Compare commits

...

4 Commits

Author SHA1 Message Date
8c06c8f36e feat: Add generic operation square and numeric unequal (#4)
Co-authored-by: Jos de Jong <wjosdejong@gmail.com>
Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Reviewed-on: #4
2022-12-22 16:12:36 +00:00
fbec410c42 feat: Implement complex arithmetic through sqrt
Together with any auxiliary functions needed for that goal. Also
  strives to ensure the same functions are being defined for
  number and for `Complex<T>`.
2022-12-22 00:14:58 -05:00
d55776655f refactor: Convenience type operator for specifying concrete signatures 2022-12-21 11:41:25 -05:00
1eb73be2fa refactor: entirely new scheme for specifying return types 2022-12-21 00:18:42 -05:00
16 changed files with 543 additions and 43 deletions

View File

@ -1,8 +1,10 @@
import {ForType} from '../core/Dispatcher.js'
import {ComplexReturn} from './type.js'
import * as Complex from './native.js'
export {Complex}
declare module "../core/Dispatcher" {
interface ImplementationTypes extends ForType<'Complex', typeof Complex> {}
interface ReturnTypes<Params>
extends ForType<'Complex', ComplexReturn<Params>> {}
}

139
src/Complex/arithmetic.ts Normal file
View File

@ -0,0 +1,139 @@
import {Complex, UnderlyingReal, complex_binary} from './type.js'
import {
BBinary, Dependency, ConservativeUnary, ConservativeBinary, ImpType
} from '../core/Dispatcher.js'
declare module "./type" {
interface ComplexReturn<Params> {
add: ConservativeBinary<Params, Complex<any>>
addReal: Params extends [infer Z, infer R]
? [R] extends [UnderlyingReal<Z>] ? Z : never
: never
unaryMinus: ConservativeUnary<Params, Complex<any>>
conj: ConservativeUnary<Params, Complex<any>>
subtract: ConservativeBinary<Params, Complex<any>>
multiply: ConservativeBinary<Params, Complex<any>>
absquare: Params extends [infer Z]
? Z extends Complex<any> ? UnderlyingReal<Z> : never
: never
reciprocal: ConservativeUnary<Params, Complex<any>>
divide: ConservativeBinary<Params, Complex<any>>
divideByReal: Params extends [infer Z, infer R]
? [R] extends [UnderlyingReal<Z>] ? Z : never
: never
// square root that remains the same type
conservativeSqrt: ConservativeUnary<Params, Complex<any>>
// Same as conservativeSqrt for complex numbers:
sqrt: ConservativeUnary<Params, Complex<any>>
// complex square root of the real type of a complex:
complexSqrt: Params extends [infer T] ? Complex<T> : never
}
}
export const add =
<T>(dep: Dependency<'add', [T,T]>):
ImpType<'add', [Complex<T>, Complex<T>]> =>
(w, z) => complex_binary(dep.add(w.re, z.re), dep.add(w.im, z.im))
export const addReal =
<T>(dep: Dependency<'addReal', [T, UnderlyingReal<T>]>):
ImpType<'addReal', [Complex<T>, UnderlyingReal<T>]> =>
(z, r) => complex_binary(dep.addReal(z.re, r), z.im)
export const unaryMinus =
<T>(dep: Dependency<'unaryMinus', [T]>):
ImpType<'unaryMinus', [Complex<T>]> =>
z => complex_binary(dep.unaryMinus(z.re), dep.unaryMinus(z.im))
export const conj =
<T>(dep: Dependency<'unaryMinus'|'conj', [T]>):
ImpType<'conj', [Complex<T>]> =>
