Compare commits
10 Commits
main
...
template_t
Author | SHA1 | Date | |
---|---|---|---|
7ec9686019 | |||
b0fb004224 | |||
a743337134 | |||
e82bcf5a9c | |||
27bf23db54 | |||
21ce098f98 | |||
01658b13c2 | |||
5dab7d64e7 | |||
880efac15b | |||
1b8314c0cc |
@ -25,7 +25,3 @@ Hopefully this shows promise. It is an evolution of the concept first prototyped
|
||||
Note that Pocomath allows one implementation to depend just on a specific signature of another function, for efficiency's sake (if for example 'bar(Matrix)' knows it will only call 'foo(Matrix)', it avoids another type-dispatch). That capability is used in sqrt, for example.
|
||||
|
||||
Pocomath also lazily reloads operations that depend on the config when that changes, and if an operation has a signature mentioning an undefined type, that signature is ignored until the type is installed, at which point the function lazily redefines itself to use the additional signature.
|
||||
|
||||
Pocomath now also allows template operations and template types, also built on top of typed-function (but candidates for integration therein). This is used to make many operations more specific, implement a type-homogeneous Tuple type, and make Complex numbers be type-homogeneous (which it seems like it always should be). One of the cutest consequences of this approach is that with careful definitions of the `Complex<T>` templates, one gets a working quaternion data type absolutely for free as `Complex<Complex<number>>` (and integral quaternions as `Complex<Complex<bigint>>`, etc.)
|
||||
|
||||
It also now has a facility to adapt a third-party numeric class as a type in Pocomath, see `src/generic/all.mjs` and `src/generic/Types/adapted.mjs`, which it uses by way of example to incorporate fraction.js Fraction objects into Pocomath.
|
@ -24,7 +24,6 @@
|
||||
},
|
||||
dependencies: {
|
||||
'bigint-isqrt': '^0.2.1',
|
||||
'fraction.js': '^4.2.0',
|
||||
'typed-function': '^3.0.0',
|
||||
},
|
||||
}
|
||||
|
@ -2,13 +2,11 @@ lockfileVersion: 5.4
|
||||
|
||||
specifiers:
|
||||
bigint-isqrt: ^0.2.1
|
||||
fraction.js: ^4.2.0
|
||||
mocha: ^10.0.0
|
||||
typed-function: ^3.0.0
|
||||
|
||||
dependencies:
|
||||
bigint-isqrt: 0.2.1
|
||||
fraction.js: 4.2.0
|
||||
typed-function: 3.0.0
|
||||
|
||||
devDependencies:
|
||||
@ -194,10 +192,6 @@ packages:
|
||||
hasBin: true
|
||||
dev: true
|
||||
|
||||
/fraction.js/4.2.0:
|
||||
resolution: {integrity: sha512-MhLuK+2gUcnZe8ZHlaaINnQLl0xRIGRfcGk2yl8xoQAfHrSsL3rYu6FCmBdkdbhc9EPlwyGHewaRsvwRMJtAlA==}
|
||||
dev: false
|
||||
|
||||
/fs.realpath/1.0.0:
|
||||
resolution: {integrity: sha512-OO0pH2lK6a0hZnAdau5ItzHPI6pUlvI7jMVnxUQRtw4owF2wk8lOSabtGDCTP4Ggrg2MbGnWO9X8K1t4+fGMDw==}
|
||||
dev: true
|
||||
|
@ -1,7 +0,0 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
/* Absolute value squared */
|
||||
export const absquare = {
|
||||
bigint: ({'square(bigint)': sqb}) => Returns('bigint', b => sqb(b))
|
||||
}
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
export const add = {'bigint,bigint': () => Returns('bigint', (a,b) => a+b)}
|
||||
export const add = {'bigint,bigint': () => (a,b) => a+b}
|
||||
|
@ -1,7 +1,5 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
export const compare = {
|
||||
'bigint,bigint': () => Returns(
|
||||
'boolean', (a,b) => a === b ? 0n : (a > b ? 1n : -1n))
|
||||
'bigint,bigint': () => (a,b) => a === b ? 0n : (a > b ? 1n : -1n)
|
||||
}
|
||||
|
@ -1,13 +1,12 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
export const divide = {
|
||||
'bigint,bigint': ({config, 'quotient(bigint,bigint)': quot}) => {
|
||||
if (config.predictable) return Returns('bigint', (n,d) => quot(n,d))
|
||||
return Returns('bigint|undefined', (n, d) => {
|
||||
if (config.predictable) return quot
|
||||
return (n, d) => {
|
||||
const q = n/d
|
||||
if (q * d == n) return q
|
||||
return undefined
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
export const isZero = {bigint: () => Returns('boolean', b => b === 0n)}
|
||||
export const isZero = {bigint: () => b => b === 0n}
|
||||
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
export const multiply = {'bigint,bigint': () => Returns('bigint', (a,b) => a*b)}
|
||||
export const multiply = {'bigint,bigint': () => (a,b) => a*b}
|
||||
|
@ -1,12 +1,11 @@
|
||||
import gcdType from '../generic/gcdType.mjs'
|
||||
import {identityType} from '../generic/identity.mjs'
|
||||
import {identity} from '../generic/identity.mjs'
|
||||
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
export {absquare} from './absquare.mjs'
|
||||
export {add} from './add.mjs'
|
||||
export {compare} from './compare.mjs'
|
||||
export const conjugate = {bigint: identityType('bigint')}
|
||||
export const conjugate = {bigint: () => identity}
|
||||
export {divide} from './divide.mjs'
|
||||
export const gcd = gcdType('bigint')
|
||||
export {isZero} from './isZero.mjs'
|
||||
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
export const negate = {bigint: () => Returns('bigint', b => -b)}
|
||||
export const negate = {bigint: () => b => -b}
|
||||
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
export const one = {bigint: () => Returns('bigint', () => 1n)}
|
||||
export const one = {bigint: () => () => 1n}
|
||||
|
@ -1,14 +1,13 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
/* Returns the floor integer approximation to n/d */
|
||||
/* Returns the best integer approximation to n/d */
|
||||
export const quotient = {
|
||||
'bigint,bigint': ({'sign(bigint)': sgn}) => Returns('bigint', (n, d) => {
|
||||
'bigint,bigint': ({'sign(bigint)': sgn}) => (n, d) => {
|
||||
const dSgn = sgn(d)
|
||||
if (dSgn === 0n) return 0n
|
||||
if (sgn(n) === dSgn) return n/d
|
||||
const quot = n/d
|
||||
if (quot * d == n) return quot
|
||||
return quot - 1n
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -1,9 +1,8 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
/* Returns the closest integer approximation to n/d */
|
||||
export const roundquotient = {
|
||||
'bigint,bigint': ({'sign(bigint)': sgn}) => Returns('bigint', (n, d) => {
|
||||
'bigint,bigint': ({'sign(bigint)': sgn}) => (n, d) => {
|
||||
const dSgn = sgn(d)
|
||||
if (dSgn === 0n) return 0n
|
||||
const candidate = n/d
|
||||
@ -12,5 +11,5 @@ export const roundquotient = {
|
||||
if (2n * rem > absd) return candidate + dSgn
|
||||
if (-2n * rem >= absd) return candidate - dSgn
|
||||
return candidate
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -1,10 +1,9 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
export const sign = {
|
||||
bigint: () => Returns('bigint', b => {
|
||||
bigint: () => b => {
|
||||
if (b === 0n) return 0n
|
||||
if (b > 0n) return 1n
|
||||
return -1n
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -1,39 +1,30 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
import isqrt from 'bigint-isqrt'
|
||||
export * from './Types/bigint.mjs'
|
||||
import isqrt from 'bigint-isqrt'
|
||||
|
||||
export const sqrt = {
|
||||
bigint: ({
|
||||
config,
|
||||
'complex(bigint,bigint)': cplx,
|
||||
'negate(bigint)': neg
|
||||
}) => {
|
||||
bigint: ({config, complex, 'self(Complex)': complexSqrt}) => {
|
||||
if (config.predictable) {
|
||||
// Don't just return the constant isqrt here because the object
|
||||
// gets decorated with info that might need to be different
|
||||
// for different PocomathInstancss
|
||||
return Returns('bigint', b => isqrt(b))
|
||||
return b => isqrt(b)
|
||||
}
|
||||
if (!cplx) {
|
||||
return Returns('bigint|undefined', b => {
|
||||
if (!complexSqrt) {
|
||||
return b => {
|
||||
if (b >= 0n) {
|
||||
const trial = isqrt(b)
|
||||
if (trial * trial === b) return trial
|
||||
}
|
||||
return undefined
|
||||
})
|
||||
}
|
||||
return Returns('bigint|Complex<bigint>|undefined', b => {
|
||||
if (b === undefined) return undefined
|
||||
let real = true
|
||||
if (b < 0n) {
|
||||
b = neg(b)
|
||||
real = false
|
||||
}
|
||||
const trial = isqrt(b)
|
||||
if (trial * trial !== b) return undefined
|
||||
if (real) return trial
|
||||
return cplx(0n, trial)
|
||||
})
|
||||
}
|
||||
return b => {
|
||||
if (b >= 0n) {
|
||||
const trial = isqrt(b)
|
||||
if (trial * trial === b) return trial
|
||||
return undefined
|
||||
}
|
||||
return complexSqrt(complex(b))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/bigint.mjs'
|
||||
|
||||
export const zero = {bigint: () => Returns('bigint', () => 0n)}
|
||||
export const zero = {bigint: () => () => 0n}
|
||||
|
@ -1,31 +1,30 @@
|
||||
import {Returns, returnTypeOf} from '../../core/Returns.mjs'
|
||||
import PocomathInstance from '../../core/PocomathInstance.mjs'
|
||||
|
||||
/* Use a plain object with keys re and im for a complex; note the components
|
||||
* can be any type (for this proof-of-concept; in reality we'd want to
|
||||
* insist on some numeric or scalar supertype).
|
||||
*/
|
||||
function isComplex(z) {
|
||||
return z && typeof z === 'object' && 're' in z && 'im' in z
|
||||
}
|
||||
|
||||
const Complex = new PocomathInstance('Complex')
|
||||
// Now the template type: Complex numbers are actually always homogeneous
|
||||
// in their component types. For an explanation of the meanings of the
|
||||
// properties, see ../../tuple/Types/Tuple.mjs
|
||||
Complex.installType('Complex<T>', {
|
||||
base: z => z && typeof z === 'object' && 're' in z && 'im' in z,
|
||||
test: testT => z => testT(z.re) && testT(z.im),
|
||||
infer: ({typeOf, joinTypes}) => z => joinTypes([typeOf(z.re), typeOf(z.im)]),
|
||||
Complex.installType('Complex', {
|
||||
test: isComplex,
|
||||
from: {
|
||||
T: t => ({re: t, im: t-t}), // hack: maybe need a way to call zero(T)
|
||||
U: convert => u => {
|
||||
const t = convert(u)
|
||||
return ({re: t, im: t-t})
|
||||
},
|
||||
'Complex<U>': convert => cu => ({re: convert(cu.re), im: convert(cu.im)})
|
||||
number: x => ({re: x, im: 0})
|
||||
}
|
||||
})
|
||||
Complex.installType('GaussianInteger', {
|
||||
test: z => typeof z.re == 'bigint' && typeof z.im == 'bigint',
|
||||
refines: 'Complex',
|
||||
from: {
|
||||
bigint: x => ({re: x, im: 0n})
|
||||
}
|
||||
})
|
||||
|
||||
Complex.promoteUnary = {
|
||||
'Complex<T>': ({
|
||||
T,
|
||||
'self(T)': me,
|
||||
complex
|
||||
}) => Returns(
|
||||
`Complex<${returnTypeOf(me)}>`, z => complex(me(z.re), me(z.im)))
|
||||
Complex: ({self,complex}) => z => complex(self(z.re), self(z.im))
|
||||
}
|
||||
|
||||
export {Complex}
|
||||
|
@ -1,20 +1,5 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const abs = {
|
||||
'Complex<T>': ({
|
||||
sqrt, // Unfortunately no notation yet for the needed signature
|
||||
'absquare(T)': baseabsq,
|
||||
'absquare(Complex<T>)': absq
|
||||
}) => {
|
||||
const midType = returnTypeOf(baseabsq)
|
||||
const sqrtImp = sqrt.fromInstance.resolve('sqrt', midType, sqrt)
|
||||
let retType = returnTypeOf(sqrtImp)
|
||||
if (retType.includes('|')) {
|
||||
// This is a bit of a hack, as it relies on all implementations of
|
||||
// sqrt returning the "typical" return type as the first option
|
||||
retType = retType.split('|',1)[0]
|
||||
}
|
||||
return Returns(retType, z => sqrtImp(absq(z)))
|
||||
}
|
||||
Complex: ({sqrt, 'absquare(Complex)': absq}) => z => sqrt(absq(z))
|
||||
}
|
||||
|
@ -1,27 +1,5 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const absquare = {
|
||||
'Complex<T>': ({
|
||||
add, // no easy way to write the needed signature; if T is number
|
||||
// it is number,number; but if T is Complex<bigint>, it is just
|
||||
// bigint,bigint. So unfortunately we depend on all of add, and
|
||||
// we extract the needed implementation below.
