δ_proj, Δ_proj)
|
||||
|
||||
# use Newton's method with backtracking and gradient descent backup
|
||||
for step in 1:max_descent_steps
|
||||
# stop if the loss is tolerably low
|
||||
if loss < tol
|
||||
break
|
||||
end
|
||||
|
||||
# find the negative gradient of the loss function
|
||||
neg_grad = 4*Q*L*Δ_proj
|
||||
|
||||
# find the negative Hessian of the loss function
|
||||
hess = Matrix{T}(undef, total_dim, total_dim)
|
||||
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
|
||||
for (j, k) in indices
|
||||
basis_mat = basis_matrix(T, j, k, dims)
|
||||
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
|
||||
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
|
||||
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
|
||||
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
|
||||
end
|
||||
hess_sym = Hermitian(hess)
|
||||
push!(history.hess, hess_sym)
|
||||
|
||||
# regularize the Hessian
|
||||
min_eigval = minimum(eigvals(hess_sym))
|
||||
push!(history.positive, min_eigval > 0)
|
||||
if min_eigval <= 0
|
||||
hess -= reg_scale * min_eigval * I
|
||||
end
|
||||
|
||||
# compute the Newton step
|
||||
neg_grad_stacked = reshape(neg_grad, total_dim)
|
||||
for k in frozen_stacked
|
||||
neg_grad_stacked[k] = 0
|
||||
hess[k, :] .= 0
|
||||
hess[:, k] .= 0
|
||||
hess[k, k] = 1
|
||||
end
|
||||
base_step_stacked = Hermitian(hess) \ neg_grad_stacked
|
||||
base_step = reshape(base_step_stacked, dims)
|
||||
push!(history.base_step, base_step)
|
||||
|
||||
# store the current position, loss, and slope
|
||||
L_last = L
|
||||
loss_last = loss
|
||||
push!(history.scaled_loss, loss / scale_adjustment)
|
||||
push!(history.neg_grad, neg_grad)
|
||||
push!(history.slope, norm(neg_grad))
|
||||
|
||||
# find a good step size using backtracking line search
|
||||
push!(history.stepsize, 0)
|
||||
push!(history.backoff_steps, max_backoff_steps)
|
||||
empty!(history.last_line_L)
|
||||
empty!(history.last_line_loss)
|
||||
rate = one(T)
|
||||
step_success = false
|
||||
base_target_improvement = dot(neg_grad, base_step)
|
||||
for backoff_steps in 0:max_backoff_steps
|
||||
history.stepsize[end] = rate
|
||||
L = L_last + rate * base_step
|
||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||
loss = dot(Δ_proj, Δ_proj)
|
||||
improvement = loss_last - loss
|
||||
push!(history.last_line_L, L)
|
||||
push!(history.last_line_loss, loss / scale_adjustment)
|
||||
if improvement >= min_efficiency * rate * base_target_improvement
|
||||
history.backoff_steps[end] = backoff_steps
|
||||
step_success = true
|
||||
break
|
||||
end
|
||||
rate *= backoff
|
||||
end
|
||||
|
||||
# if we've hit a wall, quit
|
||||
if !step_success
|
||||
return L_last, false, history
|
||||
end
|
||||
end
|
||||
|
||||
# return the factorization and its history
|
||||
push!(history.scaled_loss, loss / scale_adjustment)
|
||||
L, loss < tol, history
|
||||
end
|
||||
|
||||
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
|
||||
# explicit entry of `gram`. use gradient descent starting from `guess`
|
||||
function realize_gram(
|
||||
@ -445,6 +322,7 @@ function realize_gram(
|
||||
frozen = nothing;
|
||||
scaled_tol = 1e-30,
|
||||
min_efficiency = 0.5,
|
||||
init_rate = 1.0,
|
||||
backoff = 0.9,
|
||||
reg_scale = 1.1,
|
||||
max_descent_steps = 200,
|
||||
@ -475,19 +353,20 @@ function realize_gram(
|
||||
unfrozen_stacked = reshape(is_unfrozen, total_dim)
|
||||
end
|
||||
|
||||
# initialize search state
|
||||
# initialize variables
|
||||
grad_rate = init_rate
|
||||
L = copy(guess)
|
||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||
loss = dot(Δ_proj, Δ_proj)
|
||||
|
||||
# use Newton's method with backtracking and gradient descent backup
|
||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||
loss = dot(Δ_proj, Δ_proj)
|
||||
for step in 1:max_descent_steps
|
||||
# stop if the loss is tolerably low
|
||||
if loss < tol
|
||||
break
|
||||
end
|
||||
|
||||
# find the negative gradient of the loss function
|
||||
# find the negative gradient of loss function
|
||||
neg_grad = 4*Q*L*Δ_proj
|
||||
|
||||
# find the negative Hessian of the loss function
|
||||
@ -542,7 +421,6 @@ function realize_gram(
|
||||
empty!(history.last_line_loss)
|
||||
rate = one(T)
|
||||
step_success = false
|
||||
base_target_improvement = dot(neg_grad, base_step)
|
||||
for backoff_steps in 0:max_backoff_steps
|
||||
history.stepsize[end] = rate
|
||||
L = L_last + rate * base_step
|
||||
@ -551,7 +429,7 @@ function realize_gram(
|
||||
improvement = loss_last - loss
|
||||
push!(history.last_line_L, L)
|
||||
push!(history.last_line_loss, loss / scale_adjustment)
|
||||
if improvement >= min_efficiency * rate * base_target_improvement
|
||||
if improvement >= min_efficiency * rate * dot(neg_grad, base_step)
|
||||
history.backoff_steps[end] = backoff_steps
|
||||
step_success = true
|
||||
break
|
||||
|
@ -74,13 +74,4 @@ if success
|
||||
for k in 5:9
|
||||
println(" ", 1 / L[4,k], " sun")
|
||||
end
|
||||
end
|
||||
|
||||
# test an alternate technique for finding the projected base step from the
|
||||
# unprojected Hessian
|
||||
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
|
||||
completed_gram_alt = L_alt'*Engine.Q*L_alt
|
||||
println("\nDifference in result using alternate projection:\n")
|
||||
display(completed_gram_alt - completed_gram)
|
||||
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
|
||||
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
|
||||
end
|
@ -64,13 +64,4 @@ else
|
||||
println("\nFailed to reach target accuracy")
|
||||
end
|
||||
println("Steps: ", size(history.scaled_loss, 1))
|
||||
println("Loss: ", history.scaled_loss[end], "\n")
|
||||
|
||||
# test an alternate technique for finding the projected base step from the
|
||||
# unprojected Hessian
|
||||
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
|
||||
completed_gram_alt = L_alt'*Engine.Q*L_alt
|
||||
println("\nDifference in result using alternate projection:\n")
|
||||
display(completed_gram_alt - completed_gram)
|
||||
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
|
||||
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
|
||||
println("Loss: ", history.scaled_loss[end], "\n")
|
@ -93,13 +93,4 @@ if success
|
||||
infty = BigFloat[0, 0, 0, 0, 1]
|
||||
radius_ratio = dot(infty, Engine.Q * L[:,5]) / dot(infty, Engine.Q * L[:,6])
|
||||
println("\nCircumradius / inradius: ", radius_ratio)
|
||||
end
|
||||
|
||||
# test an alternate technique for finding the projected base step from the
|
||||
# unprojected Hessian
|
||||
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
|
||||
completed_gram_alt = L_alt'*Engine.Q*L_alt
|
||||
println("\nDifference in result using alternate projection:\n")
|
||||
display(completed_gram_alt - completed_gram)
|
||||
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
|
||||
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
|
||||
end
|
3
lang-trials/rust-benchmark-native/.gitignore
vendored
Normal file
3
lang-trials/rust-benchmark-native/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
target
|
||||
dist
|
||||
Cargo.lock
|
16
lang-trials/rust-benchmark-native/Cargo.toml
Normal file
16
lang-trials/rust-benchmark-native/Cargo.toml
Normal file
