Compare commits

...

10 Commits

Author SHA1 Message Date
7ec9686019 feat: Homogeneous typed Tuple class using templates 2022-08-05 05:44:28 -07:00
b0fb004224 feat: Template types for Pocomath
Tuple<T> and a couple of functions on it are now working according to
  the target spec. As desired, no instantiations of a template type
  are made until some function that takes an instantiation is called.
2022-08-04 08:23:14 -07:00
a743337134 refactor: fill in stub for instantiating template type 2022-08-03 19:57:11 -07:00
e82bcf5a9c refactor: Include more code that should work for instantiating type templates
In particular, there is now an empty stub for the function that actually
  installs the instantiations into the PocomathInstance
2022-08-03 17:55:53 -07:00
27bf23db54 feat(Tuple): Stub for a template type
This adds the target initial definition of a homogeneous Tuple<T>
  type, and just enough processing that the type can be defined and
  non-template methods that deal with the generic base type Tuple can
  be called. Still has no actual template instantiation.
2022-08-03 11:27:40 -07:00
21ce098f98 test(templates): Check that unjoinable types are detected 2022-08-03 10:22:17 -07:00
01658b13c2 test(templates): Add one more (unfortunate) test case 2022-08-03 09:42:13 -07:00
5dab7d64e7 fix(templates): Enhance the catchall to call the correct specialization
Also enhances type inference in preparation for template types.
2022-08-03 09:35:11 -07:00
880efac15b feat(gcd,lcm): Allow arbitrarily many arguments
And add an 'associate' predicate for two complex numbers to check the results
2022-08-02 10:32:06 -07:00
1b8314c0cc refactor: Tighten definition of complex gcd to just GaussianInteger 2022-08-02 09:52:39 -07:00
28 changed files with 920 additions and 129 deletions

View File

@ -1,9 +1,11 @@
import gcdType from '../generic/gcdType.mjs'
import {identity} from '../generic/identity.mjs'
export * from './Types/bigint.mjs'
export {add} from './add.mjs'
export {compare} from './compare.mjs'
export const conjugate = {bigint: () => identity}
export {divide} from './divide.mjs'
export const gcd = gcdType('bigint')
export {isZero} from './isZero.mjs'

View File

@ -7,16 +7,16 @@ export const add = {
*/
'Complex,number': ({
'self(number,number)': addNum,
'complex(any,any)': cplx
'complex(number,number)': cplx
}) => (z,x) => cplx(addNum(z.re, x), z.im),
'Complex,bigint': ({
'self(bigint,bigint)': addBigInt,
'complex(any,any)': cplx
'complex(bigint,bigint)': cplx
}) => (z,x) => cplx(addBigInt(z.re, x), z.im),
'Complex,Complex': ({
self,
'complex(any,any)': cplx
}) => (w,z) => cplx(self(w.re, z.re), self(w.im, z.im))
complex
}) => (w,z) => complex(self(w.re, z.re), self(w.im, z.im))
}

17
src/complex/associate.mjs Normal file
View File

@ -0,0 +1,17 @@
export * from './Types/Complex.mjs'
/* Returns true if w is z multiplied by a complex unit */
export const associate = {
'Complex,Complex': ({
'multiply(Complex,Complex)': times,
'equalTT(Complex,Complex)': eq,
zero,
one,
complex,
'negate(Complex)': neg
}) => (w,z) => {
if (eq(w,z) || eq(w,neg(z))) return true
const ti = times(z, complex(zero(z.re), one(z.im)))
return eq(w,ti) || eq(w,neg(ti))
}
}

View File

@ -9,7 +9,8 @@ export const complex = {
'undefined': () => u => u,
'undefined,any': () => (u, y) => u,
'any,undefined': () => (x, u) => u,
'any,any': () => (x, y) => ({re: x, im: y}),
'undefined,undefined': () => (u, v) => u,
'T,T': () => (x, y) => ({re: x, im: y}),
/* Take advantage of conversions in typed-function */
Complex: () => z => z
}

View File

@ -1,6 +1,6 @@
export * from './Types/Complex.mjs'
export const equal = {
export const equalTT = {
'Complex,number': ({
'isZero(number)': isZ,
'self(number,number)': eqNum

View File

@ -3,15 +3,18 @@ import * as Complex from './Types/Complex.mjs'
import gcdType from '../generic/gcdType.mjs'
const imps = {
gcdComplexRaw: gcdType('Complex'),
gcdGIRaw: gcdType('GaussianInteger'),
gcd: { // Only return gcds with positive real part
'Complex, Complex': ({gcdComplexRaw, sign, one, negate}) => (z,m) => {
const raw = gcdComplexRaw(z, m)
if (sign(raw.re) === one(raw.re)) return raw
return negate(raw)
'GaussianInteger,GaussianInteger': ({
'gcdGIRaw(GaussianInteger,GaussianInteger)': gcdRaw,
'sign(bigint)': sgn,
'negate(GaussianInteger)': neg
}) => (z,m) => {
const raw = gcdRaw(z, m)
if (sgn(raw.re) === 1n) return raw
return neg(raw)
}
}
}
export const gcd = PocomathInstance.merge(Complex, imps)

View File

@ -1,13 +1,12 @@
import gcdType from '../generic/gcdType.mjs'
export * from './Types/Complex.mjs'
export {abs} from './abs.mjs'
export {absquare} from './absquare.mjs'
export {add} from './add.mjs'
export {conjugate} from './conjugate.mjs'
export {associate} from './associate.mjs'
export {complex} from './complex.mjs'
export {equal} from './equal.mjs'
export {conjugate} from './conjugate.mjs'
export {equalTT} from './equalTT.mjs'
export {gcd} from './gcd.mjs'
export {invert} from './invert.mjs'
export {isZero} from './isZero.mjs'