|
||||
'self(T)': absq
|
||||
}) => {
|
||||
const midType = returnTypeOf(absq)
|
||||
const addImp = add.fromInstance.resolve(
|
||||
'add', `${midType},${midType}`, add)
|
||||
return Returns(
|
||||
returnTypeOf(addImp), z => addImp(absq(z.re), absq(z.im)))
|
||||
}
|
||||
Complex: ({add, square}) => z => add(square(z.re), square(z.im))
|
||||
}
|
||||
|
||||
/* We could imagine notations that Pocomath could support that would simplify
|
||||
* the above, maybe something like
|
||||
* 'Complex<T>': ({
|
||||
* 'self(T): U': absq,
|
||||
* 'add(U,U):V': plus,
|
||||
* V
|
||||
* }) => Returns(V, z => plus(absq(z.re), absq(z.im)))
|
||||
*/
|
||||
|
@ -1,10 +1,22 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const add = {
|
||||
'Complex<T>,Complex<T>': ({
|
||||
T,
|
||||
'self(T,T)': me,
|
||||
'complex(T,T)': cplx
|
||||
}) => Returns(`Complex<${T}>`, (w,z) => cplx(me(w.re, z.re), me(w.im, z.im)))
|
||||
/* Relying on conversions for both complex + number and complex + bigint
|
||||
* leads to an infinite loop when adding a number and a bigint, since they
|
||||
* both convert to Complex.
|
||||
*/
|
||||
'Complex,number': ({
|
||||
'self(number,number)': addNum,
|
||||
'complex(number,number)': cplx
|
||||
}) => (z,x) => cplx(addNum(z.re, x), z.im),
|
||||
|
||||
'Complex,bigint': ({
|
||||
'self(bigint,bigint)': addBigInt,
|
||||
'complex(bigint,bigint)': cplx
|
||||
}) => (z,x) => cplx(addBigInt(z.re, x), z.im),
|
||||
|
||||
'Complex,Complex': ({
|
||||
self,
|
||||
complex
|
||||
}) => (w,z) => complex(self(w.re, z.re), self(w.im, z.im))
|
||||
}
|
||||
|
@ -1,7 +0,0 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
/* arg is the "argument" or angle theta of z in its form r cis theta */
|
||||
export const arg = {
|
||||
'Complex<number>': () => Returns('number', z => Math.atan2(z.im, z.re))
|
||||
}
|
@ -1,18 +1,17 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
/* Returns true if w is z multiplied by a complex unit */
|
||||
export const associate = {
|
||||
'Complex<T>,Complex<T>': ({
|
||||
'multiply(Complex<T>,Complex<T>)': times,
|
||||
'equalTT(Complex<T>,Complex<T>)': eq,
|
||||
'zero(T)': zr,
|
||||
'one(T)': uno,
|
||||
'complex(T,T)': cplx,
|
||||
'negate(Complex<T>)': neg
|
||||
}) => Returns('boolean', (w,z) => {
|
||||
'Complex,Complex': ({
|
||||
'multiply(Complex,Complex)': times,
|
||||
'equalTT(Complex,Complex)': eq,
|
||||
zero,
|
||||
one,
|
||||
complex,
|
||||
'negate(Complex)': neg
|
||||
}) => (w,z) => {
|
||||
if (eq(w,z) || eq(w,neg(z))) return true
|
||||
const ti = times(z, cplx(zr(z.re), uno(z.im)))
|
||||
const ti = times(z, complex(zero(z.re), one(z.im)))
|
||||
return eq(w,ti) || eq(w,neg(ti))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -1,28 +0,0 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
const TAU3 = 2 * Math.PI / 3
|
||||
|
||||
/* Complex cube root that returns all three roots as a tuple of complex. */
|
||||
/* follows the implementation in mathjs */
|
||||
/* Really only works for T = number at the moment because of arg and cbrt */
|
||||
export const cbrtc = {
|
||||
'Complex<T>': ({
|
||||
'arg(T)': theta,
|
||||
'divide(T,T)': div,
|
||||
'abs(Complex<T>)': absval,
|
||||
'complex(T)': cplx,
|
||||
'cbrt(T)': cbrtT,
|
||||
'multiply(Complex<T>,Complex<T>)': mult,
|
||||
'cis(T)': cisT,
|
||||
'tuple(...Complex<T>)': tup
|
||||
}) => Returns('Tuple<Complex<T>>', z => {
|
||||
const arg3 = div(theta(z), 3)
|
||||
const r = cplx(cbrtT(absval(z)))
|
||||
return tup(
|
||||
mult(r, cisT(arg3)),
|
||||
mult(r, cisT(arg3 + TAU3)),
|
||||
mult(r, cisT(arg3 - TAU3))
|
||||
)
|
||||
})
|
||||
}
|
@ -1,9 +0,0 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
/* Returns cosine plus i sin theta */
|
||||
export const cis = {
|
||||
'number': ({'complex(number,number)': cplx}) => Returns(
|
||||
'Complex<number>', t => cplx(Math.cos(t), Math.sin(t))
|
||||
)
|
||||
}
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
export * from '../generic/Types/generic.mjs'
|
||||
|
||||
@ -7,16 +6,11 @@ export const complex = {
|
||||
* have a numeric/scalar type, e.g. by implementing subtypes in
|
||||
* typed-function
|
||||
*/
|
||||
'undefined': () => Returns('undefined', u => u),
|
||||
'undefined,any': () => Returns('undefined', (u, y) => u),
|
||||
'any,undefined': () => Returns('undefined', (x, u) => u),
|
||||
'undefined,undefined': () => Returns('undefined', (u, v) => u),
|
||||
'T,T': ({T}) => Returns(`Complex<${T}>`, (x, y) => ({re: x, im: y})),
|
||||
'undefined': () => u => u,
|
||||
'undefined,any': () => (u, y) => u,
|
||||
'any,undefined': () => (x, u) => u,
|
||||
'undefined,undefined': () => (u, v) => u,
|
||||
'T,T': () => (x, y) => ({re: x, im: y}),
|
||||
/* Take advantage of conversions in typed-function */
|
||||
// 'Complex<T>': () => z => z
|
||||
/* But help out because without templates built in to typed-function,
|
||||
* type inference turns out to be too hard
|
||||
*/
|
||||
'T': ({T, 'zero(T)': zr}) => Returns(
|
||||
`Complex<${T}>`, x => ({re: x, im: zr(x)}))
|
||||
Complex: () => z => z
|
||||
}
|
||||
|
@ -1,11 +1,6 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const conjugate = {
|
||||
'Complex<T>': ({
|
||||
T,
|
||||
'negate(T)': neg,
|
||||
'complex(T,T)': cplx
|
||||
}) => Returns(`Complex<${T}>`, z => cplx(z.re, neg(z.im)))
|
||||
Complex: ({negate, complex}) => z => complex(z.re, negate(z.im))
|
||||
}
|
||||
|
||||
|
@ -1,28 +1,19 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const equalTT = {
|
||||
'Complex<T>,Complex<T>': ({
|
||||
T,
|
||||
'self(T,T)': me
|
||||
}) => Returns('boolean', (w, z) => me(w.re, z.re) && me(w.im, z.im)),
|
||||
// NOTE: Although I do not understand exactly why, with typed-function@3.0's
|
||||
// matching algorithm, the above template must come first to ensure the
|
||||
// most specific match to a template call. I.e, if one of the below
|
||||
// comes first, a call with two complex numbers can match via conversions
|
||||
// with (Complex<Complex<number>>, Complex<number>) (!, hopefully in some
|
||||
// future iteration typed-function will be smart enough to prefer
|
||||
// Complex<T>, Complex<T>. Possibly the problem is in Pocomath's bolted-on
|
||||
// type resolution and the difficulty will go away when features are moved
|
||||
// into typed-function.
|
||||
'Complex<T>,T': ({
|
||||
'isZero(T)': isZ,
|
||||
'self(T,T)': eqReal
|
||||
}) => Returns('boolean', (z, x) => eqReal(z.re, x) && isZ(z.im)),
|
||||
'Complex,number': ({
|
||||
'isZero(number)': isZ,
|
||||
'self(number,number)': eqNum
|
||||
}) => (z, x) => eqNum(z.re, x) && isZ(z.im),
|
||||
|
||||
'T,Complex<T>': ({
|
||||
'isZero(T)': isZ,
|
||||
'self(T,T)': eqReal
|
||||
}) => Returns('boolean', (b, z) => eqReal(z.re, b) && isZ(z.im)),
|
||||
'Complex,bigint': ({
|
||||
'isZero(bigint)': isZ,
|
||||
'self(bigint,bigint)': eqBigInt
|
||||
}) => (z, b) => eqBigInt(z.re, b) && isZ(z.im),
|
||||
|
||||
'Complex,Complex': ({self}) => (w,z) => self(w.re, z.re) && self(w.im, z.im),
|
||||
|
||||
'GaussianInteger,GaussianInteger': ({
|
||||
'self(bigint,bigint)': eq
|
||||
}) => (a,b) => eq(a.re, b.re) && eq(a.im, b.im)
|
||||
}
|
||||
|
@ -15,17 +15,4 @@ export default async function extendToComplex(pmath) {
|
||||
// Guess it wasn't a method available in complex; no worries
|
||||
}
|
||||
}
|
||||
// Since extension to complex was specifically requested, instantiate
|
||||
// all of the templates so that the associated type conversions will
|
||||
// be available to make function calls work immediately:
|
||||
for (const baseType in pmath.Types) {
|
||||
if (baseType in pmath.Templates || baseType.includes('<')) {
|
||||
continue // don't mess with templates
|
||||
}
|
||||
const ignore = new Set(['undefined', 'any', 'T', 'ground'])
|
||||
if (ignore.has(baseType)) continue
|
||||
// (What we really want is a check for "numeric" types but we don't
|
||||
// have that concept (yet?)). If we did, we'd instantiate just for those...
