feat(polynomialRoot) #57

Merged
glen merged 4 commits from polynomialRoot into main 2022-12-01 17:47:21 +00:00
18 changed files with 634 additions and 264 deletions

View File

@ -3,7 +3,6 @@ export * from './Types/Complex.mjs'
export const abs = {
'Complex<T>': ({
T,
sqrt, // Unfortunately no notation yet for the needed signature
'absquare(T)': baseabsq,
'absquare(Complex<T>)': absq

7
src/complex/arg.mjs Normal file
View File

@ -0,0 +1,7 @@
import {Returns, returnTypeOf} from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
/* arg is the "argument" or angle theta of z in its form r cis theta */
export const arg = {
'Complex<number>': () => Returns('number', z => Math.atan2(z.im, z.re))
}

28
src/complex/cbrtc.mjs Normal file
View File

@ -0,0 +1,28 @@
import {Returns, returnTypeOf} from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
const TAU3 = 2 * Math.PI / 3
/* Complex cube root that returns all three roots as a tuple of complex. */
/* follows the implementation in mathjs */
/* Really only works for T = number at the moment because of arg and cbrt */
export const cbrtc = {
'Complex<T>': ({
'arg(T)': theta,
'divide(T,T)': div,
'abs(Complex<T>)': absval,
'complex(T)': cplx,
'cbrt(T)': cbrtT,
'multiply(Complex<T>,Complex<T>)': mult,
'cis(T)': cisT,
'tuple(...Complex<T>)': tup
}) => Returns('Tuple<Complex<T>>', z => {
const arg3 = div(theta(z), 3)
const r = cplx(cbrtT(absval(z)))
return tup(
mult(r, cisT(arg3)),
mult(r, cisT(arg3 + TAU3)),
mult(r, cisT(arg3 - TAU3))
)
})
}

9
src/complex/cis.mjs Normal file
View File

@ -0,0 +1,9 @@
import {Returns, returnTypeOf} from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
/* Returns cosine plus i sin theta */
export const cis = {
'number': ({'complex(number,number)': cplx}) => Returns(
'Complex<number>', t => cplx(Math.cos(t), Math.sin(t))
)
}

7
src/complex/isReal.mjs Normal file
View File

@ -0,0 +1,7 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const isReal = {
'Complex<T>': ({'equal(T,T)': eq, 'add(T,T)': plus}) => Returns(
'boolean', z => eq(z.re, plus(z.re, z.im)))
}

View File

@ -3,18 +3,24 @@ export * from './Types/Complex.mjs'
export {abs} from './abs.mjs'
export {absquare} from './absquare.mjs'
export {add} from './add.mjs'
export {arg} from './arg.mjs'
export {associate} from './associate.mjs'
export {cbrtc} from './cbrtc.mjs'
export {cis} from './cis.mjs'
export {complex} from './complex.mjs'
export {conjugate} from './conjugate.mjs'
export {equalTT} from './equalTT.mjs'
export {gcd} from './gcd.mjs'
export {invert} from './invert.mjs'
export {isReal} from './isReal.mjs'
export {isZero} from './isZero.mjs'
export {multiply} from './multiply.mjs'
export {negate} from './negate.mjs'
export {polynomialRoot} from './polynomialRoot.mjs'
export {quaternion} from './quaternion.mjs'
export {quotient} from './quotient.mjs'
export {roundquotient} from './roundquotient.mjs'
export {sqrt} from './sqrt.mjs'
export {sqrtc} from './sqrtc.mjs'
export {zero} from './zero.mjs'

View File

@ -0,0 +1,118 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const polynomialRoot = {
'Complex<T>,...Complex<T>': ({
T,
'tuple(...Complex<T>)': tupCplx,
'tuple(...T)': tupReal,
'isZero(Complex<T>)': zero,
'complex(T)': C,
'multiply(Complex<T>,Complex<T>)': mul,
'divide(Complex<T>,Complex<T>)': div,
'negate(Complex<T>)': neg,
'isReal(Complex<T>)': real,
'equalTT(Complex<T>,Complex<T>)': eq,
'add(Complex<T>,Complex<T>)': plus,
'subtract(Complex<T>,Complex<T>)': sub,
'sqrtc(Complex<T>)': sqt,
'cbrtc(Complex<T>)': cbt
}) => Returns(`Tuple<${T}>|Tuple<Complex<${T}>>`, (constant, rest) => {
// helper to convert results to appropriate tuple type
const typedTup = arr => {
if (arr.every(real)) {
return tupReal.apply(tupReal, arr.map(z => z.re))
}
return tupCplx.apply(tupCplx, arr)
}
const coeffs = [constant, ...rest]
while (coeffs.length > 0 && zero(coeffs[coeffs.length - 1])) {
coeffs.pop()
}
if (coeffs.length < 2) {
}
switch (coeffs.length) {
case 0: case 1:
throw new RangeError(
`Polynomial [${constant}, ${rest}] must have at least one`
+ 'non-zero non-constant coefficient')
case 2: // linear
return typedTup([neg(div(coeffs[0], coeffs[1]))])
case 3: { // quadratic
const [c, b, a] = coeffs
const denom = mul(C(2), a)
const d1 = mul(b, b)
const d2 = mul(C(4), mul(a, c))
if (eq(d1, d2)) {
return typedTup([div(neg(b), denom)])
}
let discriminant = sqt(sub(d1, d2))
return typedTup([
div(sub(discriminant, b), denom),
div(sub(neg(discriminant), b), denom)
])
}
case 4: { // cubic, cf. https://en.wikipedia.org/wiki/Cubic_equation
const [d, c, b, a] = coeffs
const denom = neg(mul(C(3), a))
const asqrd = mul(a, a)
const D0_1 = mul(b, b)
const bcubed = mul(D0_1, b)
const D0_2 = mul(C(3), mul(a, c))
const D1_1 = plus(
mul(C(2), bcubed), mul(C(27), mul(asqrd, d)))
const abc = mul(a, mul(b, c))
const D1_2 = mul(C(9), abc)
// Check for a triple root
if (eq(D0_1, D0_2) && eq(D1_1, D1_2)) {
return typedTup([div(b, denom)])
}
const Delta0 = sub(D0_1, D0_2)
const Delta1 = sub(D1_1, D1_2)
const csqrd = mul(c, c)
const discriminant1 = plus(
mul(C(18), mul(abc, d)), mul(D0_1, csqrd))
const discriminant2 = plus(
mul(C(4), mul(bcubed, d)),
plus(
mul(C(4), mul(a, mul(csqrd, c))),
mul(C(27), mul(asqrd, mul(d, d)))))
// See if we have a double root
if (eq(discriminant1, discriminant2)) {
return typedTup([
div(
sub(
mul(C(4), abc),
plus(mul(C(9), mul(asqrd, d)), bcubed)),
mul(a, Delta0)), // simple root
div(
sub(mul(C(9), mul(a, d)), mul(b, c)),
mul(C(2), Delta0)) // double root
])
}
// OK, we have three distinct roots
let Ccubed
if (eq(D0_1, D0_2)) {
Ccubed = Delta1
} else {
Ccubed = div(
plus(
Delta1,
sqt(sub(
mul(Delta1, Delta1),
mul(C(4), mul(Delta0, mul(Delta0, Delta0)))))
),
C(2))
}
const croots = cbt(Ccubed)
return typedTup(cbt(Ccubed).elts.map(
C => div(plus(b, plus(C, div(Delta0, C))), denom)))
}
default:
throw new RangeError(
'only implemented for cubic or lower-order polynomials, '
+ `not ${JSON.stringify(coeffs)}`)
}
})
}