View File

@ -1,12 +1,13 @@
/* Core of pocomath: create an instance */
import typed from 'typed-function'
import dependencyExtractor from './dependencyExtractor.mjs'
import {dependencyExtractor, generateTypeExtractor} from './extractors.mjs'
import {makeChain} from './Chain.mjs'
import {subsetOfKeys, typesOfSignature} from './utils.mjs'
import {typeListOfSignature, typesOfSignature, subsetOfKeys} from './utils.mjs'
const anySpec = {} // fixed dummy specification of 'any' type
const theTemplateParam = 'T' // First pass: only allow this one exact parameter
const templateFromParam = 'U' // For defining covariant conversions
/* Returns a new signature just like sig but with the parameter replaced by
* the type
@ -27,7 +28,10 @@ export default class PocomathInstance {
'importDependencies',
'install',
'installType',
'joinTypes',
'name',
'self',
'Templates',
'typeOf',
'Types',
'undefinedTypes'
@ -39,11 +43,17 @@ export default class PocomathInstance {
this._affects = {}
this._typed = typed.create()
this._typed.clear()
this._typed.addTypes([{name: 'ground', test: () => true}])
/* List of types installed in the instance. We start with just dummies
* for the 'any' type and for type parameters:
*/
this.Types = {any: anySpec}
this.Types[theTemplateParam] = anySpec
this.Types.ground = anySpec
// All the template types that have been defined
this.Templates = {}
// The actual type testing functions
this._typeTests = {}
this._subtypes = {} // For each type, gives all of its (in)direct subtypes
/* The following gives for each type, a set of all types that could
* match in typed-function's dispatch algorithm before the given type.
@ -52,8 +62,8 @@ export default class PocomathInstance {
* might match.
*/
this._priorTypes = {}
this._usedTypes = new Set() // all types that have occurred in a signature
this._doomed = new Set() // for detecting circular reference
this._seenTypes = new Set() // all types that have occurred in a signature
this._invalid = new Set() // methods that are currently invalid
this._config = {predictable: false, epsilon: 1e-12}
const self = this
this.config = new Proxy(this._config, {
@ -68,6 +78,12 @@ export default class PocomathInstance {
})
this._plainFunctions = new Set() // the names of the plain functions
this._chainRepository = {} // place to store chainified functions
this._installFunctions({
typeOf: {ground: {uses: new Set(), does: () => () => 'any'}}
})
this.joinTypes = this.joinTypes.bind(this)
}
/**
@ -177,9 +193,12 @@ export default class PocomathInstance {
_installInstance(other) {
for (const [type, spec] of Object.entries(other.Types)) {
if (type === 'any' || this._templateParam(type)) continue
if (spec === anySpec) continue
this.installType(type, spec)
}
for (const [base, info] of Object.entries(other.Templates)) {
this._installTemplateType(info.type, info.spec)
}
const migrateImps = {}
for (const operator in other._imps) {
if (operator != 'typeOf') { // skip the builtin, we already have it
@ -262,10 +281,15 @@ export default class PocomathInstance {
* the corresponding changes to the _typed object immediately
*/
installType(type, spec) {
if (this._templateParam(type)) {
const parts = type.split(/[<,>]/)
if (this._templateParam(parts[0])) {
throw new SyntaxError(
`Type name '${type}' reserved for template parameter`)
}
if (parts.some(this._templateParam.bind(this))) {
// It's a template, deal with it separately
return this._installTemplateType(type, spec)
}
if (type in this.Types) {
if (spec !== this.Types[type]) {
throw new SyntaxError(`Conflicting definitions of type ${type}`)
@ -278,7 +302,7 @@ export default class PocomathInstance {
}
let beforeType = spec.refines
if (!beforeType) {
beforeType = 'any'
beforeType = 'ground'
for (const other of spec.before || []) {
if (other in this.Types) {
beforeType = other
@ -291,68 +315,129 @@ export default class PocomathInstance {
const supertypeTest = this.Types[spec.refines].test
testFn = entity => supertypeTest(entity) && spec.test(entity)
}
this._typeTests[type] = testFn
this._typed.addTypes([{name: type, test: testFn}], beforeType)
this.Types[type] = spec
this._subtypes[type] = new Set()
this._priorTypes[type] = new Set()
// Update all the subtype sets of supertypes up the chain
let nextSuper = spec.refines
while (nextSuper) {
this._invalidateDependents(':' + nextSuper)
this._priorTypes[nextSuper].add(type)
this._subtypes[nextSuper].add(type)
nextSuper = this.Types[nextSuper].refines
}
/* Now add conversions to this type */
for (const from in (spec.from || {})) {
if (from in this.Types) {
// add conversions from "from" to this one and all its supertypes:
let nextSuper = type
while (nextSuper) {
if (this._priorTypes[nextSuper].has(from)) break
this._typed.addConversion(
{from, to: nextSuper, convert: spec.from[from]})
this._invalidateDependents(':' + nextSuper)
this._priorTypes[nextSuper].add(from)
/* And all of the subtypes of from are now prior as well: */
for (const subtype of this._subtypes[from]) {
this._priorTypes[nextSuper].add(subtype)
}
nextSuper = this.Types[nextSuper].refines
}
}
}
/* And add conversions from this type */
for (const to in this.Types) {
if (type in (this.Types[to].from || {})) {
if (spec.refines == to || spec.refines in this._subtypes[to]) {
throw new SyntaxError(
`Conversion of ${type} to its supertype ${to} disallowed.`)
}
let nextSuper = to
while (nextSuper) {
this._typed.addConversion({
from: type,
to: nextSuper,
convert: this.Types[to].from[type]
})
this._invalidateDependents(':' + nextSuper)
this._priorTypes[nextSuper].add(type)
nextSuper = this.Types[nextSuper].refines
for (const fromtype in this.Types[to].from) {
if (type == fromtype
|| (fromtype in this._subtypes
&& this._subtypes[fromtype].has(type))) {
if (spec.refines == to || spec.refines in this._subtypes[to]) {
throw new SyntaxError(
`Conversion of ${type} to its supertype ${to} disallowed.`)
}
let nextSuper = to
while (nextSuper) {
this._typed.addConversion({
from: type,
to: nextSuper,
convert: this.Types[to].from[fromtype]
})
this._invalidateDependents(':' + nextSuper)
this._priorTypes[nextSuper].add(type)
nextSuper = this.Types[nextSuper].refines
}
}
}
}
// Update all the subtype sets of supertypes up the chain, and
// while we are at it add trivial conversions from subtypes to supertypes
// to help typed-function match signatures properly:
this._subtypes[type] = new Set()
let nextSuper = spec.refines
while (nextSuper) {
this._typed.addConversion(
{from: type, to: nextSuper, convert: x => x})
this._invalidateDependents(':' + nextSuper)
this._priorTypes[nextSuper].add(type)
this._subtypes[nextSuper].add(type)
nextSuper = this.Types[nextSuper].refines
}
// update the typeOf function
const imp = {}
imp[type] = {uses: new Set(), does: () => () => type}
this._installFunctions({typeOf: imp})
}
/* Returns the most refined type of all the types in the array, with
* '' standing for the empty type for convenience. If the second
* argument `convert` is true, a convertible type is considered a
* a subtype (defaults to false).
*/
joinTypes(types, convert) {
let join = ''
for (const type of types) {
join = this._joinTypes(join, type, convert)
}
return join
}
/* helper for above */
_joinTypes(typeA, typeB, convert) {
if (!typeA) return typeB
if (!typeB) return typeA
if (typeA === 'any' || typeB === 'any') return 'any'
if (typeA === 'ground' || typeB === 'ground') return 'ground'
if (typeA === typeB) return typeA
const subber = convert ? this._priorTypes : this._subtypes
if (subber[typeB].has(typeA)) return typeB
/* OK, so we need the most refined supertype of A that contains B:
*/
let nextSuper = typeA
while (nextSuper) {
if (subber[nextSuper].has(typeB)) return nextSuper
nextSuper = this.Types[nextSuper].refines
}
/* And if conversions are allowed, we have to search the other way too */
if (convert) {
nextSuper = typeB
while (nextSuper) {
if (subber[nextSuper].has(typeA)) return nextSuper
nextSuper = this.Types[nextSuper].refines
}
}
return 'any'
}
/* Returns a list of all types that have been mentioned in the
* signatures of operations, but which have not actually been installed:
*/
undefinedTypes() {
return Array.from(this._usedTypes).filter(t => !(t in this.Types))
return Array.from(this._seenTypes).filter(t => !(t in this.Types))
}
/* Used internally to install a template type */
_installTemplateType(type, spec) {
const base = type.split('<')[0]
/* For now, just allow a single template per base type; that
* might need to change later:
*/
if (base in this.Templates) {
if (spec !== this.Templates[base].spec) {
throw new SyntaxError(
`Conflicting definitions of template type ${type}`)
}
return
}
// Nothing actually happens until we match a template parameter
this.Templates[base] = {type, spec}
}
/* Used internally by install, see the documentation there */
@ -392,9 +477,12 @@ export default class PocomathInstance {
this._addAffect(depname, name)
}
for (const type of typesOfSignature(signature)) {
if (this._templateParam(type)) continue
this._usedTypes.add(type)
this._addAffect(':' + type, name)
for (const word of type.split(/[<>]/)) {
if (word.length == 0) continue
if (this._templateParam(word)) continue
this._seenTypes.add(word)
this._addAffect(':' + word, name)
}
}
}
}
@ -420,20 +508,20 @@ export default class PocomathInstance {
* and if it has no implementations so far, set them up.
*/
_invalidate(name) {
if (this._doomed.has(name)) {
/* In the midst of a circular invalidation, so do nothing */
return
}
if (this._invalid.has(name)) return
if (!(name in this._imps)) {
this._imps[name] = {}
}
this._doomed.add(name)
this._invalid.add(name)
this._invalidateDependents(name)
this._doomed.delete(name)
const self = this
Object.defineProperty(this, name, {
configurable: true,
get: () => self._bundle(name)
get: () => {
const result = self._bundle(name)
self._invalid.delete(name)
return result
}
})
}
@ -457,22 +545,38 @@ export default class PocomathInstance {
if (!imps) {
throw new SyntaxError(`No implementations for ${name}`)
}
const usableEntries = Object.entries(imps).filter(
([signature]) => subsetOfKeys(typesOfSignature(signature), this.Types))
/* Collect the entries we know the types for */
const usableEntries = []
for (const entry of Object.entries(imps)) {
let keep = true
for (const type of typesOfSignature(entry[0])) {
if (type in this.Types) continue
const baseType = type.split('<')[0]
if (baseType in this.Templates) continue
keep = false
break
}
if (keep) usableEntries.push(entry)
}
if (usableEntries.length === 0) {
throw new SyntaxError(
`Every implementation for ${name} uses an undefined type;\n`
+ ` signatures: ${Object.keys(imps)}`)
}
/* Initial error checking done; mark this method as being
* in the midst of being reassembled
*/
Object.defineProperty(this, name, {configurable: true, value: 'limbo'})
const tf_imps = {}
for (const [rawSignature, behavior] of usableEntries) {
/* Check if it's an ordinary non-template signature */
let explicit = true
for (const type of typesOfSignature(rawSignature)) {
if (this._templateParam(type)) { // template types need better check
explicit = false
break
for (const word of type.split(/[<>]/)) {
if (this._templateParam(word)) {
explicit = false
break
}
}
}
if (explicit) {
@ -485,16 +589,10 @@ export default class PocomathInstance {
behavior.instantiations = new Set()
}
let instantiationSet = new Set()
let trimSignature = rawSignature
if (rawSignature.charAt(0) === '!') {
trimSignature = trimSignature.slice(1)
instantiationSet = this._usedTypes
} else {
for (const instType of behavior.instantiations) {
instantiationSet.add(instType)
for (const other of this._priorTypes[instType]) {
instantiationSet.add(other)
}
for (const instType of behavior.instantiations) {
instantiationSet.add(instType)
for (const other of this._priorTypes[instType]) {
instantiationSet.add(other)
}
}
@ -502,7 +600,7 @@ export default class PocomathInstance {
if (!(instType in this.Types)) continue
if (this.Types[instType] === anySpec) continue
const signature =
substituteInSig(trimSignature, theTemplateParam, instType)
substituteInSig(rawSignature, theTemplateParam, instType)
/* Don't override an explicit implementation: */
if (signature in imps) continue
const uses = new Set()
@ -521,44 +619,170 @@ export default class PocomathInstance {
innerRefs[dep] = refs[outerName]
}
}
const original = behavior.does(innerRefs)
return behavior.does(innerRefs)
}
this._addTFimplementation(tf_imps, signature, {uses, does: patch})
this._addTFimplementation(
tf_imps, signature, {uses, does: patch})
}
/* Now add the catchall signature */
let templateCall = `<${theTemplateParam}>`
/* Relying here that the base of 'Foo<T>' is 'Foo': */
let baseSignature = rawSignature.replaceAll(templateCall, '')
