2017-10-20 22:51:30 +00:00
|
|
|
# byconj.gd RAQ Quandles by conjugation
|
|
|
|
|
|
|
|
# The following outline of defining c
|
|
|
|
|
2017-10-22 16:23:45 +00:00
|
|
|
DeclareCategory("IsConjugatorObject",
|
|
|
|
IsMultiplicativeElement and IsLeftQuotientElement and
|
|
|
|
IsLSelfDistElement and IsIdempotent);
|
2017-10-20 22:51:30 +00:00
|
|
|
DeclareCategoryCollections("IsConjugatorObject");
|
|
|
|
|
|
|
|
DeclareAttribute("ConjugatorFamily", IsFamily);
|
2017-10-22 16:29:29 +00:00
|
|
|
DeclareAttribute("ConjugatorType", IsFamily);
|
2017-10-20 22:51:30 +00:00
|
|
|
|
|
|
|
DeclareSynonym("IsDefaultConjugatorObject",
|
|
|
|
IsConjugatorObject and IsPositionalObjectOneSlotRep);
|
|
|
|
|
2017-10-21 22:43:04 +00:00
|
|
|
# As far as I can tell, we are not losing any generality here;
|
|
|
|
# to define the conjugator, we need the quotient on one side, to define
|
|
|
|
# left quotients of conjugators we need the quotient on the other side, and
|
|
|
|
# to prove it works we need associativity, which makes the underlying elements
|
|
|
|
# of conjugator objects automatically group elements.
|
|
|
|
DeclareAttribute("ConjugatorObj", IsMultiplicativeElementWithInverse);
|
2017-10-20 22:51:30 +00:00
|
|
|
|
|
|
|
DeclareAttribute("UnderlyingMultiplicativeElement", IsConjugatorObject);
|
|
|
|
|
|
|
|
# The meat of the matter:
|
|
|
|
|
|
|
|
DeclareAttribute("ConjugationQuandle", IsGroup);
|