View File

@ -4,49 +4,30 @@ export * from './Types/Complex.mjs'
export const sqrt = {
'Complex<T>': ({
config,
'sqrtc(Complex<T>)': predictableSqrt,
'isZero(T)': isZ,
'sign(T)': sgn,
'one(T)': uno,
'add(T,T)': plus,
'complex(T)': cplxU,
'complex(T,T)': cplxB,
'multiply(T,T)': mult,
'self(T)': me,
'divide(T,T)': div,
'absquare(Complex<T>)': absqC,
'subtract(T,T)': sub
}) => {
let baseReturns = returnTypeOf(me)
if (baseReturns.includes('|')) {
// Bit of a hack, because it is relying on other implementations
// to list the "typical" value of sqrt first
baseReturns = baseReturns.split('|', 1)[0]
}
if (config.checkingDependency) return undefined
const complexReturns = returnTypeOf(predictableSqrt)
const baseReturns = complexReturns.slice(8, -1); // Complex<WhatWeWant>
if (config.predictable) {
return Returns(`Complex<${baseReturns}>`, z => {
const reOne = uno(z.re)
if (isZ(z.im) && sgn(z.re) === reOne) return cplxU(me(z.re))
const reTwo = plus(reOne, reOne)
const myabs = me(absqC(z))
return cplxB(
mult(sgn(z.im), me(div(plus(myabs, z.re), reTwo))),
me(div(sub(myabs, z.re), reTwo))
)
})
return Returns(complexReturns, z => predictableSqrt(z))
}
return Returns(
`Complex<${baseReturns}>|${baseReturns}|undefined`,
z => {
const reOne = uno(z.re)
if (isZ(z.im) && sgn(z.re) === reOne) return me(z.re)
const reTwo = plus(reOne, reOne)
const myabs = me(absqC(z))
const reSqrt = me(div(plus(myabs, z.re), reTwo))
const imSqrt = me(div(sub(myabs, z.re), reTwo))
if (reSqrt === undefined || imSqrt === undefined) return undefined
return cplxB(mult(sgn(z.im), reSqrt), imSqrt)
let complexSqrt
try {
complexSqrt = predictableSqrt(z)
} catch (e) {
return undefined
}
if (complexSqrt.re === undefined || complexSqrt.im === undefined) {
return undefined
}
if (isZ(complexSqrt.im)) return complexSqrt.re
return complexSqrt
}
)
}

41
src/complex/sqrtc.mjs Normal file
View File

@ -0,0 +1,41 @@
import {Returns, returnTypeOf} from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const sqrtc = {
'Complex<T>': ({
'isZero(T)': isZ,
'sign(T)': sgn,
'one(T)': uno,
'add(T,T)': plus,
'complex(T)': cplxU,
'complex(T,T)': cplxB,
'multiply(T,T)': mult,
'sqrt(T)': sqt,
'divide(T,T)': div,
'absquare(Complex<T>)': absqC,
'subtract(T,T)': sub
}) => {
if (isZ.checkingDependency) return undefined
let baseReturns = returnTypeOf(sqt)
if (baseReturns.includes('|')) {
// Bit of a hack, because it is relying on other implementations
// to list the "typical" value of sqrt first
baseReturns = baseReturns.split('|', 1)[0]
}
return Returns(`Complex<${baseReturns}>`, z => {
const reOne = uno(z.re)
if (isZ(z.im) && sgn(z.re) === reOne) return cplxU(sqt(z.re))
const myabs = sqt(absqC(z))
const reTwo = plus(reOne, reOne)
const reQuot = div(plus(myabs, z.re), reTwo)
const imQuot = div(sub(myabs, z.re), reTwo)
if (reQuot === undefined || imQuot === undefined) {
throw new TypeError(`Cannot compute sqrt of ${z.re} + {z.im}i`)
}
return cplxB(
mult(sgn(z.im), sqt(div(plus(myabs, z.re), reTwo))),
sqt(div(sub(myabs, z.re), reTwo))
)
})
}
}