/* Any remaining template params are top-level */
const signature = substituteInSig(
trimSignature, theTemplateParam, 'any')
baseSignature, theTemplateParam, 'ground')
/* The catchall signature has to detect the actual type of the call
* and add the new instantiations
* and add the new instantiations.
* First, prepare the type inference data:
*/
const argTypes = trimSignature.split(',')
let exemplar = -1
for (let i = 0; i < argTypes.length; ++i) {
const argType = argTypes[i].trim()
if (argType === theTemplateParam) {
exemplar = i
break
}
}
if (exemplar < 0) {
const parTypes = rawSignature.split(',')
const restParam = (parTypes[parTypes.length-1].slice(0,3) === '...')
const topTyper = entity => this.typeOf(entity)
const inferences = parTypes.map(
type => generateTypeExtractor(
type,
theTemplateParam,
topTyper,
this.joinTypes.bind(this),
this.Templates))
if (inferences.every(x => !x)) { // all false
throw new SyntaxError(
`Cannot find template parameter in ${rawSignature}`)
}
/* And eliminate template parameters from the dependencies */
const simplifiedUses = {}
for (const dep of behavior.uses) {
let [func, needsig] = dep.split(/[()]/)
if (needsig) {
const subsig = substituteInSig(needsig, theTemplateParam, '')
if (subsig === needsig) {
simplifiedUses[dep] = dep
} else {
simplifiedUses[dep] = func
}
} else {
simplifiedUses[dep] = dep
}
}
/* Now build the catchall implementation */
const self = this
const patch = (refs) => (...args) => {
const example = args[exemplar]
const instantiateFor = self.typeOf(example)
/* We unbundle the rest arg if there is one */
const regLength = args.length - 1
if (restParam) {
const restArgs = args.pop()
args = args.concat(restArgs)
}
/* Now infer the type we actually should have been called for */
let i = -1
let j = -1
/* collect the arg types */
const argTypes = []
for (const arg of args) {
++j
// in case of rest parameter, reuse last parameter type:
if (i < inferences.length - 1) ++i
if (inferences[i]) {
const argType = inferences[i](arg)
if (!argType) {
throw TypeError(
`Type inference failed for argument ${j} of ${name}`)
}
if (argType === 'any') {
throw TypeError(
`In call to ${name}, incompatible template arguments: `
+ args.map(a => JSON.stringify(a)).join(', '))
}
argTypes.push(argType)
}
}
if (argTypes.length === 0) {
throw TypeError('Type inference failed for' + name)
}
let usedConversions = false
let instantiateFor = self.joinTypes(argTypes)
if (instantiateFor === 'any') {
usedConversions = true
instantiateFor = self.joinTypes(argTypes, usedConversions)
if (instantiateFor === 'any') {
throw TypeError(
`In call to ${name}, no type unifies arguments `
+ args.toString() + '; of types ' + argTypes.toString()
+ '; note each consecutive pair must unify to a '
+ 'supertype of at least one of them')
}
}
/* Generate the list of actual wanted types */
const wantTypes = parTypes.map(type => substituteInSig(
type, theTemplateParam, instantiateFor))
/* Now we have to add any actual types that are relevant
* to this invocation. Namely, that would be every formal parameter
* type in the invocation, with the parameter template instantiated
* by instantiateFor, and for all of instantiateFor's "prior types"
*/
for (j = 0; j < parTypes.length; ++j) {
if (wantTypes[j] !== parTypes[j] && parTypes[j].includes('<')) {
// actually used the param and is a template
self._ensureTemplateTypes(parTypes[j], instantiateFor)
}
}
/* Transform the arguments if we used any conversions: */
if (usedConversions) {
i = - 1
for (j = 0; j < args.length; ++j) {
if (i < parTypes.length - 1) ++i
let wantType = parTypes[i]
if (wantType.slice(0,3) === '...') {
wantType = wantType.slice(3)
}
wantType = substituteInSig(
wantType, theTemplateParam, instantiateFor)
if (wantType !== parTypes[i]) {
args[j] = self._typed.convert(args[j], wantType)
}
}
}
/* Finally reassemble the rest args if there were any */
if (restParam) {
const restArgs = args.slice(regLength)
args = args.slice(0,regLength)
args.push(restArgs)
}
/* Arrange that the desired instantiation will be there next
* time so we don't have to go through that again for this type
*/
refs[theTemplateParam] = instantiateFor
behavior.instantiations.add(instantiateFor)
self._invalidate(name)
// And for now, we have to rely on the "any" implementation. Hope
// it matches the instantiated one!
return behavior.does(refs)(...args)
// And update refs because we now know the type we're instantiating
// for:
const innerRefs = {}
for (const dep in simplifiedUses) {
const simplifiedDep = simplifiedUses[dep]
if (dep === simplifiedDep) {
innerRefs[dep] = refs[dep]
} else {
let [func, needsig] = dep.split(/[()]/)
if (self._typed.isTypedFunction(refs[simplifiedDep])) {
const subsig = substituteInSig(
needsig, theTemplateParam, instantiateFor)
let resname = simplifiedDep
if (resname === 'self') resname = name
innerRefs[dep] = self._pocoresolve(resname, subsig)
} else {
innerRefs[dep] = refs[simplifiedDep]
}
}
}
// Finally ready to make the call.
return behavior.does(innerRefs)(...args)
}
// The actual uses value needs to be a set:
const outerUses = new Set(Object.values(simplifiedUses))
this._addTFimplementation(
tf_imps, signature, {uses: behavior.uses, does: patch})
tf_imps, signature, {uses: outerUses, does: patch})
}
this._correctPartialSelfRefs(tf_imps)
const tf = this._typed(name, tf_imps)
Object.defineProperty(this, name, {configurable: true, value: tf})
return tf
@ -579,9 +803,17 @@ export default class PocomathInstance {
let part_self_references = []
for (const dep of uses) {
let [func, needsig] = dep.split(/[()]/)
const needTypes = needsig ? typesOfSignature(needsig) : new Set()
/* For now, punt on template parameters */
if (needTypes.has(theTemplateParam)) needsig = ''
/* Safety check that can perhaps be removed:
* Verify that the desired signature has been fully grounded:
*/
if (needsig) {
const trysig = substituteInSig(needsig, theTemplateParam, '')
if (trysig !== needsig) {
throw new Error(
'Attempt to add a template implementation: ' +
`${signature} with dependency ${dep}`)
}
}
if (func === 'self') {
if (needsig) {
if (full_self_referential) {
@ -614,7 +846,7 @@ export default class PocomathInstance {
// can bundle up func, and grab its signature if need be
let destination = this[func]
if (needsig) {
destination = this._typed.find(destination, needsig)