@ -0,0 +1,16 @@
|
||||
[package]
|
||||
name = "rust-benchmark-native"
|
||||
version = "0.1.0"
|
||||
authors = ["Aaron"]
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
cairo-rs = "0.20.1"
|
||||
gtk = { package = "gtk4", version = "0.9.0" }
|
||||
nalgebra = "0.33.0"
|
||||
plotters = "0.3.6"
|
||||
plotters-cairo = "0.7.0"
|
||||
|
||||
[profile.release]
|
||||
opt-level = "s" # optimize for small code size
|
||||
debug = true # include debug symbols
|
105
lang-trials/rust-benchmark-native/src/engine.rs
Normal file
105
lang-trials/rust-benchmark-native/src/engine.rs
Normal file
@ -0,0 +1,105 @@
|
||||
use nalgebra::{*, allocator::Allocator};
|
||||
use std::f64::consts::{PI, E};
|
||||
|
||||
/* dynamic matrices */
|
||||
pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>> {
|
||||
// initialize the random matrix
|
||||
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
}) * (3.0 / (dim as f64)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}
|
||||
|
||||
/* dynamic single float matrices */
|
||||
/*pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>> {
|
||||
// initialize the random matrix
|
||||
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
|
||||
}) * (3.0_f32 / (dim as f32)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}*/
|
||||
|
||||
/* static matrices. should only be used when the dimension is really small */
|
||||
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
|
||||
where
|
||||
N: ToTypenum + DimName + DimSub<U1>,
|
||||
DefaultAllocator:
|
||||
Allocator<N> +
|
||||
Allocator<N, N> +
|
||||
Allocator<<N as DimSub<U1>>::Output> +
|
||||
Allocator<N, <N as DimSub<U1>>::Output>
|
||||
{
|
||||
// initialize the random matrix
|
||||
let dim = N::try_to_usize().unwrap();
|
||||
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
}) * (3.0 / (dim as f64)).sqrt();
|
||||
/*let mut rand_mat = OMatrix::<f64, N, N>::identity();*/
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = OMatrix::<f64, N, N>::identity();
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}*/
|
104
lang-trials/rust-benchmark-native/src/main.rs
Normal file
104
lang-trials/rust-benchmark-native/src/main.rs
Normal file
@ -0,0 +1,104 @@
|
||||
// based on Olivier Pelhatre's GTK 3 example, ported to GTK 4
|
||||
//
|
||||
// https://github.com/Ouam74/RUST_Real-time_plots_using_GTK-rs_and_Plotters-rs
|
||||
//
|
||||
// a self-contained component might draw on the example below, by StackOverflow
|
||||
// user Nicolas
|
||||
//
|
||||
// https://stackoverflow.com/a/76548487
|
||||
//
|
||||
// here's a crash course in `plotters`
|
||||
//
|
||||
// https://plotters-rs.github.io/book/basic/basic_data_plotting.html
|
||||
//
|
||||
|
||||
extern crate cairo;
|
||||
use plotters::prelude::*;
|
||||
use plotters_cairo::CairoBackend;
|
||||
use gtk::{
|
||||
glib,
|
||||
prelude::*,
|
||||
Adjustment,
|
||||
Align,
|
||||
Application,
|
||||
ApplicationWindow,
|
||||
Box,
|
||||
DrawingArea,
|
||||
Label,
|
||||
Orientation,
|
||||
Scale
|
||||
};
|
||||
use std::time::Instant;
|
||||
|
||||
mod engine;
|
||||
|
||||
fn main() -> glib::ExitCode {
|
||||
let app = Application::builder()
|
||||
.application_id("org.studioinfinity.rust-benchmark-native")
|
||||
.build();
|
||||
|
||||
app.connect_activate(|app| {
|
||||
const TIME_RES: usize = 100;
|
||||
let start_time = Instant::now();
|
||||
let eigval_series = engine::rand_eigval_series(60, TIME_RES);
|
||||
let run_time = start_time.elapsed().as_millis();
|
||||
|
||||
// application state
|
||||
let time_step = Adjustment::new(0.0, 0.0, TIME_RES as f64, 1.0, 0.0, 0.0);
|
||||
|
||||
// create the window.
|
||||
let window = ApplicationWindow::builder()
|
||||
.application(app)
|
||||
.title("The circular law")
|
||||
.build();
|
||||
|
||||
// create a vertical box
|
||||
let container = Box::new(Orientation::Vertical, 5);
|
||||
window.set_child(Some(&container));
|
||||
|
||||
// create the run time readout
|
||||
let run_time_readout = Label::builder()
|
||||
.margin_top(5)
|
||||
.margin_start(10)
|
||||
.halign(Align::Start)
|
||||
.label(glib::gformat!("{} ms", run_time))
|
||||
.build();
|
||||
container.append(&run_time_readout);
|
||||
|
||||
// set up the drawing area
|
||||
let drawing_area = DrawingArea::builder()
|
||||
.content_width(600)
|
||||
.content_height(600)
|
||||
.build();
|
||||
let time_step_for_draw = time_step.clone();
|
||||
let draw_eigvals = move |_: &DrawingArea, context: &cairo::Context, width: i32, height: i32| {
|
||||
let root = CairoBackend::new(&context, (width as u32, height as u32)).unwrap().into_drawing_area();
|
||||
let _ = root.fill(&BLACK);
|
||||
|
||||
const R_DISP: f64 = 1.5;
|
||||
let mut chart = ChartBuilder::on(&root)
|
||||
.build_cartesian_2d(-R_DISP..R_DISP, -R_DISP..R_DISP)
|
||||
.unwrap();
|
||||
let time_step_val = (time_step_for_draw.value() as usize).min(TIME_RES-1);
|
||||
let eigval_iter = eigval_series[time_step_val].iter();
|
||||
let _ = chart.draw_series(
|
||||
eigval_iter.map(|z| Circle::new((z.re, z.im), 3, WHITE.filled()))
|
||||
);
|
||||
let _ = root.present();
|
||||
};
|
||||
DrawingAreaExtManual::set_draw_func(&drawing_area, draw_eigvals);
|
||||
container.append(&drawing_area);
|
||||
|
||||
// set up the time step slider
|
||||
let time_step_scale = Scale::new(Orientation::Horizontal, Some(&time_step));
|
||||
time_step_scale.connect_value_changed(move |_: &Scale| {
|
||||
drawing_area.queue_draw();
|
||||
});
|
||||
container.append(&time_step_scale);
|
||||
|
||||
// show the window
|
||||
window.present();
|
||||
});
|
||||
|
||||
app.run()
|
||||
}
|
3
lang-trials/rust-benchmark/.gitignore
vendored
Normal file
3
lang-trials/rust-benchmark/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
target
|
||||
dist
|
||||
Cargo.lock
|
@ -1,21 +1,15 @@
|
||||
[package]
|
||||
name = "dyna3"
|
||||
name = "rust-benchmark"
|
||||
version = "0.1.0"
|
||||
authors = ["Aaron Fenyes", "Glen Whitney"]
|
||||
authors = ["Aaron"]
|
||||
edition = "2021"
|
||||
|
||||
[features]
|
||||
default = ["console_error_panic_hook"]
|
||||
dev = []
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.13.0"
|
||||
js-sys = "0.3.70"
|
||||
lazy_static = "1.5.0"
|
||||
nalgebra = "0.33.0"
|
||||
rustc-hash = "2.0.0"
|
||||
slab = "0.4.9"
|
||||
sycamore = "0.9.0-beta.3"
|
||||
sycamore = "0.9.0-beta.2"
|
||||
|
||||
# The `console_error_panic_hook` crate provides better debugging of panics by
|
||||
# logging them with `console.error`. This is great for development, but requires
|
||||
@ -26,24 +20,13 @@ console_error_panic_hook = { version = "0.1.7", optional = true }
|
||||
[dependencies.web-sys]
|
||||
version = "0.3.69"
|
||||
features = [
|
||||
'DomRect',
|
||||
'CanvasRenderingContext2d',
|
||||
'HtmlCanvasElement',
|
||||
'HtmlInputElement',
|
||||
'Performance',
|
||||
'WebGl2RenderingContext',
|
||||
'WebGlBuffer',
|
||||
'WebGlProgram',
|
||||
'WebGlShader',
|
||||
'WebGlUniformLocation',
|
||||
'WebGlVertexArrayObject'
|
||||
'Window',
|
||||
'Performance'
|
||||
]
|
||||
|
||||
# the self-dependency specifies features to use for tests and examples
|
||||
#
|
||||
# https://github.com/rust-lang/cargo/issues/2911#issuecomment-1483256987
|
||||
#
|
||||
[dev-dependencies]
|
||||