z => complex_binary(dep.conj(z.re), dep.unaryMinus(z.im))
export const subtract =
<T>(dep: Dependency<'subtract', [T,T]>):
ImpType<'subtract', [Complex<T>, Complex<T>]> =>
(w, z) => complex_binary(dep.subtract(w.re, z.re), dep.subtract(w.im, z.im))
export const multiply =
<T>(dep: Dependency<'add', [T,T]>
& Dependency<'subtract', [T,T]>
& Dependency<'multiply', [T,T]>
& Dependency<'conj', [T]>):
ImpType<'multiply', [Complex<T>, Complex<T>]> =>
(w, z) => {
const mult = dep.multiply
const realpart = dep.subtract(
mult( w.re, z.re), mult(dep.conj(w.im), z.im))
const imagpart = dep.add(
mult(dep.conj(w.re), z.im), mult( w.im, z.re))
return complex_binary(realpart, imagpart)
}
export const absquare =
<T>(dep: Dependency<'absquare', [T]>
& Dependency<'add', BBinary<UnderlyingReal<T>>>):
ImpType<'absquare', [Complex<T>]> =>
z => dep.add(dep.absquare(z.re), dep.absquare(z.im))
export const divideByReal =
<T>(dep: Dependency<'divideByReal', [T, UnderlyingReal<T>]>):
ImpType<'divideByReal', [Complex<T>, UnderlyingReal<T>]> =>
(z, r) => complex_binary(
dep.divideByReal(z.re, r), dep.divideByReal(z.im, r))
export const reciprocal =
<T>(dep: Dependency<'conj', [Complex<T>]>
& Dependency<'absquare', [Complex<T>]>
& Dependency<'divideByReal', [Complex<T>, UnderlyingReal<T>]>):
ImpType<'reciprocal', [Complex<T>]> =>
z => dep.divideByReal(dep.conj(z), dep.absquare(z))
export const divide =
<T>(dep: Dependency<'multiply', [Complex<T>, Complex<T>]>
& Dependency<'reciprocal', [Complex<T>]>):
ImpType<'divide', [Complex<T>, Complex<T>]> =>
(w, z) => dep.multiply(w, dep.reciprocal(z))
export const complexSqrt =
<T>(dep: Dependency<'conservativeSqrt', [T]>
& Dependency<'isSquare', [T]>
& Dependency<'complex', [T]>
& Dependency<'unaryMinus', [T]>
& Dependency<'zero', [T]>
& Dependency<'nan', [Complex<T>]>): ImpType<'complexSqrt', [T]> =>
r => {
if (dep.isSquare(r)) return dep.complex(dep.conservativeSqrt(r))
const negative = dep.unaryMinus(r)
if (dep.isSquare(negative)) {
return complex_binary(
dep.zero(r), dep.conservativeSqrt(negative))
}
// neither the real number or its negative is a square; could happen
// for example with bigint. So there is no square root. So we have to
// return the NaN of the type.
return dep.nan(dep.complex(r))
}
export const sqrt =
<T>(dep: Dependency<'isReal', [Complex<T>]>
& Dependency<'complexSqrt', [T]>
& Dependency<'absquare', [Complex<T>]>
& Dependency<'conservativeSqrt', [UnderlyingReal<T>]>
& Dependency<'addReal', [Complex<T>,UnderlyingReal<T>]>
& Dependency<'re', [Complex<T>]>
& Dependency<'add', [UnderlyingReal<T>,UnderlyingReal<T>]>
& Dependency<'divideByReal', [Complex<T>,UnderlyingReal<T>]>
): ImpType<'sqrt', [Complex<T>]> =>
z => {
if (dep.isReal(z)) return dep.complexSqrt(z.re)
const myabs = dep.conservativeSqrt(dep.absquare(z))
const num = dep.addReal(z, myabs)
const r = dep.re(z)
const denomsq = dep.add(dep.add(myabs, myabs), dep.add(r, r))
const denom = dep.conservativeSqrt(denomsq)
return dep.divideByReal(num, denom)
}
export const conservativeSqrt = sqrt