destination = this._pocoresolve(func, needsig)
}
refs[dep] = destination
}
@ -628,16 +860,215 @@ export default class PocomathInstance {
return
}
if (part_self_references.length) {
imps[signature] = this._typed.referTo(
...part_self_references, (...impls) => {
/* There is an obstruction here. The list part_self_references
* might contain a signature that requires conversion for self to
* handle. But I advocated this not be allowed in typed.referTo, which
* made sense for human-written functions, but is unfortunate now.
* So we have to defer creating these and correct them later, at
* least until we can add an option to typed-function.
*/
imps[signature] = {
deferred: true,
builtRefs: refs,
sigDoes: does,
psr: part_self_references
}
return
}
imps[signature] = does(refs)
}
_correctPartialSelfRefs(imps) {
for (const aSignature in imps) {
if (!(imps[aSignature].deferred)) continue
const part_self_references = imps[aSignature].psr
const corrected_self_references = []
for (const neededSig of part_self_references) {
// Have to find a match for neededSig among the other signatures
// of this function. That's a job for typed-function, but we will
// try here:
if (neededSig in imps) { // the easy case
corrected_self_references.push(neededSig)
continue
}
// No exact match, try to get one that matches with
// subtypes since the whole conversion thing in typed-function
// is too complicated to reproduce
const foundSig = this._findSubtypeImpl(imps, neededSig)
if (foundSig) {
corrected_self_references.push(foundSig)
} else {
throw new Error(
'Implement inexact self-reference in typed-function for '
+ neededSig)
}
}
const refs = imps[aSignature].builtRefs
const does = imps[aSignature].sigDoes
imps[aSignature] = this._typed.referTo(
...corrected_self_references, (...impls) => {
for (let i = 0; i < part_self_references.length; ++i) {
refs[`self(${part_self_references[i]})`] = impls[i]
}
return does(refs)
}
)
return
}
imps[signature] = does(refs)
}
/* This function analyzes the template and makes sure the
* instantiations of it for type and all prior types of type are present
* in the instance.
*/
_ensureTemplateTypes(template, type) {
let [base, arg] = template.split('<', 2)
arg = arg.slice(0,-1)
if (!arg) {
throw new Error(
'Implementation error in _ensureTemplateTypes', template, type)
}
let instantiations
if (this._templateParam(arg)) { // 1st-level template
instantiations = new Set(this._priorTypes[type])
instantiations.add(type)
} else { // nested template
instantiations = this._ensureTemplateTypes(arg, type)
}
const resultingTypes = new Set()
for (const iType of instantiations) {
const resultType = this._maybeAddTemplateType(base, iType)
if (resultType) resultingTypes.add(resultType)
}
return resultingTypes
}
/* Maybe add the instantiation of template type base with argument tyoe
* instantiator to the Types of this instance, if it hasn't happened already.
* Returns the name of the type if added, false otherwise.
*/
_maybeAddTemplateType(base, instantiator) {
const wantsType = `${base}<${instantiator}>`
if (wantsType in this.Types) return false
// OK, need to generate the type from the template
// Set up refines, before, test, and from
const newTypeSpec = {refines: base}
const maybeFrom = {}
const template = this.Templates[base].spec
if (!template) {
throw new Error(
`Implementor error in _maybeAddTemplateType ${base} ${instantiator}`)
}
const instantiatorSpec = this.Types[instantiator]
let beforeTypes = []
if (instantiatorSpec.before) {
beforeTypes = instantiatorSpec.before.map(type => `${base}<${type}>`)
}
if (template.before) {
for (const beforeTmpl of template.before) {
beforeTypes.push(
substituteInSig(beforeTmpl, theTemplateParam, instantiator))
}
}
if (beforeTypes.length > 0) {
newTypeSpec.before = beforeTypes
}
newTypeSpec.test = template.test(this._typeTests[instantiator])
if (template.from) {
for (let source in template.from) {
const instSource = substituteInSig(
source, theTemplateParam, instantiator)
let usesFromParam = false
for (const word of instSource.split(/[<>]/)) {
if (word === templateFromParam) {
usesFromParam = true
break
}
}
if (usesFromParam) {
for (const iFrom in instantiatorSpec.from) {
const finalSource = substituteInSig(
instSource, templateFromParam, iFrom)
maybeFrom[finalSource] = template.from[source](
instantiatorSpec.from[iFrom])
}
// Assuming all templates are covariant here, I guess...
for (const subType of this._subtypes[instantiator]) {
const finalSource = substituteInSig(
instSource, templateFromParam, subType)
maybeFrom[finalSource] = template.from[source](x => x)
}
} else {
maybeFrom[instSource] = template.from[source]
}
}
}
if (Object.keys(maybeFrom).length > 0) {
newTypeSpec.from = maybeFrom
}
this.installType(wantsType, newTypeSpec)
return wantsType
}
_findSubtypeImpl(imps, neededSig) {
if (neededSig in imps) return neededSig
let foundSig = false
const typeList = typeListOfSignature(neededSig)
for (const otherSig in imps) {
const otherTypeList = typeListOfSignature(otherSig)
if (typeList.length !== otherTypeList.length) continue
let allMatch = true
for (let k = 0; k < typeList.length; ++k) {
let myType = typeList[k]
let otherType = otherTypeList[k]
if (otherType === theTemplateParam) {
otherTypeList[k] = 'ground'
otherType = 'ground'
}
if (otherType === '...T') {
otherTypeList[k] = '...ground'
otherType = 'ground'
}
const adjustedOtherType = otherType.replaceAll(
`<${theTemplateParam}>`, '')
if (adjustedOtherType !== otherType) {
otherTypeList[k] = adjustedOtherType
otherType = adjustedOtherType
}
if (myType.slice(0,3) === '...') myType = myType.slice(3)
if (otherType.slice(0,3) === '...') otherType = otherType.slice(3)
if (otherType === 'any') continue
if (otherType === 'ground') continue
if (!(otherType in this.Types)) {
allMatch = false
break
}
if (myType === otherType
|| this._subtypes[otherType].has(myType)) {
continue
}
allMatch = false
break
}
if (allMatch) {
foundSig = otherTypeList.join(',')
break
}
}
return foundSig
}
_pocoresolve(name, sig) {
const typedfunc = this[name]
let result = undefined
try {
result = this._typed.find(typedfunc, sig, {exact: true})
} catch {
}
if (result) return result
const foundsig = this._findSubtypeImpl(this._imps[name], sig)
if (foundsig) return this._typed.find(typedfunc, foundsig)
return this._typed.find(typedfunc, sig)
}
}

