feat(polynomialRoot) #57
@ -3,7 +3,6 @@ export * from './Types/Complex.mjs'
|
||||
|
||||
export const abs = {
|
||||
'Complex<T>': ({
|
||||
T,
|
||||
sqrt, // Unfortunately no notation yet for the needed signature
|
||||
'absquare(T)': baseabsq,
|
||||
'absquare(Complex<T>)': absq
|
||||
|
7
src/complex/arg.mjs
Normal file
7
src/complex/arg.mjs
Normal file
@ -0,0 +1,7 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
/* arg is the "argument" or angle theta of z in its form r cis theta */
|
||||
export const arg = {
|
||||
'Complex<number>': () => Returns('number', z => Math.atan2(z.im, z.re))
|
||||
}
|
28
src/complex/cbrtc.mjs
Normal file
28
src/complex/cbrtc.mjs
Normal file
@ -0,0 +1,28 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
const TAU3 = 2 * Math.PI / 3
|
||||
|
||||
/* Complex cube root that returns all three roots as a tuple of complex. */
|
||||
/* follows the implementation in mathjs */
|
||||
/* Really only works for T = number at the moment because of arg and cbrt */
|
||||
export const cbrtc = {
|
||||
'Complex<T>': ({
|
||||
'arg(T)': theta,
|
||||
'divide(T,T)': div,
|
||||
'abs(Complex<T>)': absval,
|
||||
'complex(T)': cplx,
|
||||
'cbrt(T)': cbrtT,
|
||||
'multiply(Complex<T>,Complex<T>)': mult,
|
||||
'cis(T)': cisT,
|
||||
'tuple(...Complex<T>)': tup
|
||||
}) => Returns('Tuple<Complex<T>>', z => {
|
||||
const arg3 = div(theta(z), 3)
|
||||
const r = cplx(cbrtT(absval(z)))
|
||||
return tup(
|
||||
mult(r, cisT(arg3)),
|
||||
mult(r, cisT(arg3 + TAU3)),
|
||||
mult(r, cisT(arg3 - TAU3))
|
||||
)
|
||||
})
|
||||
}
|
9
src/complex/cis.mjs
Normal file
9
src/complex/cis.mjs
Normal file
@ -0,0 +1,9 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
/* Returns cosine plus i sin theta */
|
||||
export const cis = {
|
||||
'number': ({'complex(number,number)': cplx}) => Returns(
|
||||
'Complex<number>', t => cplx(Math.cos(t), Math.sin(t))
|
||||
)
|
||||
}
|
@ -3,7 +3,10 @@ export * from './Types/Complex.mjs'
|
||||
export {abs} from './abs.mjs'
|
||||
export {absquare} from './absquare.mjs'
|
||||
export {add} from './add.mjs'
|
||||
export {arg} from './arg.mjs'
|
||||
export {associate} from './associate.mjs'
|
||||
export {cbrtc} from './cbrtc.mjs'
|
||||
export {cis} from './cis.mjs'
|
||||
export {complex} from './complex.mjs'
|
||||
export {conjugate} from './conjugate.mjs'
|
||||
export {equalTT} from './equalTT.mjs'
|
||||
|
@ -12,9 +12,11 @@ export const polynomialRoot = {
|
||||
'divide(Complex<T>,Complex<T>)': div,
|
||||
'negate(Complex<T>)': neg,
|
||||
'isReal(Complex<T>)': real,
|
||||
'equalTT(Complex<T>, Complex<T>)': eq,
|
||||
'subtract(Complex<T>, Complex<T>)': sub,
|
||||
'equalTT(Complex<T>,Complex<T>)': eq,
|
||||
'add(Complex<T>,Complex<T>)': plus,
|
||||
'subtract(Complex<T>,Complex<T>)': sub,
|
||||
'sqrtc(Complex<T>)': sqt,
|
||||
'cbrtc(Complex<T>)': cbt
|
||||
}) => Returns(`Tuple<${T}>|Tuple<Complex<${T}>>`, (constant, rest) => {
|
||||
// helper to convert results to appropriate tuple type
|
||||
const typedTup = arr => {
|
||||
@ -39,23 +41,74 @@ export const polynomialRoot = {
|
||||
return typedTup([neg(div(coeffs[0], coeffs[1]))])
|
||||
case 3: { // quadratic
|
||||
const [c, b, a] = coeffs
|
||||
console.log('solving', a, b, c)
|
||||
const denom = mul(C(2), a)
|
||||
const d1 = mul(b, b)
|
||||
const d2 = mul(C(4), mul(a, c))
|
||||
console.log('Whoa', denom, d1, d2)
|
||||
if (eq(d1, d2)) {
|