dyna3 = { path = ".", default-features = false, features = ["dev"] }
|
||||
wasm-bindgen-test = "0.3.34"
|
||||
|
||||
[profile.release]
|
9
lang-trials/rust-benchmark/index.html
Normal file
9
lang-trials/rust-benchmark/index.html
Normal file
@ -0,0 +1,9 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8"/>
|
||||
<title>The circular law</title>
|
||||
<link data-trunk rel="css" href="main.css"/>
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
23
lang-trials/rust-benchmark/main.css
Normal file
23
lang-trials/rust-benchmark/main.css
Normal file
@ -0,0 +1,23 @@
|
||||
body {
|
||||
margin-left: 20px;
|
||||
margin-top: 20px;
|
||||
color: #fcfcfc;
|
||||
background-color: #202020;
|
||||
}
|
||||
|
||||
#app {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
width: 600px;
|
||||
}
|
||||
|
||||
canvas {
|
||||
float: left;
|
||||
background-color: #020202;
|
||||
border-radius: 10px;
|
||||
margin-top: 5px;
|
||||
}
|
||||
|
||||
input {
|
||||
margin-top: 5px;
|
||||
}
|
13
lang-trials/rust-benchmark/notes
Normal file
13
lang-trials/rust-benchmark/notes
Normal file
@ -0,0 +1,13 @@
|
||||
in profiling, most time is being spent in the `reflect` method:
|
||||
|
||||
f64:
|
||||
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::h7899977a4ba0b1d3
|
||||
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::hc337c3cb6e3b4061
|
||||
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect_rows::h43d0f6838d0c2833
|
||||
|
||||
f32:
|
||||
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::h0e8ec322f198f847
|
||||
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::h9928bdd5e72743ea
|
||||
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect_rows::h49f571fd8fc9b0f2
|
||||
|
||||
in one test, we spent 4000 ms in "WASM closure", but the enveloping "VoidFunction" takes 1300 ms longer. in another test, though, there's no overhang; the 7000 ms we spent in `rand_eigval_series` accounts for basically the entire load time, and matches the clock timing
|
104
lang-trials/rust-benchmark/src/engine.rs
Normal file
104
lang-trials/rust-benchmark/src/engine.rs
Normal file
@ -0,0 +1,104 @@
|
||||
use nalgebra::{*, allocator::Allocator};
|
||||
use std::f64::consts::{PI, E};
|
||||
|
||||
/* dynamic matrices */
|
||||
pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>> {
|
||||
// initialize the random matrix
|
||||
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
}) * (3.0 / (dim as f64)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}
|
||||
|
||||
/* dynamic single float matrices */
|
||||
/*pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>> {
|
||||
// initialize the random matrix
|
||||
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
|
||||
}) * (3.0_f32 / (dim as f32)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}*/
|
||||
|
||||
/* static matrices. should only be used when the dimension is really small */
|
||||
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
|
||||
where
|
||||
N: ToTypenum + DimName + DimSub<U1>,
|
||||
DefaultAllocator:
|
||||
Allocator<N> +
|
||||
Allocator<N, N> +
|
||||
Allocator<<N as DimSub<U1>>::Output> +
|
||||
Allocator<N, <N as DimSub<U1>>::Output>
|
||||
{
|
||||
// initialize the random matrix
|
||||
let dim = N::try_to_usize().unwrap();
|
||||
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
}) * (3.0 / (dim as f64)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = OMatrix::<f64, N, N>::identity();
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}*/
|
78
lang-trials/rust-benchmark/src/main.rs
Normal file
78
lang-trials/rust-benchmark/src/main.rs
Normal file
@ -0,0 +1,78 @@
|
||||
use std::f64::consts::PI as PI;
|
||||
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
|
||||
use web_sys::window;
|
||||
|
||||
mod engine;
|
||||
|
||||
fn main() {
|
||||
// set up a config option that forwards panic messages to `console.error`
|
||||
#[cfg(feature = "console_error_panic_hook")]
|
||||
console_error_panic_hook::set_once();
|
||||
|
||||
sycamore::render(|| {
|
||||
let time_res: usize = 100;
|
||||
let time_step = create_signal(0.0);
|
||||
let run_time_report = create_signal(-1.0);
|
||||
let display = create_node_ref();
|
||||
|
||||
on_mount(move || {
|
||||
let performance = window().unwrap().performance().unwrap();
|
||||
let start_time = performance.now();
|
||||
/*let eigval_series = engine::rand_eigval_series::<U60>(time_res);*/
|
||||
let eigval_series = engine::rand_eigval_series(60, time_res);
|
||||
let run_time = performance.now() - start_time;
|
||||
run_time_report.set(run_time);
|
||||
|
||||
let canvas = display
|
||||
.get::<DomNode>()
|
||||
.unchecked_into::<web_sys::HtmlCanvasElement>();
|
||||
let ctx = canvas
|
||||
.get_context("2d")
|
||||
.unwrap()
|
||||
.unwrap()
|
||||
.dyn_into::<web_sys::CanvasRenderingContext2d>()
|
||||
.unwrap();
|
||||
ctx.set_fill_style(&JsValue::from("white"));
|
||||
|
||||
create_effect(move || {
|
||||
// center and normalize the coordinate system
|
||||
let width = canvas.width() as f64;
|
||||
let height = canvas.height() as f64;
|
||||
ctx.set_transform(1.0, 0.0, 0.0, -1.0, 0.5*width, 0.5*height).unwrap();
|
||||
|
||||
// clear the previous frame
|
||||
ctx.clear_rect(-0.5*width, -0.5*width, width, height);
|
||||
|
||||
// find the resolution
|
||||
const R_DISP: f64 = 1.5;
|
||||
let res = width / (2.0*R_DISP);
|
||||
|
||||
// draw the eigenvalues
|
||||
let eigvals = &eigval_series[time_step.get() as usize];
|
||||
for n in 0..eigvals.len() {
|
||||
ctx.begin_path();
|
||||
ctx.arc(
|
||||
/* typecast only needed for single float version */
|
||||
res * f64::from(eigvals[n].re),
|
||||
res * f64::from(eigvals[n].im),
|
||||
3.0,
|
||||
0.0, 2.0*PI
|
||||
).unwrap();
|
||||
ctx.fill();
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
view! {
|
||||
div(id="app") {
|
||||
div { (run_time_report.get()) " ms" }
|
||||
canvas(ref=display, width="600", height="600")
|
||||
input(
|
||||
type="range",
|
||||
max=(time_res - 1).to_string(),
|
||||
bind:valueAsNumber=time_step
|
||||
)
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
3
lang-trials/rust/.gitignore
vendored
Normal file
3
lang-trials/rust/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
target
|
||||
dist
|
||||
Cargo.lock
|
32
lang-trials/rust/Cargo.toml
Normal file
32
lang-trials/rust/Cargo.toml
Normal file
@ -0,0 +1,32 @@
|
||||
[package]
|
||||
name = "sycamore-trial"
|
||||
version = "0.1.0"
|
||||
authors = ["Aaron"]
|
||||
edition = "2021"
|
||||
|
||||
[features]
|
||||
default = ["console_error_panic_hook"]
|
||||
|
||||
[dependencies]
|
||||
nalgebra = "0.33.0"
|
||||
sycamore = "0.9.0-beta.2"
|
||||
|
||||
# The `console_error_panic_hook` crate provides better debugging of panics by
|
||||
# logging them with `console.error`. This is great for development, but requires
|
||||
# all the `std::fmt` and `std::panicking` infrastructure, so isn't great for
|
||||
# code size when deploying.
|
||||
console_error_panic_hook = { version = "0.1.7", optional = true }
|
||||
|
||||
[dependencies.web-sys]
|
||||
version = "0.3.69"
|
||||
features = [
|
||||
'CanvasRenderingContext2d',
|
||||
'HtmlCanvasElement',
|
||||
]
|
||||
|
||||
[dev-dependencies]
|
||||
wasm-bindgen-test = "0.3.34"
|
||||
|
||||
[profile.release]