View File

@ -7,6 +7,12 @@ import {typeListOfSignature, typesOfSignature, subsetOfKeys} from './utils.mjs'
const anySpec = {} // fixed dummy specification of 'any' type
/* Like `.some(predicate)` but for collections */
function exists(collection, predicate) {
for (const item of collection) if (predicate(item)) return true;
return false;
}
/* Template/signature parsing stuff; should probably be moved to a
* separate file, but it's a bit interleaved at the moment
*/
@ -87,6 +93,7 @@ function substituteInSignature(signature, parameter, type) {
return sig.replaceAll(pattern, type)
}
const UniversalType = 'ground' // name for a type that matches anything
let lastWhatToDo = null // used in an infinite descent check
export default class PocomathInstance {
@ -97,6 +104,7 @@ export default class PocomathInstance {
static reserved = new Set([
'chain',
'config',
'convert',
'importDependencies',
'install',
'installType',
@ -128,16 +136,30 @@ export default class PocomathInstance {
// its onMismatch function, below:
this._metaTyped = typed.create()
this._metaTyped.clear()
this._metaTyped.addTypes([{name: UniversalType, test: () => true}])
// And these are the meta bindings: (I think we don't need separate
// invalidation for them as they are only accessed through a main call.)
this._meta = {} // The resulting typed-functions
this._metaTFimps = {} // and their implementations
const me = this
const myTyped = this._typed
this._typed.onMismatch = (name, args, sigs) => {
if (me._invalid.has(name)) {
if (this._fixing === name) {
this._fixingCount += 1
if (this._fixingCount > this._maxDepthSeen + 2) {
throw new ReferenceError(
`Infinite descent rebuilding ${name} on ${args}`)
}
} else {
this._fixingCount = 0
}
// rebuild implementation and try again
return me[name](...args)
const lastFixing = this._fixing
this._fixing = name
const value = me[name](...args)
this._fix = lastFixing
return value
}
const metaversion = me._meta[name]
if (metaversion) {
@ -183,6 +205,8 @@ export default class PocomathInstance {
this._plainFunctions = new Set() // the names of the plain functions
this._chainRepository = {} // place to store chainified functions
this.joinTypes = this.joinTypes.bind(me)
// Provide access to typed function conversion:
this.convert = this._typed.convert.bind(this._typed)
}
/**
@ -523,6 +547,10 @@ export default class PocomathInstance {
}
}
}
// Need to metafy ground types
if (type === base) {
this._metafy(type)
}
// update the typeOf function
const imp = {}
imp[type] = {uses: new Set(), does: () => Returns('string', () => type)}
@ -640,7 +668,7 @@ export default class PocomathInstance {
}
// install the "base type" in the meta universe:
let beforeType = 'any'
let beforeType = UniversalType
for (const other of spec.before || []) {
if (other in this.templates) {
beforeType = other
@ -648,6 +676,13 @@ export default class PocomathInstance {
}
}
this._metaTyped.addTypes([{name: base, test: spec.base}], beforeType)
// Add conversions to the base type:
if (spec.from && spec.from[theTemplateParam]) {
for (const ground of this._metafiedTypes) {
this._metaTyped.addConversion(
{from: ground, to: base, convert: spec.from[theTemplateParam]})
}
}
this._instantiationsOf[base] = new Set()
// update the typeOf function
@ -750,45 +785,39 @@ export default class PocomathInstance {
/**
* Reset an operation to require creation of typed-function,
* and if it has no implementations so far, set them up.
* name is the name of the operation, badType is a type that has been
* invalidated, and reasons is a set of specific operations/signatures
* that have been invalidated
*/
_invalidate(name, reason) {
_invalidate(name, badType = '', reasons = new Set()) {
if (!(name in this._imps)) {
this._imps[name] = {}
this._TFimps[name] = {}
this._metaTFimps[name] = {}
}
if (reason) {
// Make sure no TF imps that depend on reason remain:
for (const [signature, behavior] of Object.entries(this._imps[name])) {
let invalidated = false
if (reason.charAt(0) === ':') {
const badType = reason.slice(1)
if (signature.includes(badType)) invalidated = true
// Go through each TF imp and invalidate it if need be
for (const [signature, imp] of Object.entries(this._TFimps[name])) {
if (imp.deferred
|| (badType && signature.includes(badType))
|| exists(imp.uses, dep => {
const [func, sig] = dep.split(/[()]/)
return reasons.has(dep)
|| (reasons.has(func) && !(sig in this._TFimps[func]))
})) {
// Invalidate this implementation:
delete this._TFimps[name][signature]
const behavior = imp.fromBehavior
if (behavior.explicit) {
behavior.resolved = false
} else {
for (const dep of behavior.uses) {
if (dep.includes(reason)) {
invalidated = true
break
}
}
}
if (invalidated) {
if (behavior.explicit) {
if (behavior.resolved) delete this._TFimps[signature]
behavior.resolved = false
} else {
for (const fullSig
of Object.values(behavior.hasInstantiations)) {
delete this._TFimps[fullSig]
}
behavior.hasInstantiations = {}
}
delete behavior.hasInstantiations[imp.instance]
}
reasons.add(`${name}(${signature})`)
}
}
if (this._invalid.has(name)) return
this._invalid.add(name)
this._invalidateDependents(name)
this._invalidateDependents(name, badType, reasons)
const self = this
Object.defineProperty(this, name, {
configurable: true,
@ -802,11 +831,14 @@ export default class PocomathInstance {