|
||||
pmath.instantiateTemplate('Complex', baseType)
|
||||
}
|
||||
}
|
||||
|
@ -1,25 +1,19 @@
|
||||
import PocomathInstance from '../core/PocomathInstance.mjs'
|
||||
import Returns from '../core/Returns.mjs'
|
||||
import * as Complex from './Types/Complex.mjs'
|
||||
import * as Complex from './Types/Complex.mjs'
|
||||
import gcdType from '../generic/gcdType.mjs'
|
||||
|
||||
const gcdComplexRaw = {}
|
||||
Object.assign(gcdComplexRaw, gcdType('Complex<bigint>'))
|
||||
Object.assign(gcdComplexRaw, gcdType('Complex<NumInt>'))
|
||||
const imps = {
|
||||
gcdComplexRaw,
|
||||
gcdGIRaw: gcdType('GaussianInteger'),
|
||||
gcd: { // Only return gcds with positive real part
|
||||
'Complex<T>,Complex<T>': ({
|
||||
T,
|
||||
'gcdComplexRaw(Complex<T>,Complex<T>)': gcdRaw,
|
||||
'sign(T)': sgn,
|
||||
'one(T)': uno,
|
||||
'negate(Complex<T>)': neg
|
||||
}) => Returns(`Complex<${T}>`, (z,m) => {
|
||||
'GaussianInteger,GaussianInteger': ({
|
||||
'gcdGIRaw(GaussianInteger,GaussianInteger)': gcdRaw,
|
||||
'sign(bigint)': sgn,
|
||||
'negate(GaussianInteger)': neg
|
||||
}) => (z,m) => {
|
||||
const raw = gcdRaw(z, m)
|
||||
if (sgn(raw.re) === uno(raw.re)) return raw
|
||||
if (sgn(raw.re) === 1n) return raw
|
||||
return neg(raw)
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,16 +1,9 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const invert = {
|
||||
'Complex<T>': ({
|
||||
T,
|
||||
'conjugate(Complex<T>)': conj,
|
||||
'absquare(Complex<T>)': asq,
|
||||
'complex(T,T)': cplx,
|
||||
'divide(T,T)': div
|
||||
}) => Returns(`Complex<${T}>`, z => {
|
||||
const c = conj(z)
|
||||
const d = asq(z)
|
||||
return cplx(div(c.re, d), div(c.im, d))
|
||||
})
|
||||
Complex: ({conjugate, absquare, complex, divide}) => z => {
|
||||
const c = conjugate(z)
|
||||
const d = absquare(z)
|
||||
return complex(divide(c.re, d), divide(c.im, d))
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +0,0 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const isReal = {
|
||||
'Complex<T>': ({'equal(T,T)': eq, 'add(T,T)': plus}) => Returns(
|
||||
'boolean', z => eq(z.re, plus(z.re, z.im)))
|
||||
}
|
@ -1,7 +1,5 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const isZero = {
|
||||
'Complex<T>': ({'self(T)': me}) => Returns(
|
||||
'boolean', z => me(z.re) && me(z.im))
|
||||
Complex: ({self}) => z => self(z.re) && self(z.im)
|
||||
}
|
||||
|
@ -1,20 +1,14 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const multiply = {
|
||||
'Complex<T>,Complex<T>': ({
|
||||
T,
|
||||
'complex(T,T)': cplx,
|
||||
'add(T,T)': plus,
|
||||
'subtract(T,T)': subt,
|
||||
'self(T,T)': me,
|
||||
'conjugate(T)': conj // makes quaternion multiplication work
|
||||
}) => Returns(
|
||||
`Complex<${T}>`,
|
||||
(w,z) => {
|
||||
const realpart = subt(me( w.re, z.re), me(conj(w.im), z.im))
|
||||
const imagpart = plus(me(conj(w.re), z.im), me( w.im, z.re))
|
||||
return cplx(realpart, imagpart)
|
||||
}
|
||||
)
|
||||
'Complex,Complex': ({
|
||||
'complex(any,any)': cplx,
|
||||
add,
|
||||
subtract,
|
||||
self
|
||||
}) => (w,z) => {
|
||||
return cplx(
|
||||
subtract(self(w.re, z.re), self(w.im, z.im)),
|
||||
add(self(w.re, z.im), self(w.im, z.re)))
|
||||
}
|
||||
}
|
||||
|
@ -3,24 +3,17 @@ export * from './Types/Complex.mjs'
|
||||
export {abs} from './abs.mjs'
|
||||
export {absquare} from './absquare.mjs'
|
||||
export {add} from './add.mjs'
|
||||
export {arg} from './arg.mjs'
|
||||
export {associate} from './associate.mjs'
|
||||
export {cbrtc} from './cbrtc.mjs'
|
||||
export {cis} from './cis.mjs'
|
||||
export {complex} from './complex.mjs'
|
||||
export {conjugate} from './conjugate.mjs'
|
||||
export {equalTT} from './equalTT.mjs'
|
||||
export {gcd} from './gcd.mjs'
|
||||
export {invert} from './invert.mjs'
|
||||
export {isReal} from './isReal.mjs'
|
||||
export {isZero} from './isZero.mjs'
|
||||
export {multiply} from './multiply.mjs'
|
||||
export {negate} from './negate.mjs'
|
||||
export {polynomialRoot} from './polynomialRoot.mjs'
|
||||
export {quaternion} from './quaternion.mjs'
|
||||
export {quotient} from './quotient.mjs'
|
||||
export {roundquotient} from './roundquotient.mjs'
|
||||
export {sqrt} from './sqrt.mjs'
|
||||
export {sqrtc} from './sqrtc.mjs'
|
||||
export {zero} from './zero.mjs'
|
||||
|
||||
|
@ -1,118 +0,0 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const polynomialRoot = {
|
||||
'Complex<T>,...Complex<T>': ({
|
||||
T,
|
||||
'tuple(...Complex<T>)': tupCplx,
|
||||
'tuple(...T)': tupReal,
|
||||
'isZero(Complex<T>)': zero,
|
||||
'complex(T)': C,
|
||||
'multiply(Complex<T>,Complex<T>)': mul,
|
||||
'divide(Complex<T>,Complex<T>)': div,
|
||||
'negate(Complex<T>)': neg,
|
||||
'isReal(Complex<T>)': real,
|
||||
'equalTT(Complex<T>,Complex<T>)': eq,
|
||||
'add(Complex<T>,Complex<T>)': plus,
|
||||
'subtract(Complex<T>,Complex<T>)': sub,
|
||||
'sqrtc(Complex<T>)': sqt,
|
||||
'cbrtc(Complex<T>)': cbt
|
||||
}) => Returns(`Tuple<${T}>|Tuple<Complex<${T}>>`, (constant, rest) => {
|
||||
// helper to convert results to appropriate tuple type
|
||||
const typedTup = arr => {
|
||||
if (arr.every(real)) {
|
||||
return tupReal.apply(tupReal, arr.map(z => z.re))
|
||||
}
|
||||
return tupCplx.apply(tupCplx, arr)
|
||||
}
|
||||
|
||||
const coeffs = [constant, ...rest]
|
||||
while (coeffs.length > 0 && zero(coeffs[coeffs.length - 1])) {
|
||||
coeffs.pop()
|
||||
}
|
||||
if (coeffs.length < 2) {
|
||||
}
|
||||
switch (coeffs.length) {
|
||||
case 0: case 1:
|
||||
throw new RangeError(
|
||||
`Polynomial [${constant}, ${rest}] must have at least one`
|
||||
+ 'non-zero non-constant coefficient')
|
||||
case 2: // linear
|
||||
return typedTup([neg(div(coeffs[0], coeffs[1]))])
|
||||
case 3: { // quadratic
|
||||
const [c, b, a] = coeffs
|
||||
const denom = mul(C(2), a)
|
||||
const d1 = mul(b, b)
|
||||
const d2 = mul(C(4), mul(a, c))
|
||||
if (eq(d1, d2)) {
|
||||
return typedTup([div(neg(b), denom)])
|
||||
}
|
||||
let discriminant = sqt(sub(d1, d2))
|
||||
return typedTup([
|
||||
div(sub(discriminant, b), denom),
|
||||
div(sub(neg(discriminant), b), denom)
|
||||
])
|
||||
}
|
||||
case 4: { // cubic, cf. https://en.wikipedia.org/wiki/Cubic_equation
|
||||
const [d, c, b, a] = coeffs
|
||||
const denom = neg(mul(C(3), a))
|
||||
const asqrd = mul(a, a)
|
||||
const D0_1 = mul(b, b)
|
||||
const bcubed = mul(D0_1, b)
|
||||
const D0_2 = mul(C(3), mul(a, c))
|
||||
const D1_1 = plus(
|
||||
mul(C(2), bcubed), mul(C(27), mul(asqrd, d)))
|
||||
const abc = mul(a, mul(b, c))
|
||||
const D1_2 = mul(C(9), abc)
|
||||
// Check for a triple root
|
||||
if (eq(D0_1, D0_2) && eq(D1_1, D1_2)) {
|
||||
return typedTup([div(b, denom)])
|
||||
}
|
||||
const Delta0 = sub(D0_1, D0_2)
|
||||
const Delta1 = sub(D1_1, D1_2)
|
||||
const csqrd = mul(c, c)
|
||||
const discriminant1 = plus(
|
||||
mul(C(18), mul(abc, d)), mul(D0_1, csqrd))
|
||||
const discriminant2 = plus(
|
||||
mul(C(4), mul(bcubed, d)),
|
||||
plus(
|
||||
mul(C(4), mul(a, mul(csqrd, c))),
|
||||
mul(C(27), mul(asqrd, mul(d, d)))))
|
||||
// See if we have a double root
|
||||
if (eq(discriminant1, discriminant2)) {
|
||||
return typedTup([
|
||||
div(
|
||||
sub(
|
||||
mul(C(4), abc),
|
||||
plus(mul(C(9), mul(asqrd, d)), bcubed)),
|
||||
mul(a, Delta0)), // simple root
|
||||
div(
|
||||
sub(mul(C(9), mul(a, d)), mul(b, c)),
|
||||
mul(C(2), Delta0)) // double root
|
||||
])
|
||||
}
|
||||
// OK, we have three distinct roots
|
||||
let Ccubed
|
||||
if (eq(D0_1, D0_2)) {
|
||||
Ccubed = Delta1
|
||||
} else {
|
||||
Ccubed = div(
|
||||
plus(
|
||||
Delta1,
|
||||
sqt(sub(
|
||||
mul(Delta1, Delta1),
|
||||
mul(C(4), mul(Delta0, mul(Delta0, Delta0)))))
|
||||
),
|
||||
C(2))
|
||||
}
|
||||
const croots = cbt(Ccubed)
|
||||
return typedTup(cbt(Ccubed).elts.map(
|
||||
C => div(plus(b, plus(C, div(Delta0, C))), denom)))
|
||||
}
|
||||
default:
|
||||
throw new RangeError(
|
||||
'only implemented for cubic or lower-order polynomials, '
|
||||
+ `not ${JSON.stringify(coeffs)}`)
|
||||
}
|
||||
})
|
||||
}
|
@ -1,14 +0,0 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
// Might be nice to have type aliases!
|
||||
export const quaternion = {
|
||||
'T,T,T,T': ({
|
||||
T,
|
||||
'complex(T,T)': cplxT,
|
||||
'complex(Complex<T>,Complex<T>)': quat
|
||||
}) => Returns(
|
||||
`Complex<Complex<${T}>>`,
|
||||
(r,i,j,k) => quat(cplxT(r,j), cplxT(i,k))
|
||||
)
|
||||
}
|
@ -1,9 +1,5 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './roundquotient.mjs'
|
||||
|
||||
export const quotient = {
|
||||
'Complex<T>,Complex<T>': ({
|
||||
T,
|
||||
'roundquotient(Complex<T>,Complex<T>)': rq
|
||||
}) => Returns(`Complex<${T}>`, (w,z) => rq(w,z))
|
||||
'Complex,Complex': ({roundquotient}) => (w,z) => roundquotient(w,z)
|
||||
}
|
||||
|
@ -1,19 +1,17 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const roundquotient = {
|
||||
'Complex<T>,Complex<T>': ({
|
||||
T,
|
||||
'isZero(Complex<T>)': isZ,
|
||||
'conjugate(Complex<T>)': conj,
|
||||
'multiply(Complex<T>,Complex<T>)': mult,
|
||||
'absquare(Complex<T>)': asq,
|
||||
'self(T,T)': me,
|
||||
'complex(T,T)': cplx
|
||||
}) => Returns(`Complex<${T}>`, (n,d) => {
|
||||
'Complex,Complex': ({
|
||||
'isZero(Complex)': isZ,
|
||||
conjugate,
|
||||
'multiply(Complex,Complex)': mult,
|
||||
absquare,
|
||||
self,
|
||||
complex
|
||||
}) => (n,d) => {
|
||||
if (isZ(d)) return d
|
||||
const cnum = mult(n, conj(d))
|
||||
const dreal = asq(d)
|
||||
return cplx(me(cnum.re, dreal), me(cnum.im, dreal))
|
||||
})
|
||||
const cnum = mult(n, conjugate(d))
|
||||
const dreal = absquare(d)
|
||||
return complex(self(cnum.re, dreal), self(cnum.im, dreal))
|
||||
}
|
||||
}
|
||||
|
@ -1,34 +1,39 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const sqrt = {
|
||||
'Complex<T>': ({
|
||||
Complex: ({
|
||||
config,
|
||||
'sqrtc(Complex<T>)': predictableSqrt,
|
||||
'isZero(T)': isZ,
|
||||
isZero,
|
||||
sign,
|
||||
one,
|
||||
add,
|
||||
complex,
|
||||
multiply,
|
||||
self,
|
||||
divide,
|
||||
'abs(Complex)': abs,
|
||||
subtract
|
||||
}) => {
|
||||
if (config.checkingDependency) return undefined
|
||||
const complexReturns = returnTypeOf(predictableSqrt)
|
||||
const baseReturns = complexReturns.slice(8, -1); // Complex<WhatWeWant>
|
||||
if (config.predictable) {
|
||||
return Returns(complexReturns, z => predictableSqrt(z))
|
||||
}
|
||||
|
||||
return Returns(
|
||||
`Complex<${baseReturns}>|${baseReturns}|undefined`,
|
||||
z => {
|
||||
let complexSqrt