View File

@ -1,12 +0,0 @@
/* Call this with an empty Set object S, and it returns an entity E
* from which properties can be extracted, and at any time S will
* contain all of the property names that have been extracted from E.
*/
export default function dependencyExtractor(destinationSet) {
return new Proxy({}, {
get: (target, property) => {
destinationSet.add(property)
return {}
}
})
}

41
src/core/extractors.mjs Normal file
View File

@ -0,0 +1,41 @@
/* Call this with an empty Set object S, and it returns an entity E
* from which properties can be extracted, and at any time S will
* contain all of the property names that have been extracted from E.
*/
export function dependencyExtractor(destinationSet) {
return new Proxy({}, {
get: (target, property) => {
destinationSet.add(property)
return {}
}
})
}
/* Given a (template) type name, what the template parameter is,
* a top level typer, and a library of templates,
* produces a function that will extract the instantantion type from an
* instance. Currently relies heavily on there being only unary templates.
*
* We should really be using the typed-function parser to do the
* manipulations below, but at the moment we don't have access.
*/
export function generateTypeExtractor(
type, param, topTyper, typeJoiner, templates)
{
type = type.trim()
if (type.slice(0,3) === '...') {
type = type.slice(3).trim()
}
if (type === param) return topTyper
if (!(type.includes('<'))) return false // no template type to extract
const base = type.split('<',1)[0]
if (!(base in templates)) return false // unknown template
const arg = type.slice(base.length+1, -1)
const argExtractor = generateTypeExtractor(
arg, param, topTyper, typeJoiner, templates)
if (!argExtractor) return false
return templates[base].spec.infer({
typeOf: argExtractor,
joinTypes: typeJoiner
})
}

View File

@ -6,6 +6,11 @@ export function subsetOfKeys(set, obj) {
return true
}
/* Returns a list of the types mentioned in a typed-function signature */
export function typeListOfSignature(signature) {
return signature.split(',').map(s => s.trim())
}
/* Returns a set of all of the types mentioned in a typed-function signature */
export function typesOfSignature(signature) {
return new Set(signature.split(/[^\w\d]/).filter(s => s.length))

View File

@ -3,6 +3,8 @@ import {reducingOperation} from './reducingOperation.mjs'
export * from './Types/generic.mjs'
export const add = reducingOperation
export const gcd = reducingOperation
export {identity} from './identity.mjs'
export {lcm} from './lcm.mjs'
export {mean} from './mean.mjs'
export {mod} from './mod.mjs'

3
src/generic/identity.mjs Normal file
View File

@ -0,0 +1,3 @@
export function identity(x) {
return x
}

View File

@ -1,3 +1,5 @@
import {reducingOperation} from './reducingOperation.mjs'
export const lcm = {
'T,T': ({
'multiply(T,T)': multT,
@ -5,3 +7,4 @@ export const lcm = {
'gcd(T,T)': gcdT
}) => (a,b) => multT(quotT(a, gcdT(a,b)), b)
}
Object.assign(lcm, reducingOperation)

View File

@ -7,14 +7,27 @@ export const isZero = {
}
export const equal = {
'!T,T': ({
'any,any': ({equalTT, joinTypes, Templates, typeOf}) => (x,y) => {
const resultant = joinTypes([typeOf(x), typeOf(y)], 'convert')
if (resultant === 'any' || resultant in Templates) {
return false
}
return equalTT(x,y)
}
}
export const equalTT = {
'T,T': ({
'compare(T,T)': cmp,
'isZero(T)': isZ
}) => (x,y) => isZ(cmp(x,y))
}) => (x,y) => isZ(cmp(x,y)),
// If templates were native to typed-function, we should be able to
// do something like:
// 'any,any': () => () => false // should only be hit for different types
}
export const unequal = {
'T,T': ({'equal(T.T)': eq}) => (x,y) => !(eq(x,y))
'any,any': ({equal}) => (x,y) => !(equal(x,y))
}
export const larger = {

View File

@ -1,10 +1,12 @@
import gcdType from '../generic/gcdType.mjs'
import {identity} from '../generic/identity.mjs'
export * from './Types/number.mjs'
export {abs} from './abs.mjs'
export {add} from './add.mjs'
export {compare} from './compare.mjs'
export const conjugate = {number: () => identity}
export const gcd = gcdType('NumInt')
export {invert} from './invert.mjs'
export {isZero} from './isZero.mjs'

View File

@ -12,7 +12,7 @@ export const floor = {
// entry with type `bigint|NumInt|GaussianInteger` because they couldn't
// be separately activated then
number: ({'equal(number,number)': eq}) => n => {
number: ({'equalTT(number,number)': eq}) => n => {
if (eq(n, Math.round(n))) return Math.round(n)
return Math.floor(n)
},

View File

@ -3,10 +3,11 @@ import PocomathInstance from './core/PocomathInstance.mjs'
import * as numbers from './number/native.mjs'
import * as bigints from './bigint/native.mjs'
import * as complex from './complex/native.mjs'
import * as tuple from './tuple/native.mjs'
import * as generic from './generic/all.mjs'
import * as ops from './ops/all.mjs'
const math = PocomathInstance.merge(
'math', numbers, bigints, complex, generic, ops)
'math', numbers, bigints, complex, tuple, generic, ops)
export default math