19
src/Complex/predicate.ts Normal file
View File

@ -0,0 +1,19 @@
import {Complex} from './type.js'
import {Signature, Dependency, ImpType} from '../core/Dispatcher.js'
declare module "./type" {
interface ComplexReturn<Params> {
isReal: Signature<Params, [Complex<any>], boolean>
isSquare: Signature<Params, [Complex<any>], boolean>
}
}
export const isReal =
<T>(dep: Dependency<'equal', [T,T]>
& Dependency<'add', [T,T]>
& Dependency<'isReal', [T]>
): ImpType<'isReal', [Complex<T>]> =>
z => dep.isReal(z.re) && dep.equal(z.re, dep.add(z.re, z.im))
export const isSquare: ImpType<'isSquare', [Complex<any>]> =
z => true // FIXME: not correct for Complex<bigint> once we get there

15
src/Complex/relational.ts Normal file
View File

@ -0,0 +1,15 @@
import {Complex} from './type.js'
import {BBinary, ImpType, Dependency} from '../core/Dispatcher.js'
declare module "./type" {
interface ComplexReturn<Params> {
equal: Params extends BBinary<infer B>
? B extends Complex<any> ? boolean : never
: never
}
}
export const equal =
<T>(dep: Dependency<'equal', [T,T]>):
ImpType<'equal', [Complex<T>, Complex<T>]> =>
(w, z) => dep.equal(w.re, z.re) && dep.equal(w.im, z.im)

View File

@ -1,7 +1,12 @@
import {joinTypes, typeOfDependency, Dependency} from '../core/Dispatcher.js'
import {
joinTypes, typeOfDependency, Dependency, BBinary, ImpType, ImpReturns
} from '../core/Dispatcher.js'
export type Complex<T> = {re: T; im: T;}
export type UnderlyingReal<T> =
T extends Complex<infer U> ? UnderlyingReal<U> : T
export const Complex_type = {
test: <T>(dep: {testT: (z: unknown) => z is T}) =>
(z: unknown): z is Complex<T> =>
@ -17,6 +22,66 @@ export const Complex_type = {
}
}
export const complex_unary = <T>(dep: Dependency<'zero', [T]>) =>
(t: T) => ({re: t, im: dep.zero(t)})
export const complex_binary = <T>(t: T, u: T) => ({re: t, im: u})
export interface ComplexReturn<Params> {
// Sadly, I can't think of a way to make some nice abbreviation operators
// for these generic type specifications because TypeScript generics
// can't take and use generic parameters, only fully instantiated types.
complex: Params extends [infer U] ? Complex<U> // unary case
: Params extends BBinary<infer B> ? Complex<B> // binary case
: never
// alternatively if it seems better; each definition is simpler, but at
// the cost of having two keys here:
// complex_unary: Params extends [infer R] ? Complex<R> : never
// complex_binary: Params extends BBinary<infer R> ? Complex<R> : never
// There is actually a subtlety here that complex_unary really only works
// on real types that include their own zero value, so it should really be
// complex_unary: Params extends [infer R]
// ? ImpReturns<'zero', [R]> extends R ? Complex<R> : never
// : never
// and that might actually simplify some of the typings of other operations,
// but we'll leave such fine tuning til later, if we adopt this scheme
zero: Params extends [infer Z] // unary
? Z extends Complex<infer T> // of a Complex parameter
? ImpReturns<'zero', T> extends T ? Z : never // that has its real 0
: never
: never
one: Params extends [infer Z] // unary
? Z extends Complex<infer T> // of a Complex parameter
? ImpReturns<'one'|'zero', T> extends T ? Z : never // has real 1, 0
: never
: never
nan: Params extends [infer Z] // unary
? Z extends Complex<infer T> // of a Complex parameter
? ImpReturns<'nan', T> extends T ? Z : never // has real NaN
: never
: never
re: Params extends [infer Z]
? Z extends Complex<infer T> ? UnderlyingReal<T> : never
: never
}
export const complex_unary =
<T>(dep: Dependency<'zero', [T]>): ImpType<'complex', [T]> =>
t => ({re: t, im: dep.zero(t)})
export const complex_binary = <T>(t: T, u: T): ImpReturns<'complex', [T,T]> =>
({re: t, im: u})
export const zero =
<T>(dep: Dependency<'zero', [T]>): ImpType<'zero', [Complex<T>]> =>
z => complex_binary(dep.zero(z.re), dep.zero(z.im))
export const one =
<T>(dep: Dependency<'zero' | 'one', [T]>): ImpType<'one', [Complex<T>]> =>
z => // Must provide parameter T, else TS narrows to return type of dep.one
complex_binary<T>(dep.one(z.re), dep.zero(z.im))
export const nan =
<T>(dep: Dependency<'nan', [T]>): ImpType<'nan', [Complex<T>]> =>
z => complex_binary(dep.nan(z.re), dep.nan(z.im))
export const re =
<T>(dep: Dependency<'re', [T]>): ImpType<'re', [Complex<T>]> =>
z => dep.re(z.re)