|
||||
try {
|
||||
complexSqrt = predictableSqrt(z)
|
||||
} catch (e) {
|
||||
return undefined
|
||||
}
|
||||
if (complexSqrt.re === undefined || complexSqrt.im === undefined) {
|
||||
return undefined
|
||||
}
|
||||
if (isZ(complexSqrt.im)) return complexSqrt.re
|
||||
return complexSqrt
|
||||
return z => {
|
||||
const reOne = one(z.re)
|
||||
if (isZero(z.im) && sign(z.re) === reOne) return complex(self(z.re))
|
||||
const reTwo = add(reOne, reOne)
|
||||
return complex(
|
||||
multiply(sign(z.im), self(divide(add(abs(z),z.re), reTwo))),
|
||||
self(divide(subtract(abs(z),z.re), reTwo))
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
return z => {
|
||||
const reOne = one(z.re)
|
||||
if (isZero(z.im) && sign(z.re) === reOne) return self(z.re)
|
||||
const reTwo = add(reOne, reOne)
|
||||
return complex(
|
||||
multiply(sign(z.im), self(divide(add(abs(z),z.re), reTwo))),
|
||||
self(divide(subtract(abs(z),z.re), reTwo))
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,41 +0,0 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
export * from './Types/Complex.mjs'
|
||||
|
||||
export const sqrtc = {
|
||||
'Complex<T>': ({
|
||||
'isZero(T)': isZ,
|
||||
'sign(T)': sgn,
|
||||
'one(T)': uno,
|
||||
'add(T,T)': plus,
|
||||
'complex(T)': cplxU,
|
||||
'complex(T,T)': cplxB,
|
||||
'multiply(T,T)': mult,
|
||||
'sqrt(T)': sqt,
|
||||
'divide(T,T)': div,
|
||||
'absquare(Complex<T>)': absqC,
|
||||
'subtract(T,T)': sub
|
||||
}) => {
|
||||
if (isZ.checkingDependency) return undefined
|
||||
let baseReturns = returnTypeOf(sqt)
|
||||
if (baseReturns.includes('|')) {
|
||||
// Bit of a hack, because it is relying on other implementations
|
||||
// to list the "typical" value of sqrt first
|
||||
baseReturns = baseReturns.split('|', 1)[0]
|
||||
}
|
||||
return Returns(`Complex<${baseReturns}>`, z => {
|
||||
const reOne = uno(z.re)
|
||||
if (isZ(z.im) && sgn(z.re) === reOne) return cplxU(sqt(z.re))
|
||||
const myabs = sqt(absqC(z))
|
||||
const reTwo = plus(reOne, reOne)
|
||||
const reQuot = div(plus(myabs, z.re), reTwo)
|
||||
const imQuot = div(sub(myabs, z.re), reTwo)
|
||||
if (reQuot === undefined || imQuot === undefined) {
|
||||
throw new TypeError(`Cannot compute sqrt of ${z.re} + {z.im}i`)
|
||||
}
|
||||
return cplxB(
|
||||
mult(sgn(z.im), sqt(div(plus(myabs, z.re), reTwo))),
|
||||
sqt(div(sub(myabs, z.re), reTwo))
|
||||
)
|
||||
})
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,34 +0,0 @@
|
||||
/* Annotate a function with its return type */
|
||||
|
||||
/* Unfortunately JavaScript is missing a way to cleanly clone a function
|
||||
* object, see https://stackoverflow.com/questions/1833588
|
||||
*/
|
||||
|
||||
const clonedFrom = Symbol('the original function this one was cloned from')
|
||||
function cloneFunction(fn) {
|
||||
const behavior = fn[clonedFrom] || fn // don't nest clones
|
||||
const theClone = function () { return behavior.apply(this, arguments) }
|
||||
Object.assign(theClone, fn)
|
||||
theClone[clonedFrom] = body
|
||||
Object.defineProperty(
|
||||
theClone, 'name', {value: fn.name, configurable: true })
|
||||
return theClone
|
||||
}
|
||||
|
||||
export function Returns(type, fn) {
|
||||
if ('returns' in fn) fn = cloneFunction(fn)
|
||||
fn.returns = type
|
||||
return fn
|
||||
}
|
||||
|
||||
export function returnTypeOf(fn, signature, pmInstance) {
|
||||
const typeOfReturns = typeof fn.returns
|
||||
if (typeOfReturns === 'undefined') return 'any'
|
||||
if (typeOfReturns === 'string') return fn.returns
|
||||
// not sure if we will need a function to determine the return type,
|
||||
// but allow it for now:
|
||||
return fn.returns(signature, pmInstance)
|
||||
}
|
||||
|
||||
export default Returns
|
||||
|
@ -6,7 +6,7 @@ export function dependencyExtractor(destinationSet) {
|
||||
return new Proxy({}, {
|
||||
get: (target, property) => {
|
||||
destinationSet.add(property)
|
||||
return {checkingDependency: true}
|
||||
return {}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
@ -8,8 +8,6 @@ export function subsetOfKeys(set, obj) {
|
||||
|
||||
/* Returns a list of the types mentioned in a typed-function signature */
|
||||
export function typeListOfSignature(signature) {
|
||||
signature = signature.trim()
|
||||
if (!signature) return []
|
||||
return signature.split(',').map(s => s.trim())
|
||||
}
|
||||
|
||||
|
@ -1,91 +0,0 @@
|
||||
import PocomathInstance from '../../core/PocomathInstance.mjs'
|
||||
import Returns from '../../core/Returns.mjs'
|
||||
|
||||
/* creates a PocomathInstance incorporating a new numeric type encapsulated
|
||||
* as a class. (This instance can the be `install()ed` in another to add the
|
||||
* type so created.)
|
||||
*
|
||||
* @param {string} name The name of the new type
|
||||
* @param {class} Thing The class implementing the new type
|
||||
* @param {object} overrides Patches to the auto-generated adaptation
|
||||
*/
|
||||
export default function adapted(name, Thing, overrides) {
|
||||
const thing = new PocomathInstance('Adapted Thing')
|
||||
const test = overrides.isa || Thing.isa || (x => x instanceof Thing)
|
||||
thing.installType(name, {
|
||||
test,
|
||||
from: overrides.from || {},
|
||||
before: overrides.before || [],
|
||||
refines: overrides.refines || undefined
|
||||
})
|
||||
|
||||
// Build the operations for Thing
|
||||
const operations = {}
|
||||
// first a creator function, with name depending on the name of the thing:
|
||||
const creatorName = overrides.creatorName || name.toLowerCase()
|
||||
const creator = overrides[creatorName]
|
||||
? overrides[creatorName]['']
|
||||
: Thing[creatorName]
|
||||
? (Thing[creatorName])
|
||||
: ((...args) => new Thing(...args))
|
||||
const defaultCreatorImps = {
|
||||
'': () => Returns(name, () => creator()),
|
||||
'...any': () => Returns(name, args => creator(...args))
|
||||
}
|
||||
defaultCreatorImps[name] = () => Returns(name, x => x) // x.clone(x)?
|
||||
operations[creatorName] = overrides[creatorName] || defaultCreatorImps
|
||||
|
||||
// We make the default instance, just as a place to check for methods
|
||||
const instance = overrides.instance || creator()
|
||||
|
||||
// Now adapt the methods to typed-function:
|
||||
const unaryOps = {
|
||||
abs: 'abs',
|
||||
ceiling: 'ceil',
|
||||
floor: 'floor',
|
||||
invert: 'inverse',
|
||||
round: 'round',
|
||||
sqrt: 'sqrt',
|
||||
negate: 'neg'
|
||||
}
|
||||
const binaryOps = {
|
||||
add: ['add', name],
|
||||
compare: ['compare', name],
|
||||
divide: ['div', name],
|
||||
equalTT: ['equals', 'boolean'],
|
||||
gcd: ['gcd', name],
|
||||
lcm: ['lcm', name],
|
||||
mod: ['mod', name],
|
||||
multiply: ['mul', name],
|
||||
subtract: ['sub', name]
|
||||
}
|
||||
for (const [mathname, standardname] of Object.entries(unaryOps)) {
|
||||
if (standardname in instance) {
|
||||
operations[mathname] = {}
|
||||
operations[mathname][name] = () => Returns(name, t => t[standardname]())
|
||||
}
|
||||
}
|
||||
operations.zero = {}
|
||||
operations.zero[name] = () => Returns(name, t => creator())
|
||||
operations.one = {}
|
||||
operations.one[name] = () => Returns(name, t => creator(1))
|
||||
operations.conjugate = {}
|
||||
operations.conjugate[name] = () => Returns(name, t => t) // or t.clone() ??
|
||||
|
||||
const binarySignature = `${name},${name}`
|
||||
for (const [mathname, spec] of Object.entries(binaryOps)) {
|
||||
if (spec[0] in instance) {
|
||||
operations[mathname] = {}
|
||||
operations[mathname][binarySignature] = () => Returns(
|
||||
spec[1], (t,u) => t[spec[0]](u))
|
||||
}
|
||||
}
|
||||
if ('operations' in overrides) {
|
||||
Object.assign(operations, overrides.operations)
|
||||
}
|
||||
|
||||
thing.install(operations)
|
||||
return thing
|
||||
}
|
||||
|
||||
export {adapted}
|
@ -1,9 +0,0 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export const abs = {
|
||||
T: ({
|
||||
T,
|
||||
'smaller(T,T)': lt,
|
||||
'negate(T)': neg,
|
||||
'zero(T)': zr
|
||||
}) => Returns(T, t => (smaller(t, zr(t)) ? neg(t) : t))
|
||||
}
|
@ -1,9 +0,0 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export const absquare = {
|
||||
T: ({
|
||||
T,
|
||||
'square(T)': sq,
|
||||
'abs(T)': abval
|
||||
}) => Returns(T, t => sq(abval(t)))
|
||||
}
|
@ -1,26 +1,2 @@
|
||||
import {adapted} from './Types/adapted.mjs'
|
||||
import Fraction from 'fraction.js/bigfraction.js'
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export * from './arithmetic.mjs'
|
||||
export * from './relational.mjs'
|
||||
|
||||
export const fraction = adapted('Fraction', Fraction, {
|
||||
before: ['Complex'],
|
||||
from: {number: n => new Fraction(n)},
|
||||
operations: {
|
||||
compare: {
|
||||
'Fraction,Fraction': () => Returns(
|
||||
'Fraction', (f,g) => new Fraction(f.compare(g)))
|
||||
},
|
||||
mod: {
|
||||
'Fraction,Fraction': () => Returns('Fraction', (n,d) => {
|
||||
// patch for "mathematician's modulus"
|
||||
// OK to use full public API of Fraction here
|
||||
const fmod = n.mod(d)
|
||||
if (fmod.s === -1n) return fmod.add(d.abs())
|
||||
return fmod
|
||||
})
|
||||
}
|
||||
}
|
||||
})
|
||||
|
@ -2,18 +2,14 @@ import {reducingOperation} from './reducingOperation.mjs'
|
||||
|
||||
export * from './Types/generic.mjs'
|
||||
|
||||
export {abs} from './abs.mjs'
|
||||
export {absquare} from './absquare.mjs'
|
||||
export const add = reducingOperation
|
||||
export {divide} from './divide.mjs'
|
||||
export const gcd = reducingOperation
|
||||
export {identity} from './identity.mjs'
|
||||
export {lcm} from './lcm.mjs'
|
||||
export {mean} from './mean.mjs'
|
||||
export {mod} from './mod.mjs'
|
||||
export const multiply = reducingOperation
|
||||
export {quotient} from './quotient.mjs'
|
||||
export {roundquotient} from './roundquotient.mjs'
|
||||
export {divide} from './divide.mjs'
|
||||
export {sign} from './sign.mjs'
|
||||
export {sqrt} from './sqrt.mjs'
|
||||
export {square} from './square.mjs'
|
||||
|
@ -1,10 +1,7 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export const divide = {
|
||||
'T,T': ({
|
||||
T,
|
||||
'multiply(T,T)': multT,
|
||||
'invert(T)': invT
|
||||
}) => Returns(T, (x, y) => multT(x, invT(y)))
|
||||
}) => (x, y) => multT(x, invT(y))
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
/* Note we do not use a template here so that we can explicitly control
|
||||
* which types this is instantiated for, namely the "integer" types, and
|
||||
* not simply allow Pocomath to generate instances for any type it encounters.