|
||||
# Tell `rustc` to optimize for small code size.
|
||||
opt-level = "s"
|
8
lang-trials/rust/index.html
Normal file
8
lang-trials/rust/index.html
Normal file
@ -0,0 +1,8 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<title>Lattice circle</title>
|
||||
<link data-trunk rel="css" href="main.css"/>
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
50
lang-trials/rust/main.css
Normal file
50
lang-trials/rust/main.css
Normal file
@ -0,0 +1,50 @@
|
||||
body {
|
||||
margin-left: 20px;
|
||||
margin-top: 20px;
|
||||
color: #fcfcfc;
|
||||
background-color: #202020;
|
||||
}
|
||||
|
||||
input {
|
||||
color: inherit;
|
||||
background-color: #020202;
|
||||
border: 1px solid #606060;
|
||||
min-width: 40px;
|
||||
border-radius: 4px;
|
||||
}
|
||||
|
||||
input.point-1 {
|
||||
border-color: #ba5d09;
|
||||
}
|
||||
|
||||
input.point-2 {
|
||||
border-color: #0e8a06;
|
||||
}
|
||||
|
||||
input.point-3 {
|
||||
border-color: #8951fb;
|
||||
}
|
||||
|
||||
#data-panel {
|
||||
float: left;
|
||||
margin-left: 20px;
|
||||
display: grid;
|
||||
grid-template-columns: auto auto;
|
||||
gap: 10px 10px;
|
||||
width: 120px;
|
||||
}
|
||||
|
||||
#data-panel > div {
|
||||
text-align: center;
|
||||
}
|
||||
|
||||
#result-display {
|
||||
margin-top: 10px;
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
canvas {
|
||||
float: left;
|
||||
background-color: #020202;
|
||||
border-radius: 10px;
|
||||
}
|
38
lang-trials/rust/src/engine.rs
Normal file
38
lang-trials/rust/src/engine.rs
Normal file
@ -0,0 +1,38 @@
|
||||
use nalgebra::*;
|
||||
|
||||
pub struct Circle {
|
||||
pub center_x: f64,
|
||||
pub center_y: f64,
|
||||
pub radius: f64,
|
||||
}
|
||||
|
||||
// construct the circle through the points given by the columns of `points`
|
||||
pub fn circ_thru(points: Matrix2x3<f64>) -> Option<Circle> {
|
||||
// build the matrix that maps the circle's coefficient vector to the
|
||||
// negative of the linear part of the circle's equation, evaluated at the
|
||||
// given points
|
||||
let neg_lin_part = stack![2.0*points.transpose(), Vector3::repeat(1.0)];
|
||||
|
||||
// find the quadrdatic part of the circle's equation, evaluated at the given
|
||||
// points
|
||||
let quad_part = Vector3::from_iterator(
|
||||
points.column_iter().map(|v| v.dot(&v))
|
||||
);
|
||||
|
||||
// find the circle's coefficient vector, and from there its center and
|
||||
// radius
|
||||
match neg_lin_part.lu().solve(&quad_part) {
|
||||
None => None,
|
||||
Some(coeffs) => {
|
||||
let center_x = coeffs[0];
|
||||
let center_y = coeffs[1];
|
||||
Some(Circle {
|
||||
center_x: center_x,
|
||||
center_y: center_y,
|
||||
radius: (
|
||||
coeffs[2] + center_x*center_x + center_y*center_y
|
||||
).sqrt(),
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
114
lang-trials/rust/src/main.rs
Normal file
114
lang-trials/rust/src/main.rs
Normal file
@ -0,0 +1,114 @@
|
||||
use nalgebra::Matrix2x3;
|
||||
use std::f64::consts::PI as PI;
|
||||
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
|
||||
|
||||
mod engine;
|
||||
|
||||
fn main() {
|
||||
// set up a config option that forwards panic messages to `console.error`
|
||||
#[cfg(feature = "console_error_panic_hook")]
|
||||
console_error_panic_hook::set_once();
|
||||
|
||||
sycamore::render(|| {
|
||||
let data = [-1.0, 0.0, 0.0, -1.0, 1.0, 0.0].map(|n| create_signal(n));
|
||||
let display = create_node_ref();
|
||||
|
||||
on_mount(move || {
|
||||
let canvas = display
|
||||
.get::<DomNode>()
|
||||
.unchecked_into::<web_sys::HtmlCanvasElement>();
|
||||
let ctx = canvas
|
||||
.get_context("2d")
|
||||
.unwrap()
|
||||
.unwrap()
|
||||
.dyn_into::<web_sys::CanvasRenderingContext2d>()
|
||||
.unwrap();
|
||||
|
||||
create_effect(move || {
|
||||
// center and normalize the coordinate system
|
||||
let width = canvas.width() as f64;
|
||||
let height = canvas.height() as f64;
|
||||
ctx.set_transform(1.0, 0.0, 0.0, -1.0, 0.5*width, 0.5*height).unwrap();
|
||||
|
||||
// clear the previous frame
|
||||
ctx.clear_rect(-0.5*width, -0.5*width, width, height);
|
||||
|
||||
// find the resolution
|
||||
const R_DISP: f64 = 5.0;
|
||||
let res = width / (2.0*R_DISP);
|
||||
|
||||
// set colors
|
||||
let highlight_style = JsValue::from("white");
|
||||
let grid_style = JsValue::from("#404040");
|
||||
let point_fill_styles = ["#ba5d09", "#0e8a06", "#8951fb"];
|
||||
let point_stroke_styles = ["#f89142", "#58c145", "#c396fc"];
|
||||
|
||||
// draw the grid
|
||||
let r_grid = (R_DISP - 0.01).floor() as i32;
|
||||
let edge_scr = res * R_DISP;
|
||||
ctx.set_stroke_style(&grid_style);
|
||||
for t in -r_grid ..= r_grid {
|
||||
let t_scr = res * (t as f64);
|
||||
|
||||
// draw horizontal grid line
|
||||
ctx.begin_path();
|
||||
ctx.move_to(-edge_scr, t_scr);
|
||||
ctx.line_to(edge_scr, t_scr);
|
||||
ctx.stroke();
|
||||
|
||||
// draw vertical grid line
|
||||
ctx.begin_path();
|
||||
ctx.move_to(t_scr, -edge_scr);
|
||||
ctx.line_to(t_scr, edge_scr);
|
||||
ctx.stroke();
|
||||
}
|
||||
|
||||
// find and draw the circle through the given points
|
||||
let data_vals = data.map(|sig| sig.get()).to_vec();
|
||||
let points = Matrix2x3::from_vec(data_vals);
|
||||
if let Some(circ) = engine::circ_thru(points) {
|
||||
ctx.begin_path();
|
||||
ctx.set_stroke_style(&highlight_style);
|
||||
ctx.arc(
|
||||
res * circ.center_x,
|
||||
res * circ.center_y,
|
||||
res * circ.radius,
|
||||
0.0, 2.0*PI
|
||||
).unwrap();
|
||||
ctx.stroke();
|
||||
}
|
||||
|
||||
// draw the data points
|
||||
for n in 0..3 {
|
||||
ctx.begin_path();
|
||||
ctx.set_fill_style(&JsValue::from(point_fill_styles[n]));
|
||||
ctx.set_stroke_style(&JsValue::from(point_stroke_styles[n]));
|
||||
let ind_x = 2*n;
|
||||
let ind_y = ind_x + 1;
|
||||
ctx.arc(
|
||||
res * data[ind_x].get(),
|
||||
res * data[ind_y].get(),
|
||||
3.0,
|
||||
0.0, 2.0*PI
|
||||
).unwrap();
|
||||
ctx.fill();
|
||||
ctx.stroke();
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
view! {
|
||||
canvas(ref=display, width="600", height="600")
|
||||
div(id="data-panel") {
|
||||
div { "x" }
|
||||
div { "y" }
|
||||
input(type="number", class="point-1", bind:valueAsNumber=data[0])
|
||||
input(type="number", class="point-1", bind:valueAsNumber=data[1])
|
||||
input(type="number", class="point-2", bind:valueAsNumber=data[2])
|
||||
input(type="number", class="point-2", bind:valueAsNumber=data[3])
|
||||
input(type="number", class="point-3", bind:valueAsNumber=data[4])
|
||||
input(type="number", class="point-3", bind:valueAsNumber=data[5])
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
2
lang-trials/scala-benchmark/.gitignore
vendored
Normal file
2
lang-trials/scala-benchmark/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
target
|
||||
sbt.json
|
9
lang-trials/scala-benchmark/build.sbt
Normal file
9
lang-trials/scala-benchmark/build.sbt
Normal file
@ -0,0 +1,9 @@
|
||||
enablePlugins(ScalaJSPlugin)
|
||||
|
||||
name := "Circular Law"
|
||||
scalaVersion := "3.4.2"
|
||||
scalaJSUseMainModuleInitializer := true
|
||||
|
||||
libraryDependencies += "com.raquo" %%% "laminar" % "17.0.0"
|
||||
libraryDependencies += "ai.dragonfly" %%% "slash" % "0.3.1"
|
||||
libraryDependencies += "org.scala-js" %%% "scalajs-dom" % "2.8.0"
|
10
lang-trials/scala-benchmark/index.html
Normal file
10
lang-trials/scala-benchmark/index.html
Normal file
@ -0,0 +1,10 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<title>The circular law</title>
|
||||
<script type="text/javascript" src="./target/scala-3.4.2/circular-law-opt/main.js"></script>
|
||||