View File

@ -1,2 +1,3 @@
export * from './numbers/all.js'
export * from './Complex/all.js'
export * from './generic/all.js'

View File

@ -1,4 +1,5 @@
export type Config = {
epsilon: number
predictable: boolean
}

View File

@ -9,15 +9,85 @@
type TypeName = string
type Parameter = TypeName
type Signature = Parameter[]
type InputSignature = Parameter[]
type DependenciesType = Record<string, Function>
export interface ImplementationTypes {}
export type typeOfDependency = {typeOf: (x: unknown) => TypeName}
// Helper for collecting implementations
// (Really just suffixes the type name onto the keys of exports)
export type ForType<T extends string, Exports> = keyof Exports extends string
? {[K in keyof Exports as `${K}_${T}`]: Exports[K]}
// All of the implementations must publish descriptions of their
// return types into the following interface, using the format
// described just below:
export interface ReturnTypes<Params> {}
/*****
To describe one implementation for a hypothetical operation `foo`, there
should be a property of the interface whose name starts with `foo` and whose
next character, if any, is an underscore. The type of this property
must be the return type of that implementation when Params matches the
parameter types of the implementation, and `never` otherwise.
Thus to describe an implementation that takes a number and a string and
returns a boolean, for example, you could write
```
declare module "Dispatcher" {
interface ReturnTypes<Params> {
foo_example: Params extends [number, string] ? boolean : never
}
}
```
If there is another, generic implementation that takes one argument
of any type and returns a Vector of that type, you can say
```
...
foo_generic: Params extends [infer T] ? Vector<T> : never
...
```
In practice, each subdirectory corresponding to a type, like Complex,
defines an interface, like `ComplexReturn<Params>` for the implementations
in that subdirectory, which can mostly be defined without suffixes because
there's typically just a single implementation within that domain.
Then the module responsible for collating all of the implementations for
that type inserts all of the properties of that interface into `ReturnTypes`
suitably suffixed to avoid collisions.
One might think that simply defining an implementation for `foo`
of type `(n: number, s: string) => boolean` would provide all of the same
information as the type of the key `foo_example` in the ReturnTypes
interface above, but in practice TypeScript has challenges in extracting
types relating to functions. (In particular, there is no
way to get the specialized return type of a generic function when it is
called on aguments whose specific types match the generic parameters.)
Hence the need for this additional mechanism to specify return types, in
a way readily suited for TypeScript type computations.
*****/
// Helpers for specifying signatures
// A basic signature with concrete types
export type Signature<CandidateParams, ActualParams, Returns> =
CandidateParams extends ActualParams ? Returns : never
// A homogeneous binary parameter tuple (comes up a lot, needs a better name?)
// Typical usage: `foo_impl: Params extends BBinary<infer B> ? B : never`
// says that this implementation takes two arguments, both of type B, and
// returns the same type.
export type BBinary<B> = [B, B]
// A unary signature that preserves the type of its argument, which must
// extend the given Bound:
export type ConservativeUnary<CandidateParams, Bound> =
CandidateParams extends [infer T] ? T extends Bound ? T : never : never
// A homogeneous binary signature that preserves the common type of its
// arguments, which must extend the given Bound:
export type ConservativeBinary<CandidateParams, Bound> =
CandidateParams extends BBinary<infer B>
? B extends Bound ? B : never
: never
// Helper for collecting return types
// (Really just adds the literal string Suffix onto the keys of interface IFace)
export type ForType<Suffix extends string, IFace> = keyof IFace extends string
? {[K in keyof IFace as `${K}_${Suffix}`]: IFace[K]}
: never
//dummy implementation for now
@ -26,27 +96,27 @@ export function joinTypes(a: TypeName, b: TypeName) {
return 'any'
}
/**
* Build up to Dependency type lookup
*/
type DependenciesType = Record<string, Function>
// Used to filter keys that match a given operation name
type BeginsWith<Name extends string> = Name | `${Name}_${string}`
type FinalShape<FuncType> =
FuncType extends (arg: DependenciesType) => Function
? ReturnType<FuncType> : FuncType
// Look up the return type of an implementation based on its name
// and the parameters it takes
export type ImpReturns<Name extends string, Params> =
{[K in keyof ReturnTypes<Params>]: K extends BeginsWith<Name>
? ReturnTypes<Params>[K] : never}[keyof ReturnTypes<Params>]
type BeginsWith<Name extends string> = `${Name}${string}`
type DependencyTypes<Ob, Name extends string, Params extends unknown[]> =
{[K in keyof Ob]: K extends BeginsWith<Name>
? FinalShape<Ob[K]> extends (...args: Params) => any
? FinalShape<Ob[K]>
: never
: never}
// The type of an implementation (with dependencies satisfied,
// based on its name and the parameters it takes
export type ImpType<Name extends string, Params extends unknown[]> =
(...args: Params) => ImpReturns<Name, Params>
// The type of a dependency on an implementation based on its name
// and the parameters it takes (just a simple object with one property
// named the same as the operation, of value type equal to the type of
// that implementation. These can be `&`ed together in case of multiple
// dependencies:
export type Dependency<Name extends string, Params extends unknown[]> =
{[N in Name]:
DependencyTypes<ImplementationTypes, N, Params>[keyof ImplementationTypes]}
{[N in Name]: ImpType<N, Params>}
// Now types used in the Dispatcher class itself
@ -64,9 +134,9 @@ type SpecificationsGroup = Record<string, SpecObject>
export class Dispatcher {
installSpecification(
name: string,
signature: Signature,
signature: InputSignature,
returns: TypeName,
dependencies: Record<string, Signature>,
dependencies: Record<string, InputSignature>,
behavior: Function // possible todo: constrain this type based
// on the signature, return type, and dependencies. Not sure if
// that's really possible, though.