|
||||
@ -9,14 +7,14 @@ export default function(type) {
|
||||
const producer = refs => {
|
||||
const modder = refs[`mod(${type},${type})`]
|
||||
const zeroTester = refs[`isZero(${type})`]
|
||||
return Returns(type, (a,b) => {
|
||||
return (a,b) => {
|
||||
while (!zeroTester(b)) {
|
||||
const r = modder(a,b)
|
||||
a = b
|
||||
b = r
|
||||
}
|
||||
return a
|
||||
})
|
||||
}
|
||||
}
|
||||
const retval = {}
|
||||
retval[`${type},${type}`] = producer
|
||||
|
@ -1,11 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export function identityType(type) {
|
||||
return () => Returns(type, x => x)
|
||||
export function identity(x) {
|
||||
return x
|
||||
}
|
||||
|
||||
export function identitySubTypes(type) {
|
||||
return ({T}) => Returns(T, x => x)
|
||||
}
|
||||
|
||||
export const identity = {T: ({T}) => Returns(T, x => x)}
|
||||
|
@ -1,12 +1,10 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
import {reducingOperation} from './reducingOperation.mjs'
|
||||
|
||||
export const lcm = {
|
||||
'T,T': ({
|
||||
T,
|
||||
'multiply(T,T)': multT,
|
||||
'quotient(T,T)': quotT,
|
||||
'gcd(T,T)': gcdT
|
||||
}) => Returns(T, (a,b) => multT(quotT(a, gcdT(a,b)), b))
|
||||
}) => (a,b) => multT(quotT(a, gcdT(a,b)), b)
|
||||
}
|
||||
Object.assign(lcm, reducingOperation)
|
||||
|
@ -1,8 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export const mean = {
|
||||
'...T': ({
|
||||
T,
|
||||
add,
|
||||
'divide(T,NumInt)': div
|
||||
}) => Returns(T, args => div(add(...args), args.length))
|
||||
'...any': ({add, divide}) => args => divide(add(...args), args.length)
|
||||
}
|
||||
|
@ -1,10 +1,7 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export const mod = {
|
||||
'T,T': ({
|
||||
T,
|
||||
'subtract(T,T)': subT,
|
||||
'multiply(T,T)': multT,
|
||||
'quotient(T,T)': quotT
|
||||
}) => Returns(T, (a,m) => subT(a, multT(m, quotT(a,m))))
|
||||
}) => (a,m) => subT(a, multT(m, quotT(a,m)))
|
||||
}
|
||||
|
@ -1,9 +0,0 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export const quotient = {
|
||||
'T,T': ({
|
||||
T,
|
||||
'floor(T)': flr,
|
||||
'divide(T,T)': div
|
||||
}) => Returns(T, (n,d) => flr(div(n,d)))
|
||||
}
|
@ -1,16 +1,12 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/generic.mjs'
|
||||
|
||||
export const reducingOperation = {
|
||||
'undefined': () => Returns('undefined', u => u),
|
||||
'undefined,...any': () => Returns('undefined', (u, rest) => u),
|
||||
'any,undefined': () => Returns('undefined', (x, u) => u),
|
||||
'undefined,undefined': () => Returns('undefined', (u,v) => u),
|
||||
T: ({T}) => Returns(T, x => x),
|
||||
// Unfortunately the type language of Pocomath is not (yet?) expressive
|
||||
// enough to properly type the full reduction signature here:
|
||||
'undefined': () => u => u,
|
||||
'undefined,...any': () => (u, rest) => u,
|
||||
'any,undefined': () => (x, u) => u,
|
||||
any: () => x => x,
|
||||
'any,any,...any': ({
|
||||
self
|
||||
}) => Returns('any', (a,b,rest) => [b, ...rest].reduce((x,y) => self(x,y), a))
|
||||
}) => (a,b,rest) => [b, ...rest].reduce((x,y) => self(x,y), a)
|
||||
}
|
||||
|
||||
|
@ -1,83 +1,67 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export const compare = {
|
||||
'undefined,undefined': () => Returns('NumInt', () => 0)
|
||||
'undefined,undefined': () => () => 0
|
||||
}
|
||||
|
||||
export const isZero = {
|
||||
'undefined': () => Returns('boolean', u => u === 0),
|
||||
T: ({
|
||||
T,
|
||||
'equal(T,T)': eq,
|
||||
'zero(T)': zr
|
||||
}) => Returns('boolean', t => eq(t, zr(t)))
|
||||
'undefined': () => u => u === 0
|
||||
}
|
||||
|
||||
export const equal = {
|
||||
'any,any': ({
|
||||
equalTT,
|
||||
joinTypes,
|
||||
Templates,
|
||||
typeOf
|
||||
}) => Returns('boolean', (x,y) => {
|
||||
'any,any': ({equalTT, joinTypes, Templates, typeOf}) => (x,y) => {
|
||||
const resultant = joinTypes([typeOf(x), typeOf(y)], 'convert')
|
||||
if (resultant === 'any' || resultant in Templates) {
|
||||
return false
|
||||
}
|
||||
return equalTT(x,y)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
export const equalTT = {
|
||||
'T,T': ({
|
||||
'compare(T,T)': cmp,
|
||||
'isZero(T)': isZ
|
||||
}) => Returns('boolean', (x,y) => isZ(cmp(x,y)))
|
||||
}) => (x,y) => isZ(cmp(x,y)),
|
||||
// If templates were native to typed-function, we should be able to
|
||||
// do something like:
|
||||
// 'any,any': () => () => false // should only be hit for different types
|
||||
}
|
||||
|
||||
export const unequal = {
|
||||
'any,any': ({equal}) => Returns('boolean', (x,y) => !(equal(x,y)))
|
||||
'any,any': ({equal}) => (x,y) => !(equal(x,y))
|
||||
}
|
||||
|
||||
export const larger = {
|
||||
'T,T': ({
|
||||
'compare(T,T)': cmp,
|
||||
'one(T)' : uno,
|
||||
'equalTT(T,T)' : eq
|
||||
}) => Returns('boolean', (x,y) => eq(cmp(x,y), uno(y)))
|
||||
'one(T)' : uno
|
||||
}) => (x,y) => cmp(x,y) === uno(y)
|
||||
}
|
||||
|
||||
export const largerEq = {
|
||||
'T,T': ({
|
||||
'compare(T,T)': cmp,
|
||||
'one(T)' : uno,
|
||||
'isZero(T)' : isZ,
|
||||
'equalTT(T,T)': eq
|
||||
}) => Returns('boolean', (x,y) => {
|
||||
'isZero(T)' : isZ
|
||||
}) => (x,y) => {
|
||||
const c = cmp(x,y)
|
||||
return isZ(c) || eq(c, uno(y))
|
||||
})
|
||||
return isZ(c) || c === uno(y)
|
||||
}
|
||||
}
|
||||
|
||||
export const smaller = {
|
||||
'T,T': ({
|
||||
'compare(T,T)': cmp,
|
||||
'one(T)' : uno,
|
||||
'isZero(T)' : isZ,
|
||||
unequal
|
||||
}) => Returns('boolean', (x,y) => {
|
||||
'isZero(T)' : isZ
|
||||
}) => (x,y) => {
|
||||
const c = cmp(x,y)
|
||||
return !isZ(c) && unequal(c, uno(y))
|
||||
})
|
||||
return !isZ(c) && c !== uno(y)
|
||||
}
|
||||
}
|
||||
|
||||
export const smallerEq = {
|
||||
'T,T': ({
|
||||
'compare(T,T)': cmp,
|
||||
'one(T)' : uno,
|
||||
unequal
|
||||
}) => Returns('boolean', (x,y) => unequal(cmp(x,y), uno(y)))
|
||||
'one(T)' : uno
|
||||
}) => (x,y) => cmp(x,y) !== uno(y)
|
||||
}
|
||||
|
@ -1,9 +0,0 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export const roundquotient = {
|
||||
'T,T': ({
|
||||
T,
|
||||
'round(T)': rnd,
|
||||
'divide(T,T)':div
|
||||
}) => Returns(T, (n,d) => rnd(div(n,d)))
|
||||
}
|
@ -1,9 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export const sign = {
|
||||
T: ({
|
||||
T,
|
||||
'compare(T,T)': cmp,
|
||||
'zero(T)': Z
|
||||
}) => Returns(T, x => cmp(x, Z(x)))
|
||||
T: ({'compare(T,T)': cmp, 'zero(T)': Z}) => x => cmp(x, Z(x))
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/generic.mjs'
|
||||
|
||||
export const sqrt = {undefined: () => Returns('undefined', () => undefined)}
|
||||
export const sqrt = {undefined: () => () => undefined}
|
||||
|
@ -1,6 +1,3 @@
|
||||
import {Returns, returnTypeOf} from '../core/Returns.mjs'
|
||||
|
||||
export const square = {
|
||||
T: ({'multiply(T,T)': multT}) => Returns(
|
||||
returnTypeOf(multT), x => multT(x,x))
|
||||
T: ({'multiply(T,T)': multT}) => x => multT(x,x)
|
||||
}
|
||||
|
@ -1,9 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export const subtract = {
|
||||
'T,T': ({
|
||||
T,
|
||||
'add(T,T)': addT,
|
||||
'negate(T)': negT
|
||||
}) => Returns(T, (x,y) => addT(x, negT(y)))
|
||||
'T,T': ({'add(T,T)': addT, 'negate(T)': negT}) => (x,y) => addT(x, negT(y))
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const abs = {'T:number': ({T}) => Returns(T, n => Math.abs(n))}
|
||||
export const abs = {number: () => n => Math.abs(n)}
|
||||
|
@ -1,7 +0,0 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
/* Absolute value squared */
|
||||
export const absquare = {
|
||||
'T:number': ({T, 'square(T)': sqn}) => Returns(T, n => sqn(n))
|
||||
}
|
@ -1,8 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const add = {
|
||||
// Note the below assumes that all subtypes of number that will be defined
|
||||
// are closed under addition!
|
||||
'T:number,T': ({T}) => Returns(T, (m,n) => m+n)
|
||||
}
|
||||
export const add = {'number,number': () => (m,n) => m+n}
|
||||
|
@ -1,19 +0,0 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
/* Returns just the real cube root, following mathjs implementation */
|
||||
export const cbrt = {
|
||||
number: ({'negate(number)': neg}) => Returns('number', x => {
|
||||
if (x === 0) return x
|
||||
const negate = x < 0
|
||||
if (negate) x = neg(x)
|
||||
let result = x
|
||||
if (isFinite(x)) {
|
||||
result = Math.exp(Math.log(x) / 3)
|
||||
result = (x / (result * result) + (2 * result)) / 3
|
||||
}
|
||||
if (negate) return neg(result)
|
||||
return result
|
||||
})
|
||||
}
|
||||
|
@ -1,5 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
/* Lifted from mathjs/src/utils/number.js */
|
||||
/**
|
||||
* Minimum number added to one that makes the result different than one
|
||||
@ -50,6 +48,5 @@ function nearlyEqual (x, y, epsilon) {
|
||||
export const compare = {
|
||||
'number,number': ({
|
||||
config
|
||||
}) => Returns(
|
||||
'NumInt', (x,y) => nearlyEqual(x, y, config.epsilon) ? 0 : (x > y ? 1 : -1))
|
||||
}) => (x,y) => nearlyEqual(x, y, config.epsilon) ? 0 : (x > y ? 1 : -1)
|
||||
}
|
||||
|
@ -1,5 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const invert = {number: () => Returns('number', n => 1/n)}
|
||||
export const invert = {number: () => n => 1/n}
|
||||
|
@ -1,6 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const isZero = {
|
||||
'T:number': () => Returns('boolean', n => n === 0)
|
||||
}
|
||||
export const isZero = {number: () => n => n === 0}
|
||||
|
@ -1,5 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const multiply = {'T:number,T': ({T}) => Returns(T, (m,n) => m*n)}
|
||||
export const multiply = {'number,number': () => (m,n) => m*n}
|
||||
|
@ -1,14 +1,12 @@
|
||||
import gcdType from '../generic/gcdType.mjs'
|
||||
import {identitySubTypes} from '../generic/identity.mjs'
|
||||
import {identity} from '../generic/identity.mjs'
|
||||
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export {abs} from './abs.mjs'
|
||||
export {absquare} from './absquare.mjs'
|
||||
export {add} from './add.mjs'
|
||||
export {cbrt} from './cbrt.mjs'
|
||||
export {compare} from './compare.mjs'
|
||||
export const conjugate = {'T:number': identitySubTypes('number')}
|
||||
export const conjugate = {number: () => identity}
|
||||
export const gcd = gcdType('NumInt')
|
||||
export {invert} from './invert.mjs'
|
||||
export {isZero} from './isZero.mjs'
|
||||
|
@ -1,6 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const negate = {
|
||||
'T:number': ({T}) => Returns(T, n => -n)
|
||||
}
|
||||
export const negate = {number: () => n => -n}
|
||||
|
@ -1,5 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const one = {number: () => Returns('NumInt', () => 1)}
|
||||
export const one = {number: () => () => 1}
|
||||
|
@ -1,10 +1,8 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const quotient = {
|
||||
'T:number,T': () => Returns('NumInt', (n,d) => {
|
||||
'number,number': () => (n,d) => {
|
||||
if (d === 0) return d
|
||||
return Math.floor(n/d)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -1,10 +1,8 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const roundquotient = {
|
||||
'number,number': () => Returns('NumInt', (n,d) => {
|
||||
'number,number': () => (n,d) => {
|
||||
if (d === 0) return d
|
||||
return Math.round(n/d)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -1,18 +1,14 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const sqrt = {
|
||||
number: ({
|
||||
config,
|
||||
'complex(number,number)': cplx,
|
||||
'negate(number)': neg}) => {
|
||||
if (config.predictable || !cplx) {
|
||||
return Returns('number', n => isNaN(n) ? NaN : Math.sqrt(n))
|
||||
}
|
||||
return Returns('number|Complex<number>', n => {
|
||||
if (isNaN(n)) return NaN
|
||||
if (n >= 0) return Math.sqrt(n)
|
||||
return cplx(0, Math.sqrt(neg(n)))
|
||||
})
|
||||
number: ({config, complex, 'self(Complex)': complexSqrt}) => {
|
||||
if (config.predictable || !complexSqrt) {
|
||||
return n => isNaN(n) ? NaN : Math.sqrt(n)
|
||||
}
|
||||
return n => {
|
||||
if (isNaN(n)) return NaN
|
||||
if (n >= 0) return Math.sqrt(n)
|
||||
return complexSqrt(complex(n))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export * from './Types/number.mjs'
|
||||
|
||||
export const zero = {number: () => Returns('NumInt', () => 0)}
|
||||
export const zero = {number: () => () => 0}
|
||||
|
@ -1,13 +1,11 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
/* Note this is _not_ a good algorithm for computing binomial coefficients,
|
||||
/* Note this is not a good algorithm for computing binomial coefficients,
|
||||
* it's just for demonstration purposes
|
||||
*/
|
||||
export const choose = {
|
||||
'NumInt,NumInt': ({factorial}) => Returns(
|
||||
'NumInt', (n,k) => Number(factorial(n) / (factorial(k)*factorial(n-k)))),
|
||||
'NumInt,NumInt': ({factorial}) => (n,k) => Number(
|
||||
factorial(n) / (factorial(k)*factorial(n-k))),
|
||||
'bigint,bigint': ({
|
||||
factorial
|
||||
}) => Returns('bigint', (n,k) => factorial(n) / (factorial(k)*factorial(n-k)))
|
||||
}) => (n,k) => factorial(n) / (factorial(k)*factorial(n-k))
|
||||
}
|
||||
|
||||
|
@ -1,15 +1,8 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
/* Plain functions are OK, too, and they can be decorated with a return type
|
||||
* just like an implementation.