<link rel="stylesheet" href="main.css"/>
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
23
lang-trials/scala-benchmark/main.css
Normal file
23
lang-trials/scala-benchmark/main.css
Normal file
@ -0,0 +1,23 @@
|
||||
body {
|
||||
margin-left: 20px;
|
||||
margin-top: 20px;
|
||||
color: #fcfcfc;
|
||||
background-color: #202020;
|
||||
}
|
||||
|
||||
#app {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
width: 600px;
|
||||
}
|
||||
|
||||
canvas {
|
||||
float: left;
|
||||
background-color: #020202;
|
||||
border-radius: 10px;
|
||||
margin-top: 5px;
|
||||
}
|
||||
|
||||
input {
|
||||
margin-top: 5px;
|
||||
}
|
1
lang-trials/scala-benchmark/project/build.properties
Normal file
1
lang-trials/scala-benchmark/project/build.properties
Normal file
@ -0,0 +1 @@
|
||||
sbt.version=1.10.1
|
1
lang-trials/scala-benchmark/project/plugins.sbt
Normal file
1
lang-trials/scala-benchmark/project/plugins.sbt
Normal file
@ -0,0 +1 @@
|
||||
addSbtPlugin("org.scala-js" % "sbt-scalajs" % "1.16.0")
|
@ -0,0 +1,99 @@
|
||||
import com.raquo.laminar.api.L.{*, given}
|
||||
import narr.*
|
||||
import org.scalajs.dom
|
||||
import org.scalajs.dom.document
|
||||
import scala.collection.mutable.ArrayBuffer
|
||||
import scala.math.{cos, sin}
|
||||
import slash.matrix.Matrix
|
||||
import slash.matrix.decomposition.Eigen
|
||||
|
||||
object CircularLawApp:
|
||||
val canvas = canvasTag(widthAttr := 600, heightAttr := 600)
|
||||
val ctx = canvas.ref.getContext("2d").asInstanceOf[dom.CanvasRenderingContext2D]
|
||||
|
||||
val (eigvalSeries, runTimeReport) = randEigvalSeries[60]()
|
||||
val timeStepState = Var("0")
|
||||
|
||||
def draw(timeStep: String): Unit =
|
||||
// center and normalize the coordinate system
|
||||
val width = canvas.ref.width
|
||||
val height = canvas.ref.height
|
||||
ctx.setTransform(1d, 0d, 0d, -1d, 0.5*width, 0.5*height)
|
||||
|
||||
// clear the previous frame
|
||||
ctx.clearRect(-0.5*width, -0.5*width, width, height)
|
||||
|
||||
// find the resolution
|
||||
val rDisp: Double = 1.5
|
||||
val res = width / (2*rDisp)
|
||||
|
||||
// draw the eigenvalues
|
||||
val eigvals = eigvalSeries(timeStep.toInt)
|
||||
for n <- 0 to eigvals(0).length-1 do
|
||||
ctx.beginPath()
|
||||
ctx.arc(
|
||||
res * eigvals(0)(n),
|
||||
res * eigvals(1)(n),
|
||||
3d,
|
||||
0d, 2*math.Pi
|
||||
)
|
||||
ctx.fill()
|
||||
|
||||
def complexEigenvalues[N <: Int](mat: Matrix[N, N])(using ValueOf[N]): (NArray[Double], NArray[Double]) =
|
||||
val eigen = Eigen(mat)
|
||||
(
|
||||
eigen.realEigenvalues.asInstanceOf[NArray[Double]],
|
||||
eigen.imaginaryEigenvalues.asInstanceOf[NArray[Double]]
|
||||
)
|
||||
|
||||
def randEigvalSeries[N <: Int]()(using ValueOf[N]): (ArrayBuffer[(NArray[Double], NArray[Double])], String) =
|
||||
// start timing
|
||||
val startTime = System.currentTimeMillis()
|
||||
|
||||
// initialize the random matrix step
|
||||
val dim: Int = valueOf[N]
|
||||
var randMat = new Matrix[N, N](
|
||||
NArray.tabulate(dim*dim)(k => (math.E*k*k) % 2 - 1)
|
||||
).times(math.sqrt(3d / dim))
|
||||
|
||||
// initialize the rotation step
|
||||
val timeRes = 100
|
||||
val maxFreq = 4
|
||||
val rotStep = Matrix.identity[N, N]
|
||||
for n <- 0 to dim by 2 do
|
||||
val ang = math.Pi * (n % maxFreq) / timeRes
|
||||
val cos_ang = cos(ang)
|
||||
val sin_ang = sin(ang)
|
||||
rotStep(n, n) = cos_ang
|
||||
rotStep(n+1, n) = sin_ang
|
||||
rotStep(n, n+1) = -sin_ang
|
||||
rotStep(n+1, n+1) = cos_ang
|
||||
|
||||
// find the eigenvalues
|
||||
val eigvalSeries = ArrayBuffer(complexEigenvalues(randMat))
|
||||
for _ <- 1 to timeRes-1 do
|
||||
randMat = rotStep * randMat
|
||||
eigvalSeries += complexEigenvalues(randMat)
|
||||
|
||||
// finish timing
|
||||
val runTime = System.currentTimeMillis() - startTime
|
||||
(eigvalSeries, runTime.toString() + " ms")
|
||||
|
||||
def main(args: Array[String]): Unit =
|
||||
ctx.fillStyle = "white"
|
||||
|
||||
lazy val app = div(
|
||||
idAttr := "app",
|
||||
div(runTimeReport),
|
||||
canvas,
|
||||
input(
|
||||
typ := "range",
|
||||
maxAttr := (eigvalSeries.length-1).toString,
|
||||
controlled(
|
||||
value <-- timeStepState.signal,
|
||||
onInput.mapToValue --> timeStepState.writer
|
||||
),
|
||||
timeStepState.signal --> draw
|
||||
)
|
||||
)
|
||||
renderOnDomContentLoaded(document.body, app)
|
2
lang-trials/scala/.gitignore
vendored
Normal file
2
lang-trials/scala/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
target
|
||||
sbt.json
|
12
lang-trials/scala/build.sbt
Normal file
12
lang-trials/scala/build.sbt
Normal file
@ -0,0 +1,12 @@
|
||||
enablePlugins(ScalaJSPlugin)
|
||||
|
||||
name := "Lattice Circle"
|
||||
scalaVersion := "3.4.2"
|
||||
|
||||
// This is an application with a main method
|
||||
scalaJSUseMainModuleInitializer := true
|
||||
|
||||
libraryDependencies += "com.raquo" %%% "laminar" % "17.0.0"
|
||||
/*libraryDependencies += "org.scalanlp" %% "breeze" % "2.1.0"*/
|
||||
libraryDependencies += "ai.dragonfly" %%% "slash" % "0.3.1"
|
||||
libraryDependencies += "org.scala-js" %%% "scalajs-dom" % "2.8.0"
|
10
lang-trials/scala/index.html
Normal file
10
lang-trials/scala/index.html
Normal file
@ -0,0 +1,10 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<title>Lattice circle</title>
|
||||
<script type="text/javascript" src="./target/scala-3.4.2/lattice-circle-fastopt/main.js"></script>
|
||||
<link rel="stylesheet" href="main.css"/>
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
45
lang-trials/scala/main.css
Normal file
45
lang-trials/scala/main.css
Normal file
@ -0,0 +1,45 @@
|
||||
body {
|
||||
margin-left: 20px;
|
||||
margin-top: 20px;
|
||||
color: #fcfcfc;
|
||||
background-color: #202020;
|
||||
}
|
||||
|
||||
input {
|
||||
color: inherit;
|
||||
background-color: #020202;
|
||||
border: 1px solid #606060;
|
||||
min-width: 40px;
|
||||
border-radius: 4px;
|
||||
}
|
||||
|
||||
input.point-1 {
|
||||
border-color: #ba5d09;
|
||||
}
|
||||
|
||||
input.point-2 {
|
||||
border-color: #0e8a06;
|
||||
}
|
||||
|
||||
input.point-3 {
|
||||
border-color: #8951fb;
|
||||
}
|
||||
|
||||
#data-panel {
|
||||
float: left;
|
||||
margin-left: 20px;
|
||||
display: grid;
|
||||
grid-template-columns: auto auto;
|
||||
gap: 10px 10px;
|
||||
width: 120px;
|
||||
}
|
||||
|
||||
#data-panel > div {
|
||||
text-align: center;
|
||||
}
|
||||
|
||||
canvas {
|
||||
float: left;
|
||||
background-color: #020202;
|
||||
border-radius: 10px;
|
||||
}
|
1
lang-trials/scala/project/build.properties
Normal file
1
lang-trials/scala/project/build.properties
Normal file
@ -0,0 +1 @@
|
||||
sbt.version=1.10.1
|
1
lang-trials/scala/project/plugins.sbt
Normal file
1
lang-trials/scala/project/plugins.sbt
Normal file
@ -0,0 +1 @@
|
||||
addSbtPlugin("org.scala-js" % "sbt-scalajs" % "1.16.0")
|
160
lang-trials/scala/src/main/scala/LatticeCircleApp.scala
Normal file
160
lang-trials/scala/src/main/scala/LatticeCircleApp.scala
Normal file
@ -0,0 +1,160 @@
|
||||
// based on the Laminar example app
|
||||
//
|
||||
// https://github.com/raquo/laminar-examples/blob/master/src/main/scala/App.scala
|
||||
//
|
||||
// and Li Haoyi's example canvas app
|
||||
//
|
||||
// http://www.lihaoyi.com/hands-on-scala-js/#MakingaCanvasApp
|
||||
//
|
||||
|
||||
import com.raquo.laminar.api.L.{*, given}
|
||||
import narr.*
|
||||
import org.scalajs.dom
|
||||
import org.scalajs.dom.document
|
||||
import scala.math
|
||||
import slash.matrix.*
|
||||
|
||||
class Circle(var centerX: Double, var centerY: Double, var radius: Double)
|
||||
|
||||
object LatticeCircleApp:
|
||||
val canvas = canvasTag(widthAttr := 600, heightAttr := 600)
|
||||
val ctx = canvas.ref.getContext("2d").asInstanceOf[dom.CanvasRenderingContext2D]
|
||||
val data = List("-1", "0", "0", "-1", "1", "0").map(Var(_))
|
||||
|
||||
def circThru(points: Matrix[3, 2]): Option[Circle] =
|
||||
// build the matrix that maps the circle's coefficient vector to the
|
||||
// negative of the linear part of the circle's equation, evaluated at the
|
||||
// given points
|
||||
val negLinPart = Matrix.ones[3, 3]
|
||||
negLinPart.setMatrix(0, 0, points * 2.0)
|
||||
|
||||
// find the quadrdatic part of the circle's equation, evaluated at the given
|
||||
// points
|
||||
val quadPart = Matrix[3, 1](
|
||||
NArray.tabulate[Double](3)(
|
||||
k => points(k, 0)*points(k, 0) + points(k, 1)*points(k, 1)
|
||||
)
|
||||
)
|
||||
|
||||
// find the circle's coefficient vector, and from there its center and
|
||||
// radius
|
||||
try
|
||||
val coeffs = negLinPart.solve(quadPart)
|
||||
val centerX = coeffs(0, 0)
|
||||
val centerY = coeffs(1, 0)
|
||||
Some(Circle(
|
||||
centerX,
|
||||
centerY,
|
||||
math.sqrt(coeffs(2, 0) + centerX*centerX + centerY*centerY)
|
||||
))
|
||||
catch
|
||||
_ => return None
|
||||
|
||||
def draw(): Unit =
|
||||
// center and normalize the coordinate system
|
||||
val width = canvas.ref.width
|
||||
val height = canvas.ref.height
|
||||
ctx.setTransform(1.0, 0.0, 0.0, -1.0, 0.5*width, 0.5*height)
|
||||
|
||||
// clear the previous frame
|
||||
ctx.clearRect(-0.5*width, -0.5*width, width, height)
|
||||
|
||||
// find the resolution
|
||||
val rDisp = 5.0
|
||||
val res = width / (2.0*rDisp)
|
||||
|
||||
// set colors
|
||||
val highlightStyle = "white"
|
||||
val gridStyle = "#404040"
|
||||
val pointFillStyles = List("#ba5d09", "#0e8a06", "#8951fb")
|
||||
val pointStrokeStyles = List("#f89142", "#58c145", "#c396fc")
|
||||
|
||||
// draw the grid
|
||||
val rGrid = (rDisp - 0.01).floor.toInt
|
||||
val edgeScr = res * rDisp
|
||||
ctx.strokeStyle = gridStyle
|
||||
for t <- -rGrid to rGrid do
|
||||
val tScr = res * t
|
||||
|
||||
// draw horizontal grid line
|
||||
ctx.beginPath();
|
||||
ctx.moveTo(-edgeScr, tScr)
|
||||
ctx.lineTo(edgeScr, tScr)
|
||||
ctx.stroke()
|
||||
|
||||
// draw vertical grid line
|
||||
ctx.beginPath();
|
||||
ctx.moveTo(tScr, -edgeScr)
|
||||
ctx.lineTo(tScr, edgeScr)
|
||||
ctx.stroke()
|
||||
|
||||
// find and draw the circle through the given points
|
||||
val dataNow = NArray.tabulate(6)(n =>
|
||||
try
|
||||
data(n).signal.now().toDouble
|
||||
catch
|
||||
_ => Double.NaN
|
||||
)
|
||||
if dataNow.forall(t => t == t.floor) then
|
||||
// all of the coordinates are integer and non-NaN
|
||||
val points = Matrix[3, 2](dataNow)
|
||||
circThru(points) match
|
||||
case Some(circ) =>
|
||||
ctx.beginPath()
|
||||
ctx.strokeStyle = highlightStyle
|
||||
ctx.arc(
|
||||
res * circ.centerX,
|
||||
res * circ.centerY,
|
||||
res * circ.radius,
|
||||
0.0, 2.0*math.Pi
|
||||
)
|
||||
ctx.stroke()
|
||||
case None =>
|
||||
|
||||
// draw the data points
|
||||
for n <- 0 to 2 do
|
||||
val indX = 2*n
|
||||
val indY = indX + 1
|
||||
if
|
||||
dataNow(indX) == dataNow(indX).floor &&
|
||||
dataNow(indY) == dataNow(indY).floor
|
||||
then
|
||||
ctx.beginPath()
|
||||
ctx.fillStyle = pointFillStyles(n)
|
||||
ctx.strokeStyle = pointStrokeStyles(n)
|
||||
ctx.arc(
|
||||
res * dataNow(indX),
|
||||
res * dataNow(indY),
|
||||
3.0,
|
||||
0.0, 2.0*math.Pi
|
||||
)
|
||||
ctx.fill()
|
||||
ctx.stroke()
|
||||
|
||||
def coordInput(n: Int): Input =
|
||||
input(
|
||||
typ := "number",
|
||||
cls := s"point-${(1.0 + 0.5*n).floor.toInt}",
|
||||
controlled(
|
||||
value <-- data(n).signal,
|
||||
onInput.mapToValue --> data(n).writer
|
||||
),
|
||||
data(n).signal --> { _ => draw() }
|
||||
)
|
||||
|
||||
def main(args: Array[String]): Unit =
|
||||
lazy val app = div(
|
||||
canvas,
|
||||
div(
|
||||
idAttr := "data-panel",
|
||||
div("x"),
|
||||
div("y"),
|
||||
coordInput(0),
|
||||
coordInput(1),
|
||||
coordInput(2),
|
||||
coordInput(3),
|
||||
coordInput(4),
|
||||
coordInput(5)
|
||||
)
|
||||
)
|
||||
renderOnDomContentLoaded(document.body, app)
|
@ -2,29 +2,28 @@
|
||||
|
||||
(proposed by Alex Kontorovich as a practical system for doing 3D geometric calculations)
|
||||
|
||||
These coordinates are of form $I=(c, b, x, y, z)$ where we think of $c$ as the co-radius, $b$ as the "bend" (reciprocal radius), and $x, y, z$ as the "Euclidean" part, which we abbreviate $E_I$. There is an underlying basic quadratic form $Q(I_1,I_2) = (c_1b_2+c_2b_1)/2 - x_1x_2 -y_1y_2-z_1z_2$ which aids in calculation/verification of coordinates in this representation. We have:
|
||||
These coordinates are of form $I=(c, r, x, y, z)$ where we think of $c$ as the co-radius, $r$ as the radius, and $x, y, z$ as the "Euclidean" part, which we abbreviate $E_I$. There is an underlying basic quadratic form $Q(I_1,I_2) = (c_1r_2+c_2r_1)/2 - x_1x_2 -y_1y_2-z_1z_2$ which aids in calculation/verification of coordinates in this representation. We have:
|
||||
|
||||
| Entity or Relationship | Representation | Comments/questions |
|
||||
| ---------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Sphere $s$ with radius $r>0$ centered on $P = (x,y,z)$ | $I_s = (\frac1{c}, \frac1{r}, \frac{x}{r}, \frac{y}{r}, \frac{z}{r})$ satisfying $Q(I_s,I_s) = -1,$ i.e., $c = r/(\|P\|^2 - r^2)$. | Note that $1/c = \|P\|^2/r - r$, so there is no trouble if $\|P\| = r$; we just get first coordinate to be 0. Using the point representation $I_P$ from below, let's orient the sphere so that its normals point into the "positive side," where $Q(I_P, I_s) > 0$. The vector $I_s$ then represents a sphere with outward normals, while $-I_s$ represents one with inward normals. |
|
||||
| Plane $p$ with unit normal $(x,y,z)$ through the (Euclidean) point $(sx,sy,sz)$ | $I_p = (-2s, 0, -x, -y, -z)$ | Note that $Q(I_p, I_p)$ is still $-1$. We orient planes using the same convention we use for spheres. For example, $(-2, 0, -1/\sqrt3, -1/\sqrt3, -1/\sqrt3)$ and $(2, 0, 1/\sqrt3, 1/\sqrt3, 1/\sqrt3)$ represent planes that coincide in space, which have their normals pointing away from and toward the origin, respectively. Note that the ray from $(sx, sy, sz) \in p$ in direction $(-x, -y, -z)$ is the ray perpendicular to the plane through the origin; since $(-x, -y, -z)$ is a unit vector, $(sx, sy, sz)$ and hence $p$ is at distance $s$ from the origin. These coordinates are essentially the limit of a sphere's coordinates as its radius goes to infinity, or equivalently, as its bend goes to 0. |
|
||||
| Point $P$ with Euclidean coordinates $(x,y,z)$ | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$. This gives us the freedom to choose a different normalization. For example, we could scale the representation shown here by $(\|P\|^2+1)^{-1}$, putting it on the sphere where the light cone intersects the plane where the first two coordinates sum to $1$. |
|
||||
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by (some normalization of) the above case. |
|
||||
| Point $P$ lies on sphere or plane given by $I$ | $Q(I_P, I) = 0$ | Actually also works if $I$ is the coordinates of a point, in which case "lies on" simply means "coincides with". |
|
||||
| Sphere/planes represented by $I$ and $J$ are tangent | If $I$ and $J$ have the same orientation where they touch, $Q(I,J) = -1$. If they have opposing orientations, $Q(I,J) = 1$. | For example, the $xy$ plane with normal $-e_z$, represented by $(0,0,0,0,1)$, is tangent with matching orientation to the unit sphere centered at $(0,0,1)$ with outward normals, represented by $(0,1,0,0,1).$ Accordingly, their $Q$ - product is $-1$. |
