refactor(Complex): Now a template type! #46

Merged
glen merged 1 commits from template_complex into main 2022-08-06 15:42:19 +00:00
Owner

This means that the real and imaginary parts of a Complex must now be
the same type. This seems like a real benefit: a Complex with a number real
part and a bigint imaginary part does not seem sensible.

Note that this is now straining typed-function in (at least) the following
ways:
(1) In this change, it was necessary to remove the logic that the square root
of a negative number calls complex square root, which then calls back
to the number square root in its algorithm. (This was creating a circular
reference in the typed-function which the old implementation of Complex
was somehow sidestepping.)
(2) typed-function could not follow conversions that would be allowed by
uninstantiated templates (e.g. number => Complex if the latter
template has not been instantiated) and so the facility for
instantiating a template was surfaced (and for example is called explicitly
in the demo loader extendToComplex. Similarly, this necessitated
making the unary signature of the complex conversion function explicit,
rather than just via implicit conversion to Complex.
(3) I find the order of implementations is mattering more in typed-function
definitions, implying that typed-function's sorting algorithm is having
trouble distinguishing alternatives.

But otherwise, the conversion went quite smoothly and I think is a good demo
of the power of this approach. And I expect that it will work even more
smoothly if some of the underlying facilities (subtypes, template types) are
integrated into typed-function.

This means that the real and imaginary parts of a Complex must now be the same type. This seems like a real benefit: a Complex with a number real part and a bigint imaginary part does not seem sensible. Note that this is now straining typed-function in (at least) the following ways: (1) In this change, it was necessary to remove the logic that the square root of a negative number calls complex square root, which then calls back to the number square root in its algorithm. (This was creating a circular reference in the typed-function which the old implementation of Complex was somehow sidestepping.) (2) typed-function could not follow conversions that would be allowed by uninstantiated templates (e.g. number => Complex<number> if the latter template has not been instantiated) and so the facility for instantiating a template was surfaced (and for example is called explicitly in the demo loader `extendToComplex`. Similarly, this necessitated making the unary signature of the `complex` conversion function explicit, rather than just via implicit conversion to Complex. (3) I find the order of implementations is mattering more in typed-function definitions, implying that typed-function's sorting algorithm is having trouble distinguishing alternatives. But otherwise, the conversion went quite smoothly and I think is a good demo of the power of this approach. And I expect that it will work even more smoothly if some of the underlying facilities (subtypes, template types) are integrated into typed-function.
glen added 1 commit 2022-08-06 15:41:55 +00:00
1444b9828f refactor(Complex): Now a template type!
This means that the real and imaginary parts of a Complex must now be
  the same type. This seems like a real benefit: a Complex with a number real
  part and a bigint imaginary part does not seem sensible.

  Note that this is now straining typed-function in (at least) the following
  ways:
  (1) In this change, it was necessary to remove the logic that the square root
      of a negative number calls complex square root, which then calls back
      to the number square root in its algorithm. (This was creating a circular
      reference in the typed-function which the old implementation of Complex
      was somehow sidestepping.)
  (2) typed-function could not follow conversions that would be allowed by
      uninstantiated templates (e.g. number => Complex<number> if the latter
      template has not been instantiated) and so the facility for
      instantiating a template was surfaced (and for example is called explicitly
      in the demo loader `extendToComplex`. Similarly, this necessitated
      making the unary signature of the `complex` conversion function explicit,
      rather than just via implicit conversion to Complex.
  (3) I find the order of implementations is mattering more in typed-function
      definitions, implying that typed-function's sorting algorithm is having
      trouble distinguishing alternatives.

  But otherwise, the conversion went quite smoothly and I think is a good demo
  of the power of this approach. And I expect that it will work even more
  smoothly if some of the underlying facilities (subtypes, template types) are
  integrated into typed-function.
glen merged commit 40619b9a2e into main 2022-08-06 15:42:19 +00:00
glen deleted branch template_complex 2022-08-06 15:42:19 +00:00
Sign in to join this conversation.
No description provided.