/**
* Invalidate all the dependents of a given property of the instance
* reasons is a set of invalidated signatures
*/
_invalidateDependents(name) {
_invalidateDependents(name, badType, reasons = new Set()) {
if (name.charAt(0) === ':') badType = name.slice(1)
else reasons.add(name)
if (name in this._affects) {
for (const ancestor of this._affects[name]) {
this._invalidate(ancestor, name)
this._invalidate(ancestor, badType, reasons)
}
}
}
@ -847,7 +879,7 @@ export default class PocomathInstance {
for (const [rawSignature, behavior] of usableEntries) {
if (behavior.explicit) {
if (!(behavior.resolved)) {
this._addTFimplementation(tf_imps, rawSignature, behavior)
this._addTFimplementation(name, tf_imps, rawSignature, behavior)
tf_imps[rawSignature]._pocoSignature = rawSignature
behavior.resolved = true
}
@ -867,11 +899,18 @@ export default class PocomathInstance {
}
/* First, add the known instantiations, gathering all types needed */
if (ubType) behavior.needsInstantiations.add(ubType)
const nargs = typeListOfSignature(rawSignature).length
let instantiationSet = new Set()
const ubTypes = new Set()
if (!ubType) {
// Collect all upper-bound types for this signature
for (const othersig in imps) {
const otherNargs = typeListOfSignature(othersig).length
if (nargs !== otherNargs) {
// crude criterion that it won't match, that ignores
// rest args, but hopefully OK for prototype
continue
}
const thisUB = upperBounds.exec(othersig)
if (thisUB) ubTypes.add(thisUB[2])
let basesig = othersig.replaceAll(templateCall, '')
@ -881,7 +920,7 @@ export default class PocomathInstance {
basesig, theTemplateParam, '')
if (testsig === basesig) {
// that is not also top-level
for (const templateType of typeListOfSignature(basesig)) {
for (let templateType of typeListOfSignature(basesig)) {
if (templateType.slice(0,3) === '...') {
templateType = templateType.slice(3)
}
@ -894,21 +933,20 @@ export default class PocomathInstance {
for (const instType of behavior.needsInstantiations) {
instantiationSet.add(instType)
const otherTypes =
ubType ? this.subtypesOf(instType) : this._priorTypes[instType]
ubType ? this.subtypesOf(instType) : this._priorTypes[instType]
for (const other of otherTypes) {
if (!(this._atOrBelowSomeType(other, ubTypes))) {
instantiationSet.add(other)
}
}
}
/* Prevent other existing signatures from blocking use of top-level
* templates via conversions:
*/
let baseSignature = rawSignature.replaceAll(templateCall, '')
/* Any remaining template params are top-level */
const signature = substituteInSignature(
baseSignature, theTemplateParam, 'any')
baseSignature, theTemplateParam, UniversalType)
const hasTopLevel = (signature !== baseSignature)
if (!ubType && hasTopLevel) {
for (const othersig in imps) {
@ -939,9 +977,9 @@ export default class PocomathInstance {
}
}
}
for (const instType of instantiationSet) {
this._instantiateTemplateImplementation(name, rawSignature, instType)
this._instantiateTemplateImplementation(
name, rawSignature, instType)
}
/* Now add the catchall signature */
/* (Not needed if if it's a bounded template) */
@ -996,6 +1034,7 @@ export default class PocomathInstance {
`Type inference failed for argument ${j} of ${name}`)
}
if (argType === 'any') {
console.log('INCOMPATIBLE ARGUMENTS are', args)
throw TypeError(
`In call to ${name}, `
+ 'incompatible template arguments:'
@ -1018,9 +1057,10 @@ export default class PocomathInstance {
usedConversions = true
instantiateFor = self.joinTypes(argTypes, usedConversions)
if (instantiateFor === 'any') {
let argDisplay = args.map(toString).join(', ')
throw TypeError(
`In call to ${name}, no type unifies arguments `
+ args.toString() + '; of types ' + argTypes.toString()
+ argDisplay + '; of types ' + argTypes.toString()
+ '; note each consecutive pair must unify to a '
+ 'supertype of at least one of them')
}
@ -1042,7 +1082,9 @@ export default class PocomathInstance {
for (j = 0; j < parTypes.length; ++j) {
if (wantTypes[j] !== parTypes[j] && parTypes[j].includes('<')) {
// actually used the param and is a template
self._ensureTemplateTypes(parTypes[j], instantiateFor)
const strippedType = parTypes[j].substr(
parTypes[j].lastIndexOf('.') + 1)
self._ensureTemplateTypes(strippedType, instantiateFor)
}
}
@ -1050,12 +1092,19 @@ export default class PocomathInstance {
// But possibly since this resolution was grabbed, the proper
// instantiation has been added (like if there are multiple
// uses in the implementation of another method.
if (!(behavior.needsInstantiations.has(instantiateFor))) {
behavior.needsInstantiations.add(instantiateFor)
let whatToDo
if (!(instantiateFor in behavior.hasInstantiations)) {
const newImp = self._instantiateTemplateImplementation(
name, rawSignature, instantiateFor)
if (newImp) {
whatToDo = {fn: newImp, implementation: newImp}
}
self._invalidate(name)
}
const brandNewMe = self[name]
const whatToDo = self._typed.resolve(brandNewMe, args)
const betterToDo = self._typed.resolve(brandNewMe, args)
whatToDo = betterToDo || whatToDo
// We can access return type information here
// And in particular, if it might be a template, we should try to
// instantiate it:
@ -1069,8 +1118,13 @@ export default class PocomathInstance {
}
if (whatToDo === lastWhatToDo) {
throw new Error(
`Infinite recursion in resolving $name called on`