|
||||
| Sphere/planes represented by $I$ and $J$ intersect (respectively, don't intersect) | $\lvert Q(I,J)\rvert \le (\text{resp. }>)\; 1$ | Follows from the angle formula and the tangency condition, at least conceptually. One subtlety: parallel planes have $Q$ - product $\pm 1$, because they intersect at infinity (and in fact, are "tangent" there)! |
|
||||
| $P$ is center of sphere rep'd by $I$ | $Q(I, I_P) = -r/2$, where $1/r = 2Q(I_\infty, I)$ is the signed bend of the sphere, and $I_P$ is normalized in the standard way, which is to set $Q(I_\infty, I_P) = 1/2$ | This relationship is equivalent to both of the following. (1) The point $P$ has signed distance $-r$ from the sphere. (2) Inversion across the sphere maps $\infty$ to $P$. |
|
||||
| Distance between points $P$ and $R$ is $d$ | $Q(I_P, I_R) = d^2/2$ | If $P$ and $R$ are represented by non-normalized vectors $V_P$ and $V_R$, the relation becomes $Q(V_P, V_R) = 2\,Q(V_P, I_\infty)\,Q(V_R, I_\infty)\,d^2$. This version of the relation makes it easier to see why $d$ goes to infinity as $P$ or $R$ approaches the point at infinity. |
|
||||
| Signed distance between point rep'd by $V$ and sphere/plane rep'd by $I$ is $d$ | In general, $\frac{Q(I, V)}{2Q(I_\infty, V)} = Q(I_\infty, I)\,d^2 + d$. When $V$ is normalized in the usual way, this simplifies to $Q(I, V) = d^2/r + d$ for a sphere of radius $r$, and to $Q(I, V) = d$ for a plane. | We can use a Euclidean motion, represented linearly by a Lorentz transformation that fixes $I_\infty$, to put the point on the $z$ axis and put the nearest point on the sphere/plane at the origin with its normal pointing in the positive $z$ direction. Then the sphere/plane is represented by $I = (0, 1/r, 0, 0, -1)$, and the point can be represented by any multiple of $I_P = (d^2, 1, 0, 0, d)$, giving $Q(I, I_P) = d^2/2r + d.$ We turn this into a general expression by writing it in terms of Lorentz-invariant quantities and making it independent of the normalization of $I_P$. |
|
||||
| Distance between sphere/planes rep by $I$ and $J$ | Note that for any two Euclidean-concentric spheres rep by $I$ and $J$ with radius $r$ and $s,$ $Q(I,J) = -\frac12\left(\frac rs + \frac sr\right)$ depends only on the ratio of $r$ and $s$. So this can't give something that determines the Euclidean distance between the two spheres, which presumably grows as the two spheres are blown up proportionally. For another example, for any two parallel planes, $Q(I,J) = \pm1$. | Alex had said: $Q(I,J)=\cosh(d/2)^2$ maybe where d is distance in usual hyperbolic metric. Or maybe $\cosh(d)$. That may be right depending on what's meant by the hyperbolic metric there, but it seems like it won't determine a reasonable Euclidean distance between planes, which should differ between different pairs of parallel planes. |
|
||||
| Sphere centered on point $P$ through point $R$ | | Probably just calculate distance etc. |
|
||||
| Plane rep'd by $I$ goes through center of sphere rep'd by $J$ | This is equivalent to the plane being perpendicular to the sphere: that is, $Q(I, J) = 0$. | |
|
||||
| Dihedral angle between planes or spheres rep by $I$ and $J$ | $\theta = \arccos(Q(I,J))$ | Aaron Fenyes points out: The angle between spheres in $S^3$ matches the angle between the planes they bound in $R^{(1,4)}$, which matches the angle between the spacelike vectors perpendicular to those planes. So we should have $Q(I,J) = \cos(\theta)$. Note that when the spheres do not intersect, we can interpret this as the "imaginary angle" between them, via $\cosh(t) = \cos(it)$. |
|
||||
| Points $R, P, S$ are collinear | Maybe just cross product of two differences is 0. Or, $R,P,S,\infty$ lie on a circle, or equivalently, $I_R,I_P,I_S,I_\infty$ span a plane (rather than a three-space). Or we can add two planes constrained to be perpendicular with one constrained to contain the origin, and all three points constrained to lie on both. But that's a lot of auxiliary entities and constraints... | $R,P,S$ lying on a line isn't a conformal property, but $R,P,S,\infty$ lying on a circle is. |
|
||||
| Plane through noncollinear $R, P, S$ | Should be, just solve $Q(I, I_R) = 0$ etc. | |
|
||||
| circle | Maybe concentric sphere and the containing plane? Note it is easy to constrain the relationship between those two: they must be perpendicular. | Defn: circle is intersection of two spheres. That does cover lines. But you lose the canonicalness |
|
||||
| line | Maybe two perpendicular containing planes? Maybe the plane perpendicular to the line and through origin, together with the point of the line on that plane? Or maybe just as a bag of collinear points? | The first is the limiting case of the possible circle rep, but it is not canonical. However, there is a distinguished "standard" choice we could make: always choose one plane to contain the origin and the line, and the other to be the perpendicular plane containing the line. That choice or Plücker coordinates might be the best we can do. If we use the standardized perpendicular planes choice, then adding a line would be equivalent to adding two planes and the two constraints that one contains the origin and the other is perpendicular to it. That doesn't seem so bad. The second convention (perpendicular plane through the origin and a point on it) appears to be canonical, but there doesn't seem to be a circle representation that tends to it in the limit. |
|
||||
| Inversion of entity represented by $v$ across sphere $s$, rep'd by $I_s$ | $v \mapsto v + 2Q(I_s, v)\,I_s$ | This is just an educated guess, but its behavior is consistent with inversion in at least two ways. (1) It fixes points on $s$ and spheres perpendicular to $s$. (2) It preserves dihedral angles with $s$. |
|
||||
| Entity or Relationship | Representation | Comments/questions |
|
||||
| ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Sphere s with radius r>0 centered on P = (x,y,z) | $I_s = (1/c, 1/r, x/r, y/r, z/r)$ satisfying $Q(I_s,I_s) = -1$, i.e., $c = r/(\|P\|^2 - r^2)$. | Can also write $I_s = (\|P\|^2/r - r, 1/r, x/r. y/r, z/r)$—so there is no trouble if $\|E_{I_s}\| = r$, just get first coordinate to be 0. |
|
||||
| Plane p with unit normal (x,y,z) through the point s(x,y,z) | $I_p = (-2s, 0, -x, -y, -z)$ | Note $Q(I_p, I_p)$ is still −1. |
|
||||
| Point P with Euclidean coordinates (x,y,z) | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$. Because of this we might choose some other scaling of the inversive coordinates, say $(\||P\||,1/\||P\||,x/\||P\||,y/\||P\||,z/\||P\||)$ instead, but that fails at the origin, and likely won't have some of the other nice properties listed below. Note that scaling just the co-radius by $s$ and the radius by $1/s$ (which still preserves $Q=0$) dilates by a factor of $s$ about the origin, so that $(\|P\|, \|P\|, x, y, z)$, which might look symmetric, would actually have to represent the Euclidean point $(x/\||P\||, y/\||P\||, z/\||P\||)$ . |
|
||||
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by the above case. |
|
||||
| P lies on sphere or plane given by I | $Q(I_P, I) = 0$ | |
|
||||
| Sphere/planes represented by I and J are tangent | If $I$ and $J$ have the same orientation where they touch, $Q(I,J) = -1$. If they have opposing orientations, $Q(I,J) = 1$. | For example, the $xy$ plane with normal $-e_z$, represented by $(0,0,0,0,1)$, is tangent with matching orientation to the unit sphere centered at $(0,0,1)$ with outward normals, represented by $(0,1,0,0,1)$. Accordingly, their $Q$-product is −1. |