||||
console.log('Hello', b, denom, div(neg(b), denom))
|
||||
return typedTup([div(neg(b), denom)])
|
||||
}
|
||||
let discriminant = sqt(sub(d1, d2))
|
||||
console.log('Uhoh', discriminant)
|
||||
console.log('Roots', div(sub(discriminant, b), denom), div(sub(neg(discriminant), b), denom))
|
||||
return typedTup([
|
||||
div(sub(discriminant, b), denom),
|
||||
div(sub(neg(discriminant), b), denom)
|
||||
])
|
||||
}
|
||||
case 4: { // cubic, cf. https://en.wikipedia.org/wiki/Cubic_equation
|
||||
const [d, c, b, a] = coeffs
|
||||
const denom = neg(mul(C(3), a))
|
||||
const asqrd = mul(a, a)
|
||||
const D0_1 = mul(b, b)
|
||||
const bcubed = mul(D0_1, b)
|
||||
const D0_2 = mul(C(3), mul(a, c))
|
||||
const D1_1 = plus(
|
||||
mul(C(2), bcubed), mul(C(27), mul(asqrd, d)))
|
||||
const abc = mul(a, mul(b, c))
|
||||
const D1_2 = mul(C(9), abc)
|
||||
// Check for a triple root
|
||||
if (eq(D0_1, D0_2) && eq(D1_1, D1_2)) {
|
||||
return typedTup([div(b, denom)])
|
||||
}
|
||||
const Delta0 = sub(D0_1, D0_2)
|
||||
const Delta1 = sub(D1_1, D1_2)
|
||||
const csqrd = mul(c, c)
|
||||
const discriminant1 = plus(
|
||||
mul(C(18), mul(abc, d)), mul(D0_1, csqrd))
|
||||
const discriminant2 = plus(
|
||||
mul(C(4), mul(bcubed, d)),
|
||||
plus(
|
||||
mul(C(4), mul(a, mul(csqrd, c))),
|
||||
mul(C(27), mul(asqrd, mul(d, d)))))
|
||||
// See if we have a double root
|
||||
if (eq(discriminant1, discriminant2)) {
|
||||
return typedTup([
|
||||
div(
|
||||
sub(
|
||||
mul(C(4), abc),
|
||||
plus(mul(C(9), mul(asqrd, d)), bcubed)),
|
||||
mul(a, Delta0)), // simple root
|
||||
div(
|
||||
sub(mul(C(9), mul(a, d)), mul(b, c)),
|
||||
mul(C(2), Delta0)) // double root
|
||||
])
|
||||
}
|
||||
// OK, we have three distinct roots
|
||||
let Ccubed
|
||||
if (eq(D0_1, D0_2)) {
|
||||
Ccubed = Delta1
|
||||
} else {
|
||||
Ccubed = div(
|
||||
plus(
|
||||
Delta1,
|
||||
sqt(sub(
|
||||
mul(Delta1, Delta1),
|
||||
mul(C(4), mul(Delta0, mul(Delta0, Delta0)))))
|
||||
),
|
||||
C(2))
|
||||
}
|
||||
const croots = cbt(Ccubed)
|
||||
return typedTup(cbt(Ccubed).elts.map(
|
||||
C => div(plus(b, plus(C, div(Delta0, C))), denom)))
|
||||
}
|
||||
default:
|
||||
throw new RangeError(
|
||||
'only implemented for cubic or lower-order polynomials, '
|
||||
|
@ -3,7 +3,6 @@ export * from './Types/Complex.mjs'
|
||||
|
||||
export const sqrtc = {
|
||||
'Complex<T>': ({
|
||||
T,
|
||||
'isZero(T)': isZ,
|
||||
'sign(T)': sgn,
|
||||
'one(T)': uno,
|
||||
|
19
src/number/cbrt.mjs
Normal file
19
src/number/cbrt.mjs
Normal file
@ -0,0 +1,19 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
/* Returns just the real cube root, following mathjs implementation */
|
||||
export const cbrt = {
|
||||
number: ({'negate(number)': neg}) => Returns('number', x => {
|
||||
if (x === 0) return x
|
||||
const negate = x < 0
|
||||
if (negate) x = neg(x)
|
||||
let result = x
|
||||
if (isFinite(x)) {
|
||||
result = Math.exp(Math.log(x) / 3)
|
||||
result = (x / (result * result) + (2 * result)) / 3
|
||||
}
|
||||
if (negate) return neg(result)
|
||||
return result
|
||||
})
|
||||
}
|
||||
|
@ -6,6 +6,7 @@ export * from './Types/number.mjs'
|
||||
export {abs} from './abs.mjs'
|
||||
export {absquare} from './absquare.mjs'
|
||||
export {add} from './add.mjs'
|
||||
export {cbrt} from './cbrt.mjs'
|
||||
export {compare} from './compare.mjs'
|
||||
export const conjugate = {'T:number': identitySubTypes('number')}