+ args.map(x => x.toString()).join(','))
`Infinite recursion in resolving ${name} called on `
+ args.map(x =>
(typeof x === 'object'
? JSON.stringify(x)
: x.toString())
).join(', ')
+ ` inferred to be ${wantSig}`)
}
lastWhatToDo = whatToDo
const retval = whatToDo.implementation(...args)
@ -1088,15 +1142,19 @@ export default class PocomathInstance {
// correct return type a priori. Deferring because unclear what
// aspects will be merged into typed-function.
this._addTFimplementation(
meta_imps, signature, {uses: new Set(), does: patch})
name, meta_imps, signature,
{uses: new Set(), does: patch},
behavior)
behavior.resolved = true
}
this._correctPartialSelfRefs(name, tf_imps)
// Make sure we have all of the needed (template) types; and if they
// can't be added (because they have been instantiated too deep),
// ditch the signature:
const badSigs = new Set()
for (const sig in tf_imps) {
if (!tf_imps[sig].uses) {
throw new ReferenceError(`MONKEY WRENCH: ${name} ${sig}`)
}
for (const type of typeListOfSignature(sig)) {
if (this._maybeInstantiate(type) === undefined) {
badSigs.add(sig)
@ -1117,11 +1175,13 @@ export default class PocomathInstance {
if (Object.keys(tf_imps).length > 0) {
tf = this._typed(name, tf_imps)
tf.fromInstance = this
tf.isMeta = false
}
let metaTF
if (Object.keys(meta_imps).length > 0) {
metaTF = this._metaTyped(name, meta_imps)
metaTF.fromInstance = this
metaTF.isMeta = true
}
this._meta[name] = metaTF
@ -1215,10 +1275,12 @@ export default class PocomathInstance {
return behavior.does(innerRefs)
}
const tf_imps = this._TFimps[name]
this._addTFimplementation(tf_imps, signature, {uses, does: patch})
this._addTFimplementation(
name, tf_imps, signature, {uses, does: patch}, behavior, instanceType)
tf_imps[signature]._pocoSignature = templateSignature
tf_imps[signature]._pocoInstance = instanceType
behavior.hasInstantiations[instanceType] = signature
behavior.needsInstantiations.add(instanceType) // once we have it, keep it
return tf_imps[signature]
}
@ -1226,17 +1288,23 @@ export default class PocomathInstance {
* to typed-function implementations and inserts the result into plain
* object imps
*/
_addTFimplementation(imps, signature, behavior) {
const {uses, does} = behavior
_addTFimplementation(
name, imps, signature, specificBehavior, fromImp, asInstance)
{
if (!fromImp) fromImp = specificBehavior
const {uses, does} = specificBehavior
if (uses.length === 0) {
const implementation = does()
implementation.uses = uses
implementation.fromInstance = this
implementation.fromBehavior = fromImp
implementation.instance = asInstance
// could do something with return type information here
imps[signature] = implementation
return
}
const refs = {}
let full_self_referential = false
let part_self_references = []
for (const dep of uses) {
let [func, needsig] = dep.split(/[()]/)
/* Safety check that can perhaps be removed:
@ -1252,82 +1320,71 @@ export default class PocomathInstance {
}
if (func === 'self') {
if (needsig) {
/* Maybe we can resolve the self reference without troubling
* typed-function:
/* We now resolve all specific-signature self references
* here, without resorting to the facility in typed-function:
*/
if (needsig in imps && typeof imps[needsig] == 'function') {
refs[dep] = imps[needsig]
continue
}
const needTypes = typesOfSignature(needsig)
const mergedTypes = Object.assign(
{}, this.Types, this.Templates)
if (subsetOfKeys(needTypes, mergedTypes)) {
func = name // just resolve it in limbo
} else {
if (full_self_referential) {
throw new SyntaxError(
'typed-function does not support mixed full and '
+ 'partial self-reference')
}
const needTypes = typesOfSignature(needsig)
const mergedTypes = Object.assign(
{}, this.Types, this.Templates)
if (subsetOfKeys(needTypes, mergedTypes)) {
part_self_references.push(needsig)
}
// uses an unknown type, so will get an undefined impl
console.log(
'WARNING: partial self-reference for', name, 'to',
needsig, 'uses an unknown type')
refs[dep] = undefined
continue
}
} else {
if (part_self_references.length) {
throw new SyntaxError(
'typed-function does not support mixed full and '
+ 'partial self-reference')
}
full_self_referential = true
}
} else {
if (this[func] === 'limbo') {
/* We are in the midst of bundling func */
let fallback = true
/* So the first thing we can do is try the tf_imps we are
* accumulating:
*/
if (needsig) {
let typedUniverse
let tempTF
if (Object.keys(this._TFimps[func]).length > 0) {
typedUniverse = this._typed
tempTF = typedUniverse('dummy_' + func, this._TFimps[func])
} else {
typedUniverse = this._metaTyped
tempTF = typedUniverse(
'dummy_' + func, this._metaTFimps[func])
}
let result = undefined
try {
result = typedUniverse.find(tempTF, needsig, {exact: true})
} catch {}
if (result) {
refs[dep] = result
fallback = false
}
}
if (fallback) {
/* Either we need the whole function or the signature
* we need is not available yet, so we have to use
* an indirect reference to func. And given that, there's
* really no helpful way to extract a specific signature
*/
const self = this
const redirect = function () { // is this the most efficient?
return self[func].apply(this, arguments)
}
Object.defineProperty(redirect, 'name', {value: func})
Object.defineProperty(redirect, 'fromInstance', {value: this})