|
||||
*/
|
||||
const factorial = Returns('bigint', function factorial(n) {
|
||||
export function factorial(n) {
|
||||
n = BigInt(n)
|
||||
let prod = 1n
|
||||
for (let i = n; i > 1n; --i) {
|
||||
prod *= i
|
||||
}
|
||||
return prod
|
||||
})
|
||||
|
||||
export {factorial}
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
import {Complex} from '../complex/Types/Complex.mjs'
|
||||
|
||||
/* Note we don't **export** any types here, so that only the options
|
||||
@ -6,28 +5,21 @@ import {Complex} from '../complex/Types/Complex.mjs'
|
||||
*/
|
||||
|
||||
export const floor = {
|
||||
/* Because Pocomath isn't part of typed-function, nor does it have access
|
||||
* to the real typed-function parse, we unfortunately can't coalesce the
|
||||
* first several implementations into one entry with type
|
||||
* `bigint|NumInt|GaussianInteger` because then they couldn't
|
||||
* be separately activated
|
||||
*/
|
||||
bigint: () => Returns('bigint', x => x),
|
||||
NumInt: () => Returns('NumInt', x => x),
|
||||
'Complex<bigint>': () => Returns('Complex<bigint>', x => x),
|
||||
bigint: () => x => x,
|
||||
NumInt: () => x => x, // Because Pocomath isn't part of typed-function, or
|
||||
GaussianInteger: () => x => x, // at least have access to the real
|
||||
// typed-function parse, we unfortunately can't coalesce these into one
|
||||
// entry with type `bigint|NumInt|GaussianInteger` because they couldn't
|
||||
// be separately activated then
|
||||
|
||||
number: ({'equalTT(number,number)': eq}) => Returns('NumInt', n => {
|
||||
number: ({'equalTT(number,number)': eq}) => n => {
|
||||
if (eq(n, Math.round(n))) return Math.round(n)
|
||||
return Math.floor(n)
|
||||
}),
|
||||
},
|
||||
|
||||
'Complex<T>': Complex.promoteUnary['Complex<T>'],
|
||||
Complex: Complex.promoteUnary.Complex,
|
||||
|
||||
// OK to include a type totally not in Pocomath yet, it'll never be
|
||||
// activated.
|
||||
BigNumber: ({
|
||||
'round(BigNumber)': rnd,
|
||||
'equal(BigNumber,BigNumber)': eq
|
||||
}) => Returns('BigNumber', x => eq(x,round(x)) ? round(x) : x.floor())
|
||||
|
||||
Fraction: ({quotient}) => f => quotient(f.n, f.d),
|
||||
}
|
||||
|
@ -1,24 +1,25 @@
|
||||
/* A template type representing a homeogeneous tuple of elements */
|
||||
import PocomathInstance from '../../core/PocomathInstance.mjs'
|
||||
import {Returns, returnTypeOf} from '../../core/Returns.mjs'
|
||||
|
||||
const Tuple = new PocomathInstance('Tuple')
|
||||
|
||||
// First a base type that will generally not be used directly
|
||||
Tuple.installType('Tuple', {
|
||||
test: t => t && typeof t === 'object' && 'elts' in t && Array.isArray(t.elts)
|
||||
})
|
||||
// Now the template type that is the primary use of this
|
||||
Tuple.installType('Tuple<T>', {
|
||||
// A test that "defines" the "base type", which is not really a type
|
||||
// (only fully instantiated types are added to the universe)
|
||||
base: t => t && typeof t === 'object' && 'elts' in t && Array.isArray(t.elts),
|
||||
// The template portion of the test; it takes the test for T as
|
||||
// input and returns the test for an entity _that already passes
|
||||
// the base test_ to be a Tuple<T>:
|
||||
test: testT => t => t.elts.every(testT),
|
||||
// And we need there to be a way to determine the (instantiation)
|
||||
// type of an tuple (that has already passed the base test):
|
||||
// We are assuming that any 'Type<T>' refines 'Type', so this is
|
||||
// not necessary:
|
||||
// refines: 'Tuple',
|
||||
// But we need there to be a way to determine the type of a tuple:
|
||||
infer: ({typeOf, joinTypes}) => t => joinTypes(t.elts.map(typeOf)),
|
||||
// Conversions. Parametrized conversions are only invoked for types
|
||||
// U such that there is already a conversion from U to T, and that
|
||||
// conversion is passed as an input, and we have to return the conversion
|
||||
// function from the indicated template in terms of U to Tuple<T>:
|
||||
// For the test, we can assume that t is already a base tuple,
|
||||
// and we get the test for T as an input and we have to return
|
||||
// the test for Tuple<T>
|
||||
test: testT => t => t.elts.every(testT),
|
||||
// These are only invoked for types U such that there is already
|
||||
// a conversion from U to T, and that conversion is passed as an input
|
||||
// and we have to return the conversion to Tuple<T>:
|
||||
from: {
|
||||
'Tuple<U>': convert => tu => ({elts: tu.elts.map(convert)}),
|
||||
// Here since there is no U it's a straight conversion:
|
||||
@ -31,69 +32,48 @@ Tuple.installType('Tuple<T>', {
|
||||
})
|
||||
|
||||
Tuple.promoteUnary = {
|
||||
'Tuple<T>': ({
|
||||
'self(T)': me,
|
||||
tuple
|
||||
}) => {
|
||||
const compType = me.fromInstance.joinTypes(
|
||||
returnTypeOf(me).split('|'), 'convert')
|
||||
return Returns(
|
||||
`Tuple<${compType}>`, t => tuple(...(t.elts.map(x => me(x)))))
|
||||
}
|
||||
'Tuple<T>': ({'self(T)': me, tuple}) => t => tuple(...(t.elts.map(me)))
|
||||
}
|
||||
|
||||
Tuple.promoteBinaryUnary = {
|
||||
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, 'self(T)': meU, tuple}) => {
|
||||
const compTypes = returnTypeOf(meB).split('|').concat(
|
||||
returnTypeOf(meU).split('|'))
|
||||
const compType = meU.fromInstance.joinTypes(compTypes, 'convert')
|
||||
return Returns(`Tuple<${compType}>`, (s,t) => {
|
||||
let i = -1
|
||||
let result = []
|
||||
while (true) {
|
||||
i += 1
|
||||
if (i < s.elts.length) {
|
||||
if (i < t.elts.length) result.push(meB(s.elts[i], t.elts[i]))
|
||||
else result.push(meU(s.elts[i]))
|
||||
continue
|
||||
}
|
||||
if (i < t.elts.length) result.push(meU(t.elts[i]))
|
||||
else break
|
||||
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, 'self(T)': meU, tuple}) => (s,t) => {
|
||||
let i = -1
|
||||
let result = []
|
||||
while (true) {
|
||||
i += 1
|
||||
if (i < s.elts.length) {
|
||||
if (i < t.elts.length) result.push(meB(s.elts[i], t.elts[i]))
|
||||
else result.push(meU(s.elts[i]))
|
||||
continue
|
||||
}
|
||||
return tuple(...result)
|
||||
})
|
||||
if (i < t.elts.length) result.push(meU(t.elts[i]))
|
||||
else break
|
||||
}
|
||||
return tuple(...result)
|
||||
}
|
||||
}
|
||||
|
||||
Tuple.promoteBinary = {
|
||||
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, tuple}) => {
|
||||
const compType = meB.fromInstance.joinTypes(
|
||||
returnTypeOf(meB).split('|'))
|
||||
return Returns(`Tuple<${compType}>`, (s,t) => {
|
||||
const lim = Math.max(s.elts.length, t.elts.length)
|
||||
const result = []
|
||||
for (let i = 0; i < lim; ++i) {
|
||||
result.push(meB(s.elts[i], t.elts[i]))
|
||||
}
|
||||
return tuple(...result)
|
||||
})
|
||||
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, tuple}) => (s,t) => {
|
||||
const lim = Math.max(s.elts.length, t.elts.length)
|
||||
const result = []
|
||||
for (let i = 0; i < lim; ++i) {
|
||||
result.push(meB(s.elts[i], t.elts[i]))
|
||||
}
|
||||
return tuple(...result)
|
||||
}
|
||||
}
|
||||
|
||||
Tuple.promoteBinaryStrict = {
|
||||
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, tuple}) => {
|
||||
const compType = meB.fromInstance.joinTypes(
|
||||
returnTypeOf(meB).split('|'))
|
||||
return Returns(`Tuple<${compType}>`, (s,t) => {
|
||||
if (s.elts.length !== t.elts.length) {
|
||||
throw new RangeError('Tuple length mismatch') // get name of self ??
|
||||
}
|
||||
const result = []
|
||||
for (let i = 0; i < s.elts.length; ++i) {
|
||||
result.push(meB(s.elts[i], t.elts[i]))
|
||||
}
|
||||
return tuple(...result)
|
||||
})
|
||||
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, tuple}) => (s,t) => {
|
||||
if (s.elts.length !== t.elts.length) {
|
||||
throw new RangeError('Tuple length mismatch') // get name of self ??
|
||||
}
|
||||
const result = []
|
||||
for (let i = 0; i < s.elts.length; ++i) {
|
||||
result.push(meB(s.elts[i], t.elts[i]))
|
||||
}
|
||||
return tuple(...result)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,16 +1,11 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export * from './Types/Tuple.mjs'
|
||||
|
||||
export const equalTT = {
|
||||
'Tuple<T>,Tuple<T>': ({
|
||||
'self(T,T)': me,
|
||||
'length(Tuple)': len
|
||||
}) => Returns('boolean', (s,t) => {
|
||||
'Tuple<T>,Tuple<T>': ({'self(T,T)': me, 'length(Tuple)': len}) => (s,t) => {
|
||||
if (len(s) !== len(t)) return false
|
||||
for (let i = 0; i < len(s); ++i) {
|
||||
if (!me(s.elts[i], t.elts[i])) return false
|
||||
}
|
||||
return true
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -1,10 +1,7 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export {Tuple} from './Types/Tuple.mjs'
|
||||
|
||||
export const isZero = {
|
||||
'Tuple<T>': ({'self(T)': me}) => Returns(
|
||||
'boolean', t => t.elts.every(e => me(e)))
|
||||
'Tuple<T>': ({'self(T)': me}) => t => t.elts.every(e => me(e))
|
||||
// Note we can't just say `every(me)` above since every invokes its
|
||||
// callback with more arguments, which then violates typed-function's
|
||||
// signature for `me`
|
||||
|
@ -1,4 +1,3 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
export {Tuple} from './Types/Tuple.mjs'
|
||||
|
||||
export const length = {'Tuple<T>': () => Returns('NumInt', t => t.elts.length)}
|
||||
export const length = {Tuple: () => t => t.elts.length}
|
||||
|
@ -1,10 +1,6 @@
|
||||
import Returns from '../core/Returns.mjs'
|
||||
|
||||
export {Tuple} from './Types/Tuple.mjs'
|
||||
|
||||
/* The purpose of the template argument is to ensure that all of the args
|
||||
* are convertible to the same type.