80
src/tuple/Types/Tuple.mjs Normal file
View File

@ -0,0 +1,80 @@
/* A template type representing a homeogeneous tuple of elements */
import PocomathInstance from '../../core/PocomathInstance.mjs'
const Tuple = new PocomathInstance('Tuple')
// First a base type that will generally not be used directly
Tuple.installType('Tuple', {
test: t => t && typeof t === 'object' && 'elts' in t && Array.isArray(t.elts)
})
// Now the template type that is the primary use of this
Tuple.installType('Tuple<T>', {
// We are assuming that any 'Type<T>' refines 'Type', so this is
// not necessary:
// refines: 'Tuple',
// But we need there to be a way to determine the type of a tuple:
infer: ({typeOf, joinTypes}) => t => joinTypes(t.elts.map(typeOf)),
// For the test, we can assume that t is already a base tuple,
// and we get the test for T as an input and we have to return
// the test for Tuple<T>
test: testT => t => t.elts.every(testT),
// These are only invoked for types U such that there is already
// a conversion from U to T, and that conversion is passed as an input
// and we have to return the conversion to Tuple<T>:
from: {
'Tuple<U>': convert => tu => ({elts: tu.elts.map(convert)}),
// Here since there is no U it's a straight conversion:
T: t => ({elts: [t]}), // singleton promotion
// Whereas the following will let you go directly from an element
// convertible to T to a singleton Tuple<T>. Not sure if we really
// want that, but we'll try it just for kicks.
U: convert => u => ({elts: [convert(u)]})
}
})
Tuple.promoteUnary = {
'Tuple<T>': ({'self(T)': me, tuple}) => t => tuple(...(t.elts.map(me)))
}
Tuple.promoteBinaryUnary = {
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, 'self(T)': meU, tuple}) => (s,t) => {
let i = -1
let result = []
while (true) {
i += 1
if (i < s.elts.length) {
if (i < t.elts.length) result.push(meB(s.elts[i], t.elts[i]))
else result.push(meU(s.elts[i]))
continue
}
if (i < t.elts.length) result.push(meU(t.elts[i]))
else break
}
return tuple(...result)
}
}
Tuple.promoteBinary = {
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, tuple}) => (s,t) => {
const lim = Math.max(s.elts.length, t.elts.length)
const result = []
for (let i = 0; i < lim; ++i) {
result.push(meB(s.elts[i], t.elts[i]))
}
return tuple(...result)
}
}
Tuple.promoteBinaryStrict = {
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, tuple}) => (s,t) => {
if (s.elts.length !== t.elts.length) {
throw new RangeError('Tuple length mismatch') // get name of self ??
}
const result = []
for (let i = 0; i < s.elts.length; ++i) {
result.push(meB(s.elts[i], t.elts[i]))
}
return tuple(...result)
}
}
export {Tuple}

11
src/tuple/equalTT.mjs Normal file
View File

@ -0,0 +1,11 @@
export * from './Types/Tuple.mjs'
export const equalTT = {
'Tuple<T>,Tuple<T>': ({'self(T,T)': me, 'length(Tuple)': len}) => (s,t) => {
if (len(s) !== len(t)) return false
for (let i = 0; i < len(s); ++i) {
if (!me(s.elts[i], t.elts[i])) return false
}
return true
}
}

8
src/tuple/isZero.mjs Normal file
View File

@ -0,0 +1,8 @@
export {Tuple} from './Types/Tuple.mjs'
export const isZero = {
'Tuple<T>': ({'self(T)': me}) => t => t.elts.every(e => me(e))
// Note we can't just say `every(me)` above since every invokes its
// callback with more arguments, which then violates typed-function's
// signature for `me`
}

3
src/tuple/length.mjs Normal file
View File

@ -0,0 +1,3 @@
export {Tuple} from './Types/Tuple.mjs'
export const length = {Tuple: () => t => t.elts.length}

21
src/tuple/native.mjs Normal file
View File

@ -0,0 +1,21 @@
import {Tuple} from './Types/Tuple.mjs'
export const add = Tuple.promoteBinaryUnary
export const complex = Tuple.promoteBinaryStrict
export const conjugate = Tuple.promoteUnary
export const divide = Tuple.promoteBinaryStrict
export {equalTT} from './equalTT.mjs'
export const invert = Tuple.promoteUnary
export {isZero} from './isZero.mjs'
export {length} from './length.mjs'
export const multiply = Tuple.promoteBinaryUnary
export const negate = Tuple.promoteUnary
export const one = Tuple.promoteUnary
export const quotient = Tuple.promoteBinaryStrict
export const roundquotient = Tuple.promoteBinaryStrict
export const sqrt = Tuple.promoteUnary
export const subtract = Tuple.promoteBinaryStrict
export {tuple} from './tuple.mjs'
export const zero = Tuple.promoteUnary
export {Tuple}

6
src/tuple/tuple.mjs Normal file
View File

@ -0,0 +1,6 @@
export {Tuple} from './Types/Tuple.mjs'
/* The purpose of the template argument is to ensure that all of the args
* are convertible to the same type.
*/
export const tuple = {'...T': () => args => ({elts: args})}

View File

@ -103,4 +103,13 @@ describe('The default full pocomath instance "math"', () => {
assert.strictEqual(math.choose(21n, 2n), 210n)
})
it('calculates multi-way gcds and lcms', () => {
assert.strictEqual(math.gcd(30,105,42), 3)
assert.ok(
math.associate(
math.lcm(
math.complex(2n,1n), math.complex(1n,1n), math.complex(0n,1n)),
math.complex(1n,3n)))
})
})

View File

@ -1,5 +1,5 @@
import assert from 'assert'
import dependencyExtractor from '../../src/core/dependencyExtractor.mjs'
import {dependencyExtractor} from '../../src/core/extractors.mjs'
describe('dependencyExtractor', () => {
it('will record the keys of a destructuring function', () => {