refs[dep] = redirect
}
} else {
// can bundle up func, and grab its signature if need be
let destination = this[func]
if (destination && needsig) {
destination = this.resolve(func, needsig)
}
refs[dep] = destination
continue
}
}
if (this[func] === 'limbo') {
/* We are in the midst of bundling func (which may be ourself) */
/* So the first thing we can do is try the tf_imps we are
* accumulating:
*/
if (needsig) {
const candidate = this.resolve(func, needsig)
if (typeof candidate === 'function') {
refs[dep] = candidate
continue
}
}
/* Either we need the whole function or the signature
* we need is not available yet, so we have to use
* an indirect reference to func. And given that, there's
* really no helpful way to extract a specific signature
*/
const self = this
const redirect = function () { // is this the most efficient?
return self[func].apply(this, arguments)
}
Object.defineProperty(redirect, 'name', {value: func})
Object.defineProperty(redirect, 'fromInstance', {value: this})
refs[dep] = redirect
continue
}
// can bundle up func, and grab its signature if need be
let destination = this[func]
if (needsig) {
destination = this.resolve(func, needsig)
}
if (!destination) {
// Unresolved reference. This is allowed so that
// you can bundle up just some portions of the library,
// but let's warn.
console.log(
'WARNING: No definition found for dependency',
dep, 'needed by', name, '(', signature, ')')
}
refs[dep] = destination
}
if (full_self_referential) {
imps[signature] = this._typed.referToSelf(self => {
@ -1335,108 +1392,27 @@ export default class PocomathInstance {
const implementation = does(refs)
Object.defineProperty(implementation, 'name', {value: does.name})
implementation.fromInstance = this
implementation.uses = uses
implementation.instance = asInstance
implementation.fromBehavior = fromImp
// What are we going to do with the return type info in here?
return implementation
})
return
}
if (part_self_references.length) {
/* There is an obstruction here. The list part_self_references
* might contain a signature that requires conversion for self to
* handle. But I advocated this not be allowed in typed.referTo, which
* made sense for human-written functions, but is unfortunate now.
* So we have to defer creating these and correct them later, at
* least until we can add an option to typed-function.
*/
imps[signature] = {
deferred: true,
builtRefs: refs,
sigDoes: does,
fromInstance: this,
psr: part_self_references
}
imps[signature].uses = uses
imps[signature].fromInstance = this
imps[signature].instance = asInstance
imps[signature].fromBehavior = fromImp
return
}
const implementation = does(refs)
implementation.fromInstance = this
implementation.fromBehavior = fromImp
implementation.instance = asInstance
implementation.uses = uses
// could do something with return type information here?
imps[signature] = implementation
}
_correctPartialSelfRefs(name, imps) {
for (const aSignature in imps) {
if (!(imps[aSignature].deferred)) continue
const deferral = imps[aSignature]
const part_self_references = deferral.psr
const corrected_self_references = []
const remaining_self_references = []
const refs = deferral.builtRefs
for (const neededSig of part_self_references) {
// Have to find a match for neededSig among the other signatures
// of this function. That's a job for typed-function, but we will
// try here:
if (neededSig in imps) { // the easy case
corrected_self_references.push(neededSig)
remaining_self_references.push(neededSig)
continue
}
// No exact match, try to get one that matches with
// subtypes since the whole conversion thing in typed-function
// is too complicated to reproduce
let foundSig = this._findSubtypeImpl(name, imps, neededSig)
if (foundSig) {
corrected_self_references.push(foundSig)
remaining_self_references.push(neededSig)
} else {
// Maybe it's a template instance we don't yet have
foundSig = this._findSubtypeImpl(
name, this._imps[name], neededSig)
if (foundSig) {
const match = this._pocoFindSignature(name, neededSig)
const neededTemplate = match.fn._pocoSignature
const neededInstance = whichSigInstance(
neededSig, neededTemplate)
const neededImplementation =
this._instantiateTemplateImplementation(
name, neededTemplate, neededInstance)
if (!neededImplementation) {
refs[`self(${neededSig})`] = match.implementation
} else {
if (typeof neededImplementation === 'function') {
refs[`self(${neededSig})`] = neededImplementation
} else {
corrected_self_references.push(neededSig)
remaining_self_references.push(neededSig)
}
}
} else {
throw new Error(
'Implement inexact self-reference in typed-function for '
+ `${name}(${neededSig})`)
}
}
}
const does = deferral.sigDoes
if (remaining_self_references.length > 0) {
imps[aSignature] = this._typed.referTo(
...corrected_self_references, (...impls) => {
for (let i = 0; i < remaining_self_references.length; ++i) {
refs[`self(${remaining_self_references[i]})`] = impls[i]
}
const implementation = does(refs)
// What will we do with the return type info in here?
return implementation
}
)
} else {
imps[aSignature] = does(refs)
}
imps[aSignature]._pocoSignature = deferral._pocoSignature
imps[aSignature]._pocoInstance = deferral._pocoInstance
imps[aSignature].fromInstance = deferral.fromInstance
}
}
/* This function analyzes the template and makes sure the