|
||||
| Sphere/planes represented by I and J intersect (respectively, don't intersect) | $\|Q(I,J)\| < (\text{resp. }>)\; 1$ | Follows from the angle formula, at least conceptually. |
|
||||
| P is center of sphere represented by I | Well, $Q(I_P, I)$ comes out to be $(\|P\|^2/r - r + \|P\|^2/r)/2 - \|P\|^2/r$ or just $-r/2$ . | Is it if and only if ? No this probably doesn't work because center is not conformal quantity. |
|
||||
| Distance between P and R is d | $Q(I_P, I_R) = d^2/2$ | |
|
||||
| Distance between P and sphere/plane rep by I | | In the very simple case of a plane $I$ rep'd by $(2s, 0, x, y, z)$ and a point $P$ that lies on its perpendicular through the origin, rep'd by $(r^2, 1, rx, ry, rz)$ we get $Q(I, I_p) = s-r$, which is indeed the signed distance between $I$ and $P$. Not sure if this generalizes to other combinations? |
|
||||
| Distance between sphere/planes rep by I and J | Note that for any two Euclidean-concentric spheres rep by $I$ and $J$ with radius $r$ and $s,$ $Q(I,J) = -\frac12\left(\frac rs + \frac sr\right)$ depends only on the ratio of $r$ and $s$. So this can't give something that determines the Euclidean distance between the two spheres, which presumably grows as the two spheres are blown up proportionally. For another example, for any two parallel planes, $Q(I,J) = \pm1$. | Alex had said: $Q(I,J)=\cosh(d/2)^2$ maybe where d is distance in usual hyperbolic metric. Or maybe $\cosh(d)$. That may be right depending on what's meant by the hyperbolic metric there, but it seems like it won't determine a reasonable Euclidean distance between planes, which should differ between different pairs of parallel planes. |
|
||||
| Sphere centered on P through R | | Probably just calculate distance etc. |
|
||||
| Plane rep'd by I goes through center of sphere rep'd by J | I think this is equivalent to the plane being perpendicular to the sphere, i.e. $Q(I,J) = 0$. | |
|
||||
| Dihedral angle between planes (or spheres?) rep by I and J | $\theta = \arccos(Q(I,J))$ | Aaron Fenyes points out: The angle between spheres in $S^3$ matches the angle between the planes they bound in $R^{(1,4)}$, which matches the angle between the spacelike vectors perpendicular to those planes. So we should have $Q(I,J) = \cos(\theta)$. Note that when the spheres do not intersect, we can interpret this as the "imaginary angle" between them, via $\cosh(t) = \cos(it)$. |
|
||||
| R, P, S are collinear | Maybe just cross product of two differences is 0. Or, $R,P,S,\infty$ lie on a circle, or equivalently, $I_R,I_P,I_S,I_\infty$ span a plane (rather than a three-space). | $R,P,S$ lying on a line isn't a conformal property, but $R,P,S,\infty$ lying on a circle is. |
|
||||
| Plane through noncollinear R, P, S | Should be, just solve $Q(I, I_R) = 0$ etc. | |
|
||||
| circle | Maybe concentric sphere and the containing plane? Note it is easy to constrain the relationship between those two: they must be perpendicular. | Defn: circle is intersection of two spheres. That does cover lines. But you lose the canonicalness |
|
||||
| line | Maybe two perpendicular containing planes? Maybe the plane perpendicular to the line and through origin, together with the point of the line on that plane? Or maybe just as a bag of collinear points? | The first is the limiting case of the possible circle rep, but it is not canonical. The second appears to be canonical, but I don't see a circle rep that corresponds to it. |
|
||||
|
||||
The unification of spheres/planes is indeed attractive for a project like Dyna3. The relationship between this representation and Geometric Algebras is a bit murky; likely it somehow fits under the Geometric Algebra umbrella.
|
||||
|
||||
@ -41,25 +40,3 @@ I will have to work out formulas for the Euclidean distance between two entities
|
||||
In this vein, it seems as though if J1 and J2 are the reps of two points, then Q(J1,J2) = d^2/2. So then the sphere centered at J1 through J2 is (J1-(2Q(J1,J2),0,0,0,0))/sqrt(2Q(J1,J2)). Ugh has a sqrt in it. Similarly for sphere centered at J3 through J2, (J3-(2Q(J3,J2),0000))/sqrt(2Q(J3,J2)). J1,J2,J3 are collinear if these spheres are tangent, i.e. if those vectors have Q-inner-product 1, which is to say Q(J1,J3) - Q(J1,J2) - Q(J3,J2) = 2sqrt(Q(J1,J2)Q(J2,J3)). But maybe that's not the simplest way of putting it. After all, we can just say that the cross-product of the two differences is 0; that has no square roots in it.
|
||||
|
||||
One conceivable way to canonicalize lines is to use the *perpendicular* plane that goes through the origin, that's uniquely defined, and anyway just amounts to I = (0,0,d) where d is the ordinary direction vector of the line; and a point J in that plane that the line goes through, which just amounts to J=(r^2,1,E) with Q(I,J) = 0, i.e. E\dot d = 0. It's also the point on the line closest to the origin. The reason that we don't usually use that point as the companion to the direction vector is that the resulting set of six coordinates is not homogeneous. But here that's not an issue, since we have our standard point coordinates and plane coordinates; and for a plane through the origin, only two of the direction coordinates are really free, and then we have the one dot-product relation, so only two of the point coordinates are really free, giving us the correct dimensionality of 4 for the set of lines. So in some sense this says that we could take naively as coordinates for a line the projection of the unit direction vector to the xy plane and the projection of the line's closest point to the origin to the xy plane. That doesn't seem to have any weird gimbal locks or discontinuities or anything. And with these coordinates, you can test if the point E=x,y,z is on the line (dx,dy,cx,cy) by extending (dx,dy) to d via dz = sqrt(1-dx^2 - dy^2), extending (cx,cy) to c by determining cz via d\dot c = 0, and then checking if d\cross(E-c) = 0. And you can see if two lines are parallel just by checking if they have the same direction vector, and if not, you can see if they are coplanar by projecting both of their closest points perpendicularly onto the line in the direction of the cross product of their directions, and if the projections match they are coplanar.
|
||||
|
||||
#### Engine Conventions
|
||||
|
||||
The coordinate conventions used in the engine are different from the ones used in these notes. Marking the engine vectors and coordinates with $'$, we have
|
||||
$$I' = (x', y', z', b', c'),$$
|
||||
where
|
||||
$$
|
||||
\begin{align*}
|
||||
x' & = x & b' & = b/2 \\
|
||||
y' & = y & c' & = c/2. \\
|
||||
z' & = z
|
||||
\end{align*}
|
||||
$$
|
||||
The engine uses the quadratic form $Q' = -Q$, which is expressed in engine coordinates as
|
||||
$$Q'(I'_1, I'_2) = x'_1 x'_2 + y'_1 y'_2 + z'_1 z'_2 - 2(b'_1c'_2 + c'_1 b'_2).$$
|
||||
In the `engine` module, the matrix of $Q'$ is encoded in the lazy static variable `Q`.
|
||||
|
||||
In the engine's coordinate conventions, a sphere with radius $r > 0$ centered on $P = (P_x, P_y, P_z)$ is represented by the vector
|
||||
$$I'_s = \left(\frac{P_x}{r}, \frac{P_y}{r}, \frac{P_z}{r}, \frac1{2r}, \frac{\|P\|^2 - r^2}{2r}\right),$$
|
||||
which has the normalization $Q'(I'_s, I'_s) = 1$. The point $P$ is represented by the vector
|
||||
$$I'_P = \left(P_x, P_y, P_z, \frac{1}{2}, \frac{\|P\|^2}{2}\right).$$
|
||||
In the `engine` module, these formulas are encoded in the `sphere` and `point` functions.
|
Loading…
Reference in New Issue
Block a user