10
src/generic/all.ts Normal file
View File

@ -0,0 +1,10 @@
import { ForType } from '../core/Dispatcher.js'
import { GenericReturn } from './type.js'
import * as generic from './arithmetic.js'
export { generic }
declare module "../core/Dispatcher" {
interface ReturnTypes<Params>
extends ForType<'generic', GenericReturn<Params>> { }
}

39
src/generic/arithmetic.ts Normal file
View File

@ -0,0 +1,39 @@
import {Dependency, ImpType, ImpReturns} from "../core/Dispatcher";
declare module "./type" {
interface GenericReturn<Params> {
// Jos: not sure how to define this or why it is needed
// square: Signature<Params, [T], T>
// square: ConservativeUnary<Params, T>
// square: Params extends [infer R]
// ? R extends number ? UnderlyingReal<R> : never
// : never
// The type of `square` in this interface, instantiated with the type
// Params of a parameter list, needs to be the return type of the
// operation `square` on those parameters. In other words, `square` gives
// a type transformer from the tuple type of its parameters to its return
// type.
// That's how Dispatcher knows what the return type will be in
// `Dependency<'square', [bigint]>`, for example: it instantiates
// GenericReturn with Params equal to [bigint] and then grabs the
// type of the `square` property. Hence we write:
square: Params extends [infer T] // square only takes 1 arbitrary parameter
? ImpReturns<'multiply', [T, T]> // and returns whatever multiply does
: never; // otherwise if not a single argument, this implementation
// doesn't handle it
// If square had more than one implementation in this collection, we could
// either add more conditional clauses to the above type transformer
// as I did in Complex/type.ts for `complex`, or we could have two
// different keys that both start with `square_` and Dispatcher will
// check both (as I have now done in comments in Complex/type.ts and
// verified that also works).
}
}
export const square =
<T>(dep: Dependency<'multiply', [T, T]>):
ImpType<'square', [T]> =>
z => dep.multiply(z, z)