|
||||
*/
|
||||
export const tuple = {
|
||||
'...T': ({T}) => Returns(`Tuple<${T}>`, args => ({elts: args}))
|
||||
}
|
||||
export const tuple = {'...T': () => args => ({elts: args})}
|
||||
|
@ -16,60 +16,13 @@ describe('The default full pocomath instance "math"', () => {
|
||||
assert.strictEqual(math.typeOf(-1.5), 'number')
|
||||
assert.strictEqual(math.typeOf(-42n), 'bigint')
|
||||
assert.strictEqual(math.typeOf(undefined), 'undefined')
|
||||
assert.strictEqual(math.typeOf({re: 15n, im: -2n}), 'Complex<bigint>')
|
||||
assert.strictEqual(math.typeOf({re: 6.28, im: 2.72}), 'Complex<number>')
|
||||
})
|
||||
|
||||
it('can determine the return types of operations', () => {
|
||||
assert.strictEqual(math.returnTypeOf('negate', 'number'), 'number')
|
||||
assert.strictEqual(math.returnTypeOf('negate', 'NumInt'), 'NumInt')
|
||||
math.negate(math.complex(1.2, 2.8)) // TODO: make this call unnecessary
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('negate', 'Complex<number>'), 'Complex<number>')
|
||||
assert.strictEqual(math.returnTypeOf('add', 'number,number'), 'number')
|
||||
assert.strictEqual(math.returnTypeOf('add', 'NumInt,NumInt'), 'NumInt')
|
||||
assert.strictEqual(math.returnTypeOf('add', 'NumInt,number'), 'number')
|
||||
assert.strictEqual(math.returnTypeOf('add', 'number,NumInt'), 'number')
|
||||
assert.deepStrictEqual( // TODO: ditto
|
||||
math.add(3, math.complex(2.5, 1)), math.complex(5.5, 1))
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('add', 'Complex<number>,NumInt'), 'Complex<number>')
|
||||
// The following is not actually what we want, but the Pocomath type
|
||||
// language isn't powerful enough at this point to capture the true
|
||||
// return type:
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('add', 'number,NumInt,Complex<number>'), 'any')
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('chain', 'bigint'), 'Chain<bigint>')
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('returnTypeOf', 'string,string'), 'string')
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('conjugate', 'bigint'), 'bigint')
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('gcd', 'bigint,bigint'), 'bigint')
|
||||
math.identity(math.fraction(3,5)) // TODO: ditto
|
||||
assert.strictEqual(math.returnTypeOf('identity', 'Fraction'), 'Fraction')
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('quotient', 'bigint,bigint'), 'bigint')
|
||||
math.abs(math.complex(2,1)) //TODO: ditto
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('abs','Complex<NumInt>'), 'number')
|
||||
math.multiply(math.quaternion(1,1,1,1), math.quaternion(1,-1,1,-1)) // dit
|
||||
const quatType = math.returnTypeOf(
|
||||
'quaternion', 'NumInt,NumInt,NumInt,NumInt')
|
||||
assert.strictEqual(quatType, 'Complex<Complex<NumInt>>')
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('multiply', quatType + ',' + quatType), quatType)
|
||||
assert.strictEqual(math.returnTypeOf('isZero', 'NumInt'), 'boolean')
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('roundquotient', 'NumInt,number'), 'NumInt')
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('factorial', 'NumInt'), 'bigint')
|
||||
assert.strictEqual(math.typeOf({re: 15n, im: -2n}), 'GaussianInteger')
|
||||
assert.strictEqual(math.typeOf({re: 6.28, im: 2.72}), 'Complex')
|
||||
})
|
||||
|
||||
it('can subtract numbers', () => {
|
||||
assert.strictEqual(math.subtract(12, 5), 7)
|
||||
assert.throws(() => math.subtract(3n, 1.5), 'TypeError')
|
||||
//assert.strictEqual(math.subtract(3n, 1.5), 1.5)
|
||||
})
|
||||
|
||||
it('can add numbers', () => {
|
||||
@ -152,9 +105,11 @@ describe('The default full pocomath instance "math"', () => {
|
||||
|
||||
it('calculates multi-way gcds and lcms', () => {
|
||||
assert.strictEqual(math.gcd(30,105,42), 3)
|
||||
const gaussianLCM = math.lcm(
|
||||
math.complex(2n,1n), math.complex(1n,1n), math.complex(0n,1n))
|
||||
assert.strictEqual(math.associate(gaussianLCM, math.complex(1n,3n)), true)
|
||||
assert.ok(
|
||||
math.associate(
|
||||
math.lcm(
|
||||
math.complex(2n,1n), math.complex(1n,1n), math.complex(0n,1n)),
|
||||
math.complex(1n,3n)))
|
||||
})
|
||||
|
||||
})
|
||||
|
@ -39,30 +39,16 @@ describe('complex', () => {
|
||||
})
|
||||
|
||||
it('checks for equality', () => {
|
||||
assert.ok(math.equal(math.complex(3, 0), 3))
|
||||
assert.ok(math.equal(math.complex(3, 2), math.complex(3, 2)))
|
||||
assert.ok(math.equal(math.complex(3,0), 3))
|
||||
assert.ok(math.equal(math.complex(3,2), math.complex(3, 2)))
|
||||
assert.ok(!(math.equal(math.complex(45n, 3n), math.complex(45n, -3n))))
|
||||
assert.ok(!(math.equal(math.complex(45n, 3n), 45n)))
|
||||
})
|
||||
|
||||
it('tests for reality', () => {
|
||||
assert.ok(math.isReal(math.complex(3, 0)))
|
||||
assert.ok(!(math.isReal(math.complex(3, 2))))
|
||||
})
|
||||
|
||||
it('computes gcd', () => {
|
||||
assert.deepStrictEqual(
|
||||
math.gcd(math.complex(53n, 56n), math.complex(47n, -13n)),
|
||||
math.complex(4n, 5n))
|
||||
// And now works for NumInt, too!
|
||||
assert.deepStrictEqual(
|
||||
math.gcd(math.complex(53,56), math.complex(47, -13)),
|
||||
math.complex(4, 5))
|
||||
// But properly fails for general complex
|
||||
assert.throws(
|
||||
() => math.gcd(math.complex(5.3,5.6), math.complex(4.7, -1.3)),
|
||||
TypeError
|
||||
)
|
||||
})
|
||||
|
||||
it('computes floor', () => {
|
||||
@ -73,24 +59,4 @@ describe('complex', () => {
|
||||
assert.strictEqual(math.floor(gi), gi) // literally a no-op
|
||||
})
|
||||
|
||||
it('performs rudimentary quaternion calculations', () => {
|
||||
const q0 = math.quaternion(1, 0, 1, 0)
|
||||
const q1 = math.quaternion(1, 0.5, 0.5, 0.75)
|
||||
assert.deepStrictEqual(
|
||||
q1,
|
||||
math.complex(math.complex(1, 0.5), math.complex(0.5, 0.75)))
|
||||
assert.deepStrictEqual(
|
||||
math.add(q0,q1),
|
||||
math.quaternion(2, 0.5, 1.5, 0.75))
|
||||
assert.deepStrictEqual(
|
||||
math.multiply(q0, q1),
|
||||
math.quaternion(0.5, 1.25, 1.5, 0.25))
|
||||
assert.deepStrictEqual(
|
||||
math.multiply(q0, math.quaternion(2, 1, 0.1, 0.1)),
|
||||
math.quaternion(1.9, 1.1, 2.1, -0.9))
|
||||
math.absquare(math.complex(1.25, 2.5)) //HACK: need absquare(Complex<number>)
|
||||
assert.strictEqual(math.abs(q0), Math.sqrt(2))
|
||||
assert.strictEqual(math.abs(q1), Math.sqrt(33)/4)
|
||||
})
|
||||
|
||||
})
|
||||
|
@ -1,63 +0,0 @@
|
||||
import assert from 'assert'
|
||||
import * as approx from '../../tools/approx.mjs'
|
||||
import math from '../../src/pocomath.mjs'
|
||||
|
||||
describe('polynomialRoot', () => {
|
||||
it('should solve a linear equation with real coefficients', function () {
|
||||
assert.deepEqual(math.polynomialRoot(6, 3), math.tuple(-2))
|
||||
assert.deepEqual(
|
||||
math.polynomialRoot(math.complex(-3, 2), 2),
|
||||
math.tuple(math.complex(1.5, -1)))
|
||||
assert.deepEqual(
|
||||
math.polynomialRoot(math.complex(3, 1), math.complex(-1, -1)),
|
||||
math.tuple(math.complex(2, -1)))
|
||||
})
|
||||
// Should be safe now to capture the functions:
|
||||
const complex = math.complex
|
||||
const pRoot = math.polynomialRoot
|
||||
const tup = math.tuple
|
||||
it('should solve a quadratic equation with a double root', function () {
|
||||
assert.deepEqual(pRoot(4, 4, 1), tup(-2))
|
||||
assert.deepEqual(
|
||||
pRoot(complex(0, 2), complex(2, 2), 1), tup(complex(-1, -1)))
|
||||
})
|
||||
it('should solve a quadratic with two distinct roots', function () {
|
||||
assert.deepEqual(pRoot(-3, 2, 1), tup(1, -3))
|
||||
assert.deepEqual(pRoot(-2, 0, 1), tup(math.sqrt(2), -math.sqrt(2)))
|
||||
assert.deepEqual(
|
||||
pRoot(4, 2, 1),
|
||||
tup(complex(-1, math.sqrt(3)), complex(-1, -math.sqrt(3))))
|
||||
assert.deepEqual(
|
||||
pRoot(complex(3, 1), -3, 1), tup(complex(1, 1), complex(2, -1)))
|
||||
})
|
||||
it('should solve a cubic with a triple root', function () {
|
||||
assert.deepEqual(pRoot(8, 12, 6, 1), tup(-2))
|
||||
assert.deepEqual(
|
||||
pRoot(complex(-2, 11), complex(9, -12), complex(-6, 3), 1),
|
||||
tup(complex(2, -1)))
|
||||
})
|
||||
it('should solve a cubic with one simple and one double root', function () {
|
||||
assert.deepEqual(pRoot(4, 0, -3, 1), tup(-1, 2))
|
||||
assert.deepEqual(
|
||||
pRoot(complex(9, 9), complex(15, 6), complex(7, 1), 1),
|
||||
tup(complex(-1, -1), -3))
|
||||
assert.deepEqual(
|
||||
pRoot(complex(0, 6), complex(6, 8), complex(5, 2), 1),
|
||||
tup(-3, complex(-1, -1)))
|
||||
assert.deepEqual(
|
||||
pRoot(complex(2, 6), complex(8, 6), complex(5, 1), 1),
|
||||
tup(complex(-3, 1), complex(-1, -1)))
|
||||
})
|
||||
it('should solve a cubic with three distinct roots', function () {
|
||||
approx.deepEqual(pRoot(6, 11, 6, 1), tup(-3, -1, -2))
|
||||
approx.deepEqual(
|
||||
pRoot(-1, -2, 0, 1),
|
||||
tup(-1, (1 + math.sqrt(5)) / 2, (1 - math.sqrt(5)) / 2))
|
||||
approx.deepEqual(
|
||||
pRoot(1, 1, 1, 1),
|
||||
tup(-1, complex(0, -1), complex(0, 1)))
|
||||
approx.deepEqual(
|
||||
pRoot(complex(0, -10), complex(8, 12), complex(-6, -3), 1),
|
||||
tup(complex(1, 1), complex(3, 1), complex(2, 1)))
|
||||
})
|
||||
})
|
@ -1,8 +0,0 @@
|
||||
import assert from 'assert'
|
||||
import * as utils from '../../src/core/utils.mjs'
|
||||
|
||||
describe('typeListOfSignature', () => {
|
||||
it('returns an empty list for the empty signature', () => {
|
||||
assert.deepStrictEqual(utils.typeListOfSignature(''), [])
|
||||
})
|
||||
})
|
@ -3,14 +3,12 @@ import math from '../src/pocomath.mjs'
|
||||
import PocomathInstance from '../src/core/PocomathInstance.mjs'
|
||||
import * as numbers from '../src/number/all.mjs'
|
||||
import * as numberAdd from '../src/number/add.mjs'
|
||||
import * as numberZero from '../src/number/zero.mjs'
|
||||
import {add as genericAdd} from '../src/generic/arithmetic.mjs'
|
||||
import * as complex from '../src/complex/all.mjs'
|
||||
import * as complexAdd from '../src/complex/add.mjs'
|
||||
import * as complexNegate from '../src/complex/negate.mjs'
|
||||
import * as complexComplex from '../src/complex/complex.mjs'
|
||||
import * as bigintAdd from '../src/bigint/add.mjs'
|
||||
import * as bigintZero from '../src/bigint/zero.mjs'
|
||||
import * as concreteSubtract from '../src/generic/subtract.concrete.mjs'
|
||||
import * as genericSubtract from '../src/generic/subtract.mjs'
|
||||
import extendToComplex from '../src/complex/extendToComplex.mjs'
|
||||
@ -56,9 +54,9 @@ describe('A custom instance', () => {
|
||||
math.complex(-5, -1))
|
||||
// And now floor has been activated for Complex as well, since the type
|
||||
// is present
|
||||
const fracComplex = math.complex(1.9, 0)
|
||||
const intComplex = math.complex(1)
|
||||
assert.deepStrictEqual(pm.floor(fracComplex), intComplex)
|
||||
assert.deepStrictEqual(
|
||||
pm.floor(math.complex(1.9, 0)),
|
||||
math.complex(1))
|
||||
// And the chain functions refresh themselves:
|
||||
assert.deepStrictEqual(
|
||||
pm.chain(5).add(pm.chain(0).complex(7).value).value, math.complex(5,7))
|
||||
@ -67,11 +65,10 @@ describe('A custom instance', () => {
|
||||
it("can defer definition of (even used) types", () => {
|
||||
const dt = new PocomathInstance('Deferred Types')
|
||||
dt.install(numberAdd)
|
||||
dt.install(numberZero) // for promoting numbers to complex, to fill in im
|
||||
dt.install({times: {
|
||||
'number,number': () => (m,n) => m*n,
|
||||
'Complex<T>,Complex<T>': ({'complex(T,T)': cplx}) => (w,z) => {
|
||||
return cplx(w.re*z.re - w.im*z.im, w.re*z.im + w.im*z.re)
|
||||
'Complex,Complex': ({complex}) => (w,z) => {
|
||||
return complex(w.re*z.re - w.im*z.im, w.re*z.im + w.im*z.re)
|
||||
}
|
||||
}})
|
||||
// complex type not present but should still be able to add numbers:
|
||||
@ -85,7 +82,6 @@ describe('A custom instance', () => {
|
||||
it("can selectively import in cute ways", async function () {
|
||||
const cherry = new PocomathInstance('cherry')
|
||||
cherry.install(numberAdd)
|
||||
cherry.install(numberZero) // for complex promotion
|
||||
await extendToComplex(cherry)
|
||||
cherry.install({add: genericAdd})
|
||||
/* Now we have an instance that supports addition for number and complex
|
||||
@ -128,15 +124,19 @@ describe('A custom instance', () => {
|
||||
inst.install(complexAdd)
|
||||
inst.install(complexComplex)
|
||||
inst.install(bigintAdd)
|
||||
inst.install(bigintZero) // for complex promotion
|
||||
assert.strictEqual(
|
||||
inst.typeMerge(6n, inst.complex(3n, 2n)),
|
||||
'Merge to Complex<bigint>')
|
||||
'Merge to GaussianInteger')
|
||||
assert.strictEqual(
|
||||
inst.typeMerge(3, inst.complex(4.5,2.1)),
|
||||
'Merge to Complex<number>')
|
||||
assert.throws(
|
||||
() => inst.typeMerge(3, inst.complex(3n)), TypeError)
|
||||
'Merge to Complex')
|
||||
// The following is the current behavior, since 3 converts to 3+0i
|
||||
// which is technically the same Complex type as 3n+0ni.