|
||||
export const gcd = gcdType('NumInt')
|
||||
|
@ -1,4 +1,5 @@
|
||||
import assert from 'assert'
|
||||
import * as approx from '../../tools/approx.mjs'
|
||||
import math from '../../src/pocomath.mjs'
|
||||
|
||||
describe('polynomialRoot', () => {
|
||||
@ -29,6 +30,34 @@ describe('polynomialRoot', () => {
|
||||
assert.deepEqual(
|
||||
pRoot(complex(3, 1), -3, 1), tup(complex(1, 1), complex(2, -1)))
|
||||
})
|
||||
|
||||
|
||||
it('should solve a cubic with a triple root', function () {
|
||||
assert.deepEqual(pRoot(8, 12, 6, 1), tup(-2))
|
||||
assert.deepEqual(
|
||||
pRoot(complex(-2, 11), complex(9, -12), complex(-6, 3), 1),
|
||||
tup(complex(2, -1)))
|
||||
})
|
||||
it('should solve a cubic with one simple and one double root', function () {
|
||||
assert.deepEqual(pRoot(4, 0, -3, 1), tup(-1, 2))
|
||||
assert.deepEqual(
|
||||
pRoot(complex(9, 9), complex(15, 6), complex(7, 1), 1),
|
||||
tup(complex(-1, -1), -3))
|
||||
assert.deepEqual(
|
||||
pRoot(complex(0, 6), complex(6, 8), complex(5, 2), 1),
|
||||
tup(-3, complex(-1, -1)))
|
||||
assert.deepEqual(
|
||||
pRoot(complex(2, 6), complex(8, 6), complex(5, 1), 1),
|
||||
tup(complex(-3, 1), complex(-1, -1)))
|
||||
})
|
||||
it('should solve a cubic with three distinct roots', function () {
|
||||
approx.deepEqual(pRoot(6, 11, 6, 1), tup(-3, -1, -2))
|
||||
approx.deepEqual(
|
||||
pRoot(-1, -2, 0, 1),
|
||||
tup(-1, (1 + math.sqrt(5)) / 2, (1 - math.sqrt(5)) / 2))
|
||||
approx.deepEqual(
|
||||
pRoot(1, 1, 1, 1),
|
||||
tup(-1, complex(0, -1), complex(0, 1)))
|
||||
approx.deepEqual(
|
||||
pRoot(complex(0, -10), complex(8, 12), complex(-6, -3), 1),
|
||||
tup(complex(1, 1), complex(3, 1), complex(2, 1)))
|
||||
})
|
||||
})
|
||||
|
46
tools/approx.mjs
Normal file
46
tools/approx.mjs
Normal file
@ -0,0 +1,46 @@
|
||||
import assert from 'assert'
|
||||
|
||||
export const epsilon = 1e-12
|
||||
|
||||
const isNumber = entity => (typeof entity === 'number')
|
||||
|
||||
export function equal(a, b) {
|
||||
if (isNumber(a) && isNumber(b)) {
|
||||
if (a === b) return true
|
||||
if (isNaN(a)) return assert.strictEqual(a.toString(), b.toString())
|
||||
const message = `${a} ~= ${b} (to ${epsilon})`
|
||||
if (a === 0) return assert.ok(Math.abs(b) < epsilon, message)
|
||||
if (b === 0) return assert.ok(Math.abs(a) < epsilon, message)
|
||||
const diff = Math.abs(a - b)
|
||||
const maxDiff = Math.abs(epsilon * Math.max(Math.abs(a), Math.abs(b)))
|
||||
return assert.ok(diff <= maxDiff, message)
|
||||
}
|
||||
return assert.strictEqual(a, b)
|
||||
}
|
||||
|
||||
export function deepEqual(a, b) {
|
||||
if (Array.isArray(a) && Array.isArray(b)) {
|
||||
const alen = a.length
|
||||
assert.strictEqual(alen, b.length, `${a} ~= ${b}`)
|
||||
for (let i = 0; i < alen; ++i) deepEqual(a[i], b[i])
|
||||
return true
|
||||
}
|
||||
if (typeof a === 'object' && typeof b === 'object') {
|
||||
for (const prop in a) {
|
||||
if (a.hasOwnProperty(prop)) {
|
||||
assert.ok(
|
||||
b.hasOwnProperty(prop), `a[${prop}] = ${a[prop]} ~= ${b[prop]}`)
|
||||
deepEqual(a[prop], b[prop])
|
||||
}
|
||||
}
|
||||
|
||||
for (const prop in b) {
|
||||
if (b.hasOwnProperty(prop)) {
|
||||
assert.ok(
|
||||
a.hasOwnProperty(prop), `${a[prop]} ~= ${b[prop]} = b[${prop}]`)
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
return equal(a, b)
|
||||
}
|
Loading…
Reference in New Issue
Block a user