3
src/generic/type.ts Normal file
View File

@ -0,0 +1,3 @@
export interface GenericReturn<Params> {
}

View File

@ -1,8 +1,10 @@
import {ForType} from '../core/Dispatcher.js'
import {NumbersReturn} from './type.js'
import * as numbers from './native.js'
export {numbers}
declare module "../core/Dispatcher" {
interface ImplementationTypes extends ForType<'numbers', typeof numbers> {}
interface ReturnTypes<Params>
extends ForType<'numbers', NumbersReturn<Params>> {}
}

View File

@ -1,18 +1,70 @@
import {configDependency} from '../core/Config.js'
import {Dependency} from '../core/Dispatcher.js'
import {
Signature, ConservativeBinary, ConservativeUnary, Dependency, ImpType
} from '../core/Dispatcher.js'
import type {Complex, UnderlyingReal} from '../Complex/type.js'
declare module "./type" {
interface NumbersReturn<Params> {
// This description loses information: some subtypes like NumInt or
// Positive are closed under addition, but this says that the result
// of add is just a number, not still of the reduced type
// add: Signature<Params, [number, number], number>
// Whereas this one preserves information, but lies
// because it claims all subtypes of number are closed under addition,
// which is not true for `1 | 2 | 3`, for example. But because in
// generics that use add we often need to assign the result of add
// to something of the exact generic type, generics using add won't
// compile unless we lie in this way and assert that add returns
// the subtype.
add: ConservativeBinary<Params, number>
// Not sure how this will need to go when we introduce NumInt.
addReal: Params extends [infer R, infer S]
? R extends number ? S extends R ? R : never : never
: never
unaryMinus: ConservativeUnary<Params, number>
conj: ConservativeUnary<Params, number>
subtract: ConservativeBinary<Params, number>
multiply: ConservativeBinary<Params, number>
absquare: Params extends [infer R]
? R extends number ? UnderlyingReal<R> : never
: never
reciprocal: ConservativeUnary<Params, number>
divide: ConservativeBinary<Params, number>
divideByReal: Params extends [infer R, infer S]
? R extends number ? S extends R ? R : never : never
: never
// best square root that remains the same type
conservativeSqrt: ConservativeUnary<Params, number>
// Best we can do for sqrt at compile time, since actual return
// type depends on config. Not sure how this will play out
// when we make a number-only bundle, but at least the import type
// above for Complex<> does not lead to any emitted JavaScript.
sqrt: Signature<Params, [number], number | Complex<number>>
}
}
export const add: ImpType<'add', [number, number]> = (a, b) => a + b
export const addReal = add
export const unaryMinus: ImpType<'unaryMinus', [number]> = a => -a
export const conj: ImpType<'conj', [number]> = a => a
export const subtract: ImpType<'subtract', [number, number]> = (a, b) => a - b
export const multiply: ImpType<'multiply', [number, number]> = (a, b) => a * b
export const absquare: ImpType<'absquare', [number]> = a => a*a
export const reciprocal: ImpType<'reciprocal', [number]> = a => 1/a
export const divide: ImpType<'divide', [number, number]> = (a, b) => a / b
export const divideByReal: ImpType<'divideByReal', [number, number]> = divide
export const conservativeSqrt: ImpType<'conservativeSqrt', [number]> =
a => isNaN(a) ? NaN : Math.sqrt(a)
export const add = (a: number, b: number) => a + b
export const unaryMinus = (a: number) => -a
export const subtract = (a: number, b: number) => a - b
export const multiply = (a: number, b: number) => a * b
export const divide = (a: number, b: number) => a / b
export const sqrt =
(dep: configDependency
& Dependency<'complex', [number, number]>) => {
if (dep.config.predictable || !dep.complex) {
return (a: number) => isNaN(a) ? NaN : Math.sqrt(a)
}
return (a: number) => {
& Dependency<'complex', [number, number]>): ImpType<'sqrt', [number]> => {
if (dep.config.predictable || !dep.complex) return conservativeSqrt
return a => {
if (isNaN(a)) return NaN
if (a >= 0) return Math.sqrt(a)
return dep.complex(0, Math.sqrt(unaryMinus(a)))