|
||||
// This should clear up when Complex is templatized
|
||||
assert.strictEqual(inst.typeMerge(3, inst.complex(3n)), 'Merge to Complex')
|
||||
// But types that truly cannot be merged should throw a TypeError
|
||||
// Should add a variation of this with a more usual type once there is
|
||||
// one not interconvertible with others...
|
||||
inst.install(genericSubtract)
|
||||
assert.throws(() => inst.typeMerge(3, undefined), TypeError)
|
||||
})
|
||||
|
@ -1,20 +0,0 @@
|
||||
import assert from 'assert'
|
||||
import math from '../../src/pocomath.mjs'
|
||||
|
||||
describe('generic', () => {
|
||||
it('calculates mean', () => {
|
||||
assert.strictEqual(math.mean(1,2.5,3.25,4.75), 2.875)
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('mean', 'number,number,number,number'),
|
||||
'number'
|
||||
)
|
||||
})
|
||||
it('compares things', () => {
|
||||
assert.strictEqual(math.larger(7n, 3n), true)
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('larger', 'bigint,bigint'), 'boolean')
|
||||
assert.strictEqual(math.smallerEq(7.2, 3), false)
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('smallerEq', 'number,NumInt'), 'boolean')
|
||||
})
|
||||
})
|
@ -1,101 +0,0 @@
|
||||
import assert from 'assert'
|
||||
import math from '../../src/pocomath.mjs'
|
||||
import Fraction from 'fraction.js/bigfraction.js'
|
||||
|
||||
describe('fraction', () => {
|
||||
const half = new Fraction(1/2)
|
||||
const tf = new Fraction(3, 4)
|
||||
let zero // will fill in during a test
|
||||
const one = new Fraction(1)
|
||||
|
||||
it('supports typeOf', () => {
|
||||
assert.strictEqual(math.typeOf(half), 'Fraction')
|
||||
})
|
||||
|
||||
it('can be built', () => {
|
||||
zero = math.fraction()
|
||||
assert.deepStrictEqual(zero, new Fraction(0))
|
||||
assert.deepStrictEqual(math.fraction(1/2), half)
|
||||
assert.strictEqual(math.fraction(half), half) // maybe it should be a clone?
|
||||
assert.strictEqual(math.fraction(9, 16).valueOf(), 9/16)
|
||||
assert.strictEqual(math.fraction(9n, 16n).valueOf(), 9/16)
|
||||
})
|
||||
|
||||
it('has abs and sign', () => {
|
||||
assert.deepStrictEqual(math.abs(math.fraction('-1/2')), half)
|
||||
assert.deepStrictEqual(math.sign(math.negate(tf)), math.negate(one))
|
||||
})
|
||||
|
||||
it('can add and multiply', () => {
|
||||
assert.strictEqual(math.add(half, 1).valueOf(), 1.5)
|
||||
assert.strictEqual(math.multiply(2, half).valueOf(), 1)
|
||||
})
|
||||
|
||||
it('can subtract and divide', () => {
|
||||
assert.strictEqual(math.subtract(half,tf).valueOf(), -0.25)
|
||||
assert.strictEqual(math.divide(tf,half).valueOf(), 1.5)
|
||||
})
|
||||
|
||||
it('computes mod', () => {
|
||||
assert.strictEqual(math.mod(tf, half).valueOf(), 0.25)
|
||||
assert.strictEqual(math.mod(tf, math.negate(half)).valueOf(), 0.25)
|
||||
assert.strictEqual(math.mod(math.negate(tf), half).valueOf(), 0.25)
|
||||
assert.strictEqual(
|
||||
math.mod(math.negate(tf), math.negate(half)).valueOf(),
|
||||
0.25)
|
||||
assert.deepStrictEqual(
|
||||
math.mod(math.fraction(-1, 3), half),
|
||||
math.fraction(1, 6))
|
||||
})
|
||||
|
||||
it('supports conjugate', () => {
|
||||
assert.strictEqual(math.conjugate(half), half)
|
||||
})
|
||||
|
||||
it('can compare fractions', () => {
|
||||
assert.deepStrictEqual(math.compare(tf, half), one)
|
||||
assert.strictEqual(math.equal(half, math.fraction("2/4")), true)
|
||||
assert.strictEqual(math.smaller(half, tf), true)
|
||||
assert.strictEqual(math.larger(half, tf), false)
|
||||
assert.strictEqual(math.smallerEq(tf, math.fraction(0.75)), true)
|
||||
assert.strictEqual(math.largerEq(tf, half), true)
|
||||
assert.strictEqual(math.unequal(half, tf), true)
|
||||
assert.strictEqual(math.isZero(math.zero(tf)), true)
|
||||
assert.strictEqual(math.isZero(half), false)
|
||||
})
|
||||
|
||||
it('computes gcd and lcm', () => {
|
||||
assert.strictEqual(math.gcd(half,tf).valueOf(), 0.25)
|
||||
assert.strictEqual(math.lcm(half,tf).valueOf(), 1.5)
|
||||
})
|
||||
|
||||
it('computes additive and multiplicative inverses', () => {
|
||||
assert.strictEqual(math.negate(half).valueOf(), -0.5)
|
||||
assert.deepStrictEqual(math.invert(tf), math.fraction('4/3'))
|
||||
})
|
||||
|
||||
it('computes integer parts and quotients', () => {
|
||||
assert.deepStrictEqual(math.floor(tf), zero)
|
||||
assert.deepStrictEqual(math.round(tf), one)
|
||||
assert.deepStrictEqual(math.ceiling(half), one)
|
||||
assert.deepStrictEqual(math.quotient(tf, half), one)
|
||||
assert.deepStrictEqual(
|
||||
math.roundquotient(math.fraction(7/8), half),
|
||||
math.multiply(2,math.one(tf)))
|
||||
})
|
||||
|
||||
it('has no sqrt (although that should be patched)', () => {
|
||||
assert.throws(() => math.sqrt(math.fraction(9/16)), TypeError)
|
||||
})
|
||||
|
||||
it('but it can square', () => {
|
||||
assert.deepStrictEqual(math.square(tf), math.fraction(9/16))
|
||||
})
|
||||
|
||||
it('knows the types of its operations', () => {
|
||||
assert.deepStrictEqual(
|
||||
math.returnTypeOf('ceiling', 'Fraction'), 'Fraction')
|
||||
assert.deepStrictEqual(
|
||||
math.returnTypeOf('multiply', 'Fraction,Fraction'), 'Fraction')
|
||||
})
|
||||
})
|
@ -8,12 +8,14 @@ describe('tuple', () => {
|
||||
|
||||
it('does not allow unification by converting consecutive arguments', () => {
|
||||
assert.throws(() => math.tuple(3, 5.2, 2n), /TypeError.*unif/)
|
||||
// Hence, the order matters in a slightly unfortunate way,
|
||||
// but I think being a little ragged in these edge cases is OK:
|
||||
assert.throws(
|
||||
() => math.tuple(3, 2n, math.complex(5.2)),
|
||||
/TypeError.*unif/)
|
||||
assert.throws(
|
||||
() => math.tuple(3, math.complex(2n), 5.2),
|
||||
/TypeError.*unif/)
|
||||
assert.deepStrictEqual(
|
||||
math.tuple(3, math.complex(2n), 5.2),
|
||||
{elts: [math.complex(3), math.complex(2n), math.complex(5.2)]})
|
||||
})
|
||||
|
||||
it('can be tested for zero and equality', () => {
|
||||
@ -54,9 +56,6 @@ describe('tuple', () => {
|
||||
assert.deepStrictEqual(
|
||||
math.subtract(math.tuple(3n,4n,5n), math.tuple(2n,1n,0n)),
|
||||
math.tuple(1n,3n,5n))
|
||||
assert.deepStrictEqual(
|
||||
math.returnTypeOf('subtract', 'Tuple<bigint>,Tuple<bigint>'),
|
||||
'Tuple<bigint>')
|
||||
assert.throws(
|
||||
() => math.subtract(math.tuple(5,6), math.tuple(7)),
|
||||
/RangeError/)
|
||||
@ -107,16 +106,9 @@ describe('tuple', () => {
|
||||
})
|
||||
|
||||
it('supports sqrt', () => {
|
||||
const mixedTuple = math.tuple(2, math.complex(0,2), 1.5)
|
||||
assert.deepStrictEqual(
|
||||
mixedTuple,
|
||||
math.tuple(math.complex(2), math.complex(0,2), math.complex(1.5)))
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('tuple', 'NumInt, Complex<NumInt>, number'),
|
||||
'Tuple<Complex<number>>')
|
||||
assert.deepStrictEqual(math.sqrt(math.tuple(4,-4,2.25)), mixedTuple)
|
||||
assert.strictEqual(
|
||||
math.returnTypeOf('sqrt', 'Tuple<NumInt>'), 'Tuple<Complex<number>>')
|
||||
math.sqrt(math.tuple(4,-4,2.25)),
|
||||
math.tuple(2, math.complex(0,2), 1.5))
|
||||
})
|
||||
|
||||
})
|
||||
|
@ -1,46 +0,0 @@
|
||||
import assert from 'assert'
|
||||
|
||||
export const epsilon = 1e-12
|
||||
|
||||
const isNumber = entity => (typeof entity === 'number')
|
||||
|
||||
export function equal(a, b) {
|
||||
if (isNumber(a) && isNumber(b)) {
|
||||
if (a === b) return true
|
||||
if (isNaN(a)) return assert.strictEqual(a.toString(), b.toString())
|
||||
const message = `${a} ~= ${b} (to ${epsilon})`
|
||||
if (a === 0) return assert.ok(Math.abs(b) < epsilon, message)
|
||||
if (b === 0) return assert.ok(Math.abs(a) < epsilon, message)
|
||||
const diff = Math.abs(a - b)
|
||||
const maxDiff = Math.abs(epsilon * Math.max(Math.abs(a), Math.abs(b)))
|
||||
return assert.ok(diff <= maxDiff, message)
|
||||
}
|
||||
return assert.strictEqual(a, b)
|
||||
}
|
||||
|
||||
export function deepEqual(a, b) {
|
||||
if (Array.isArray(a) && Array.isArray(b)) {
|
||||
const alen = a.length
|
||||
assert.strictEqual(alen, b.length, `${a} ~= ${b}`)
|
||||
for (let i = 0; i < alen; ++i) deepEqual(a[i], b[i])
|
||||
return true
|
||||
}
|
||||
if (typeof a === 'object' && typeof b === 'object') {
|
||||
for (const prop in a) {
|
||||
if (a.hasOwnProperty(prop)) {
|
||||
assert.ok(
|
||||
b.hasOwnProperty(prop), `a[${prop}] = ${a[prop]} ~= ${b[prop]}`)
|
||||
deepEqual(a[prop], b[prop])
|
||||
}
|
||||
}
|
||||
|
||||
for (const prop in b) {
|
||||
if (b.hasOwnProperty(prop)) {
|
||||
assert.ok(
|
||||
a.hasOwnProperty(prop), `${a[prop]} ~= ${b[prop]} = b[${prop}]`)
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
return equal(a, b)
|
||||
}
|
Loading…
Reference in New Issue
Block a user