* instantiations of it for type and all prior types of type are present
* in the instance.
@ -1542,7 +1518,8 @@ export default class PocomathInstance {
return wantsType
})
_findSubtypeImpl(name, imps, neededSig) {
_findSubtypeImpl(name, imps, neededSig, raw = false) {
const detemplate = !raw
if (neededSig in imps) return neededSig
let foundSig = false
const typeList = typeListOfSignature(neededSig)
@ -1550,21 +1527,21 @@ export default class PocomathInstance {
const otherTypeList = typeListOfSignature(otherSig)
if (typeList.length !== otherTypeList.length) continue
let allMatch = true
let paramBound = 'any'
let paramBound = UniversalType
for (let k = 0; k < typeList.length; ++k) {
let myType = typeList[k]
let otherType = otherTypeList[k]
if (otherType === theTemplateParam) {
otherTypeList[k] = paramBound
if (detemplate) otherTypeList[k] = paramBound
otherType = paramBound
}
if (otherType === restTemplateParam) {
otherTypeList[k] = `...${paramBound}`
if (detemplate) otherTypeList[k] = `...${paramBound}`
otherType = paramBound
}
const adjustedOtherType = otherType.replaceAll(templateCall, '')
if (adjustedOtherType !== otherType) {
otherTypeList[k] = adjustedOtherType
if (detemplate) otherTypeList[k] = adjustedOtherType
otherType = adjustedOtherType
}
if (myType.slice(0,3) === '...') myType = myType.slice(3)
@ -1573,10 +1550,13 @@ export default class PocomathInstance {
if (otherBound) {
paramBound = otherBound[2]
otherType = paramBound
otherTypeList[k] = otherBound[1].replaceAll(
theTemplateParam, paramBound)
if (detemplate) {
otherTypeList[k] = otherBound[1].replaceAll(
theTemplateParam, paramBound)
}
}
if (otherType === 'any') continue
if (otherType === UniversalType) continue
if (myType === otherType) continue
if (otherType in this.Templates) {
const [myBase] = splitTemplate(myType)
@ -1584,7 +1564,7 @@ export default class PocomathInstance {
if (this.instantiateTemplate(otherType, myType)) {
let dummy
dummy = this[name] // for side effects
return this._findSubtypeImpl(name, this._imps[name], neededSig)
return this._findSubtypeImpl(name, this._imps[name], neededSig, raw)
}
}
if (!(otherType in this.Types)) {
@ -1608,6 +1588,7 @@ export default class PocomathInstance {
typedFunction = this[name]
}
const haveTF = this._typed.isTypedFunction(typedFunction)
&& !(typedFunction.isMeta)
if (haveTF) {
// First try a direct match
let result
@ -1622,6 +1603,10 @@ export default class PocomathInstance {
of typedFunction._typedFunctionData.signatureMap) {
let allMatched = true
const implTypes = typeListOfSignature(implSig)
if (implTypes.length > wantTypes.length) {
// Not enough arguments for that implementation
continue
}
for (let i = 0; i < wantTypes.length; ++i) {
const implIndex = Math.min(i, implTypes.length - 1)
let implType = implTypes[implIndex]
@ -1646,7 +1631,7 @@ export default class PocomathInstance {
}
}
if (!(this._imps[name])) return undefined
const foundsig = this._findSubtypeImpl(name, this._imps[name], sig)
const foundsig = this._findSubtypeImpl(name, this._imps[name], sig, 'raw')
if (foundsig) {
if (haveTF) {
try {
@ -1654,19 +1639,74 @@ export default class PocomathInstance {
} catch {
}
}
try {
return this._metaTyped.findSignature(this._meta[name], foundsig)
} catch {
const instantiationMatcher =
'^'
+ substituteInSignature(foundsig, theTemplateParam, '(.*)')
.replaceAll(UniversalType, '(.*)')
+ '$'
const instanceMatch = sig.match(instantiationMatcher)
let possibleInstantiator = false
if (instanceMatch) {
possibleInstantiator = instanceMatch[1]
for (let i = 2; i < instanceMatch.length; ++i) {
if (possibleInstantiator !== instanceMatch[i]) {
possibleInstantiator = false
break
}
}
}
if (possibleInstantiator) {
const behavior = this._imps[name][foundsig]
let newInstance
if (behavior) {
if (!(possibleInstantiator in behavior.hasInstantiations)) {
newInstance = this._instantiateTemplateImplementation(
name, foundsig, possibleInstantiator)
} else {
// OK, so we actually have the instantiation. Let's get it
newInstance = this._TFimps[name][sig]
}
// But we may not have taken advantage of conversions
this._invalidate(name)
const tryAgain = this[name]
let betterInstance
if (this._typed.isTypedFunction(tryAgain)) {
betterInstance = this._typed.findSignature(tryAgain, sig)
}
if (betterInstance) {
newInstance = betterInstance
} else {
newInstance = {
fn: newInstance,
implementation: newInstance
}
}
if (newInstance) return newInstance
}
}
const catchallSig = this._findSubtypeImpl(name, this._imps[name], sig)
if (catchallSig !== foundsig) {
try {
return this._metaTyped.findSignature(
this._meta[name], catchallSig)
} catch {
}
}
// We have an implementation but not a typed function. Do the best
// we can:
const foundImpl = this._imps[name][foundsig]
const restoredSig = foundsig.replaceAll('ground', theTemplateParam)
const foundImpl = this._imps[name][restoredSig]
const needs = {}
for (const dep of foundImpl.uses) {
const [base, sig] = dep.split('()')
needs[dep] = this.resolve(base, sig)
const [base, sig] = dep.split(/[()]/)
if (sig) {
needs[dep] = this.resolve(base, sig)
} else {
needs[dep] = this[dep]
}
}
const pseudoImpl = foundImpl.does(needs)
pseudoImpl.fromInstance = this
return {fn: pseudoImpl, implementation: pseudoImpl}
}
// Hmm, no luck. Make sure bundle is up-to-date and retry:

View File

@ -6,7 +6,7 @@ export function dependencyExtractor(destinationSet) {
return new Proxy({}, {
get: (target, property) => {
destinationSet.add(property)
return {}
return {checkingDependency: true}
}
})
}

View File

@ -4,5 +4,5 @@ export * from './Types/number.mjs'
export const add = {
// Note the below assumes that all subtypes of number that will be defined
// are closed under addition!
'T:number, T': ({T}) => Returns(T, (m,n) => m+n)
'T:number,T': ({T}) => Returns(T, (m,n) => m+n)
}

19
src/number/cbrt.mjs Normal file
View File

@ -0,0 +1,19 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
/* Returns just the real cube root, following mathjs implementation */
export const cbrt = {
number: ({'negate(number)': neg}) => Returns('number', x => {
if (x === 0) return x
const negate = x < 0
if (negate) x = neg(x)
let result = x
if (isFinite(x)) {
result = Math.exp(Math.log(x) / 3)
result = (x / (result * result) + (2 * result)) / 3
}
if (negate) return neg(result)
return result
})
}

View File

@ -6,6 +6,7 @@ export * from './Types/number.mjs'
export {abs} from './abs.mjs'
export {absquare} from './absquare.mjs'
export {add} from './add.mjs'
export {cbrt} from './cbrt.mjs'
export {compare} from './compare.mjs'
export const conjugate = {'T:number': identitySubTypes('number')}
export const gcd = gcdType('NumInt')

View File

@ -6,5 +6,5 @@ export {Tuple} from './Types/Tuple.mjs'
* are convertible to the same type.
*/
export const tuple = {
'...T': ({T}) => Returns(`Tuple<${T}>`, args => ({elts: args}))
'...T': ({T}) => Returns(`Tuple<${T}>`, args => ({elts: args}))
}

View File

@ -45,6 +45,11 @@ describe('complex', () => {
assert.ok(!(math.equal(math.complex(45n, 3n), 45n)))
})
it('tests for reality', () => {
assert.ok(math.isReal(math.complex(3, 0)))
assert.ok(!(math.isReal(math.complex(3, 2))))
})
it('computes gcd', () => {
assert.deepStrictEqual(
math.gcd(math.complex(53n, 56n), math.complex(47n, -13n)),

View File

@ -0,0 +1,63 @@
import assert from 'assert'
import * as approx from '../../tools/approx.mjs'
import math from '../../src/pocomath.mjs'
describe('polynomialRoot', () => {
it('should solve a linear equation with real coefficients', function () {
assert.deepEqual(math.polynomialRoot(6, 3), math.tuple(-2))
assert.deepEqual(
math.polynomialRoot(math.complex(-3, 2), 2),
math.tuple(math.complex(1.5, -1)))
assert.deepEqual(
math.polynomialRoot(math.complex(3, 1), math.complex(-1, -1)),
math.tuple(math.complex(2, -1)))
})
// Should be safe now to capture the functions:
const complex = math.complex
const pRoot = math.polynomialRoot
const tup = math.tuple
it('should solve a quadratic equation with a double root', function () {
assert.deepEqual(pRoot(4, 4, 1), tup(-2))
assert.deepEqual(
pRoot(complex(0, 2), complex(2, 2), 1), tup(complex(-1, -1)))
})
it('should solve a quadratic with two distinct roots', function () {
assert.deepEqual(pRoot(-3, 2, 1), tup(1, -3))
assert.deepEqual(pRoot(-2, 0, 1), tup(math.sqrt(2), -math.sqrt(2)))
assert.deepEqual(
pRoot(4, 2, 1),
tup(complex(-1, math.sqrt(3)), complex(-1, -math.sqrt(3))))
assert.deepEqual(
pRoot(complex(3, 1), -3, 1), tup(complex(1, 1), complex(2, -1)))
})
it('should solve a cubic with a triple root', function () {
assert.deepEqual(pRoot(8, 12, 6, 1), tup(-2))
assert.deepEqual(
pRoot(complex(-2, 11), complex(9, -12), complex(-6, 3), 1),
tup(complex(2, -1)))
})
it('should solve a cubic with one simple and one double root', function () {
assert.deepEqual(pRoot(4, 0, -3, 1), tup(-1, 2))
assert.deepEqual(
pRoot(complex(9, 9), complex(15, 6), complex(7, 1), 1),
tup(complex(-1, -1), -3))
assert.deepEqual(
pRoot(complex(0, 6), complex(6, 8), complex(5, 2), 1),
tup(-3, complex(-1, -1)))
assert.deepEqual(
pRoot(complex(2, 6), complex(8, 6), complex(5, 1), 1),
tup(complex(-3, 1), complex(-1, -1)))
})
it('should solve a cubic with three distinct roots', function () {
approx.deepEqual(pRoot(6, 11, 6, 1), tup(-3, -1, -2))
approx.deepEqual(
pRoot(-1, -2, 0, 1),
tup(-1, (1 + math.sqrt(5)) / 2, (1 - math.sqrt(5)) / 2))
approx.deepEqual(
pRoot(1, 1, 1, 1),
tup(-1, complex(0, -1), complex(0, 1)))
approx.deepEqual(
pRoot(complex(0, -10), complex(8, 12), complex(-6, -3), 1),
tup(complex(1, 1), complex(3, 1), complex(2, 1)))
})
})

46
tools/approx.mjs Normal file
View File

@ -0,0 +1,46 @@
import assert from 'assert'
export const epsilon = 1e-12
const isNumber = entity => (typeof entity === 'number')
export function equal(a, b) {
if (isNumber(a) && isNumber(b)) {
if (a === b) return true
if (isNaN(a)) return assert.strictEqual(a.toString(), b.toString())
const message = `${a} ~= ${b} (to ${epsilon})`
if (a === 0) return assert.ok(Math.abs(b) < epsilon, message)
if (b === 0) return assert.ok(Math.abs(a) < epsilon, message)
const diff = Math.abs(a - b)
const maxDiff = Math.abs(epsilon * Math.max(Math.abs(a), Math.abs(b)))
return assert.ok(diff <= maxDiff, message)
}
return assert.strictEqual(a, b)
}
export function deepEqual(a, b) {
if (Array.isArray(a) && Array.isArray(b)) {
const alen = a.length
assert.strictEqual(alen, b.length, `${a} ~= ${b}`)
for (let i = 0; i < alen; ++i) deepEqual(a[i], b[i])
return true
}
if (typeof a === 'object' && typeof b === 'object') {
for (const prop in a) {
if (a.hasOwnProperty(prop)) {
assert.ok(
b.hasOwnProperty(prop), `a[${prop}] = ${a[prop]} ~= ${b[prop]}`)
deepEqual(a[prop], b[prop])
}
}
for (const prop in b) {
if (b.hasOwnProperty(prop)) {
assert.ok(
a.hasOwnProperty(prop), `${a[prop]} ~= ${b[prop]} = b[${prop}]`)
}
}
return true
}
return equal(a, b)
}