11
src/numbers/predicate.ts Normal file
View File

@ -0,0 +1,11 @@
import {Signature, ImpType} from '../core/Dispatcher.js'
declare module "./type" {
interface NumbersReturn<Params> {
isReal: Signature<Params, [number], true>
isSquare: Signature<Params, [number], boolean>
}
}
export const isReal: ImpType<'isReal', [number]> = a => true
export const isSquare: ImpType<'isSquare', [number]> = a => a >= 0

34
src/numbers/relational.ts Normal file
View File

@ -0,0 +1,34 @@
import {configDependency} from '../core/Config.js'
import {Signature, ImpType, Dependency} from '../core/Dispatcher.js'
const DBL_EPSILON = Number.EPSILON || 2.2204460492503130808472633361816E-16
declare module "./type" {
interface NumbersReturn<Params> {
equal: Signature<Params, [number, number], boolean>
unequal: Signature<Params, [number, number], boolean>
}
}
export const equal =
(dep: configDependency): ImpType<'equal', [number, number]> =>
(x, y) => {
const eps = dep.config.epsilon
if (eps === null || eps === undefined) return x === y
if (x === y) return true
if (isNaN(x) || isNaN(y)) return false
if (isFinite(x) && isFinite(y)) {
const diff = Math.abs(x - y)
if (diff < DBL_EPSILON) return true
return diff <= Math.max(Math.abs(x), Math.abs(y)) * eps
}
return false
}
export const unequal = (dep: Dependency<'equal', [number, number]>):
ImpType<'unequal', [number, number]> =>
(x, y) => {
return !dep.equal(x, y)
}

View File

@ -1,7 +1,44 @@
import {ImpType} from '../core/Dispatcher.js'
import type {UnderlyingReal} from '../Complex/type.js'
export const number_type = {
before: ['Complex'],
test: (n: unknown): n is number => typeof n === 'number',
from: {string: s => +s}
}
export const zero = (a: number) => 0
export interface NumbersReturn<Params> {
// The following description of the return type of `zero` on a single
// number argument has ended up unfortunately rather complicated. However,
// it illustrates the typing is really working: Suppose we have a
// `type Small = 1 | 2 | 3`. Then Small indeed extends number, but we
// can't use the operation `zero(s: Small)` because zero is supposed to
// return something of the same type as its argument, but there is no
// zero in Small. Anyhow, in plain language the below says that given
// one parameter of a subtype of number, as long as that subtype includes 0,
// the zero operation returns a member of the type `0` (so we know even
// at compile time that its value will be 0).
zero: Params extends [infer T]
? T extends number ? 0 extends T ? 0 : never : never
: never
// Note that in any case the simple
// zero: Signature<Params, [number], 0>
// makes complex fail to compile, because it worries that you might be
// making `Complex<Small>` where zero would not return the right type.
one: Params extends [infer T]
? T extends number ? 1 extends T ? 1 : never : never
: never
nan: Params extends [infer T]
? T extends number ? typeof NaN extends T ? typeof NaN : never : never
: never
re: Params extends [infer T]
? T extends number ? UnderlyingReal<T> : never
: never
}
export const zero: ImpType<'zero', [number]> = a => 0
export const one: ImpType<'one', [number]> = a => 1
export const nan: ImpType<'nan', [number]> = a => NaN
export const re: ImpType<'re', [number]> = a => a