View File

@ -8,6 +8,7 @@ import * as complex from '../src/complex/all.mjs'
import * as complexAdd from '../src/complex/add.mjs'
import * as complexNegate from '../src/complex/negate.mjs'
import * as complexComplex from '../src/complex/complex.mjs'
import * as bigintAdd from '../src/bigint/add.mjs'
import * as concreteSubtract from '../src/generic/subtract.concrete.mjs'
import * as genericSubtract from '../src/generic/subtract.mjs'
import extendToComplex from '../src/complex/extendToComplex.mjs'
@ -17,9 +18,10 @@ describe('A custom instance', () => {
it("works when partially assembled", () => {
bw.install(complex)
// Not much we can call without any number types:
const i3 = {re: 0, im: 3}
assert.deepStrictEqual(bw.complex(0, 3), i3)
assert.deepStrictEqual(bw.chain(0).complex(3).value, i3)
assert.deepStrictEqual(bw.complex(undefined, undefined), undefined)
assert.deepStrictEqual(
bw.chain(undefined).complex(undefined).value,
undefined)
// Don't have a way to negate things, for example:
assert.throws(() => bw.negate(2), TypeError)
})
@ -33,7 +35,7 @@ describe('A custom instance', () => {
assert.deepStrictEqual(
bw.subtract(16, bw.add(3, bw.complex(0,4), 2)),
math.complex(11, -4)) // note both instances coexist
assert.deepStrictEqual(bw.negate(math.complex(3, '8')).im, -8)
assert.deepStrictEqual(bw.negate(bw.complex(3, '8')).im, -8)
})
it("can be assembled piecemeal", () => {
@ -112,4 +114,30 @@ describe('A custom instance', () => {
math.complex(1n, -3n))
})
it("instantiates templates correctly", () => {
const inst = new PocomathInstance('InstantiateTemplates')
inst.install(numberAdd)
inst.install({typeMerge: {'T,T': ({T}) => (t,u) => 'Merge to ' + T }})
assert.strictEqual(inst.typeMerge(7,6.28), 'Merge to number')
assert.strictEqual(inst.typeMerge(7,6), 'Merge to NumInt')
assert.strictEqual(inst.typeMerge(7.35,6), 'Merge to number')
inst.install(complexAdd)
inst.install(complexComplex)
inst.install(bigintAdd)
assert.strictEqual(
inst.typeMerge(6n, inst.complex(3n, 2n)),
'Merge to GaussianInteger')
assert.strictEqual(
inst.typeMerge(3, inst.complex(4.5,2.1)),
'Merge to Complex')
// The following is the current behavior, since 3 converts to 3+0i
// which is technically the same Complex type as 3n+0ni.
// This should clear up when Complex is templatized
assert.strictEqual(inst.typeMerge(3, inst.complex(3n)), 'Merge to Complex')
// But types that truly cannot be merged should throw a TypeError
// Should add a variation of this with a more usual type once there is
// one not interconvertible with others...
inst.install(genericSubtract)
assert.throws(() => inst.typeMerge(3, undefined), TypeError)
})
})

114
test/tuple/_native.mjs Normal file
View File

@ -0,0 +1,114 @@
import assert from 'assert'
import math from '../../src/pocomath.mjs'
describe('tuple', () => {
it('can be created and provide its length', () => {
assert.strictEqual(math.length(math.tuple(3, 5.2, 2)), 3)
})
it('does not allow unification by converting consecutive arguments', () => {
assert.throws(() => math.tuple(3, 5.2, 2n), /TypeError.*unif/)
// Hence, the order matters in a slightly unfortunate way,
// but I think being a little ragged in these edge cases is OK:
assert.throws(
() => math.tuple(3, 2n, math.complex(5.2)),
/TypeError.*unif/)
assert.deepStrictEqual(
math.tuple(3, math.complex(2n), 5.2),
{elts: [math.complex(3), math.complex(2n), math.complex(5.2)]})
})
it('can be tested for zero and equality', () => {
assert.strictEqual(math.isZero(math.tuple(0,1)), false)
assert.strictEqual(math.isZero(math.tuple(0n,0n,0n,0n)), true)
assert.strictEqual(math.isZero(math.tuple(0,0.001,0)), false)
assert.deepStrictEqual(math.complex(0,0), {re: 0, im:0})
assert.strictEqual(math.isZero(math.tuple(0,math.complex(0,0))), true)
assert.strictEqual(
math.equal(
math.tuple(0,math.complex(0,0.1)),
math.complex(math.tuple(0,0), math.tuple(0,0.1))),
true)
assert.strictEqual(
math.equal(math.tuple(3n,2n), math.tuple(3,2)),
false)
})
it('supports addition', () => {
assert.deepStrictEqual(
math.add(math.tuple(3,4,5), math.tuple(2,1,0)),
math.tuple(5,5,5))
assert.deepStrictEqual(
math.add(math.tuple(3.25,4.5,5), math.tuple(3,3)),
math.tuple(6.25,7.5,5))
assert.deepStrictEqual(
math.add(math.tuple(math.complex(2,3), 7), math.tuple(4, 5, 6)),
math.tuple(math.complex(6,3), math.complex(12), math.complex(6)))
assert.deepStrictEqual(
math.add(math.tuple(5,6), 7),
math.tuple(12,6))
assert.deepStrictEqual(
math.add(math.tuple(math.complex(5,4),6), 7),
math.tuple(math.complex(12,4),math.complex(6)))
})
it('supports subtraction', () => {
assert.deepStrictEqual(
math.subtract(math.tuple(3n,4n,5n), math.tuple(2n,1n,0n)),
math.tuple(1n,3n,5n))
assert.throws(
() => math.subtract(math.tuple(5,6), math.tuple(7)),
/RangeError/)
})
it('makes a tuple of complex and conjugates it', () => {
const complexTuple = math.tuple(
math.complex(3,1), math.complex(4,2.2), math.complex(5,3))
assert.deepStrictEqual(
math.complex(math.tuple(3,4,5), math.tuple(1,2.2,3)),
complexTuple)
assert.deepStrictEqual(
math.conjugate(complexTuple),
math.tuple(math.complex(3,-1), math.complex(4,-2.2), math.complex(5,-3)))
})
it('supports division', () => {
assert.deepStrictEqual(
math.divide(math.tuple(3,4,5),math.tuple(1,2,2)),
math.tuple(3,2,2.5))
})
it('supports multiplication', () => {
assert.deepStrictEqual(
math.multiply(math.tuple(3,4,5), math.tuple(1,2,2)),
math.tuple(3,8,10))
})
it('supports one and zero', () => {
assert.deepStrictEqual(
math.one(math.tuple(2n,3n,0n)),
math.tuple(1n,1n,1n))
assert.deepStrictEqual(
math.zero(math.tuple(math.complex(5,2), 3.4)),
math.tuple(math.complex(0), math.complex(0)))
})
it('supports quotient and roundquotient', () => {
const bigTuple = math.tuple(1n,2n,3n,4n,5n)
const bigOnes = math.one(bigTuple)
const threes = math.add(bigOnes, bigOnes, bigOnes)
assert.deepStrictEqual(
math.quotient(bigTuple, threes),
math.tuple(0n, 0n, 1n, 1n, 1n))
assert.deepStrictEqual(
math.roundquotient(bigTuple, threes),
math.tuple(0n, 1n, 1n, 1n, 2n))
})
it('supports sqrt', () => {
assert.deepStrictEqual(
math.sqrt(math.tuple(4,-4,2.25)),
math.tuple(2, math.complex(0,2), 1.5))
})
})