dyna3/engine-proto/Engine.jl

131 lines
4.3 KiB
Julia

include("HittingSet.jl")
module Engine
include("Engine.Algebraic.jl")
include("Engine.Numerical.jl")
using .Algebraic
using .Numerical
export Construction, mprod, codimension, dimension
end
# ~~~ sandbox setup ~~~
using Random
using Distributions
using LinearAlgebra
using AbstractAlgebra
using HomotopyContinuation
CoeffType = Rational{Int64}
a = Engine.Point{CoeffType}()
s = Engine.Sphere{CoeffType}()
a_on_s = Engine.LiesOn{CoeffType}(a, s)
ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
##ideal_a_s = Engine.realize(ctx)
##println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freedom")
b = Engine.Point{CoeffType}()
b_on_s = Engine.LiesOn{CoeffType}(b, s)
Engine.push!(ctx, b)
Engine.push!(ctx, s)
Engine.push!(ctx, b_on_s)
ideal_ab_s, eqns_ab_s = Engine.realize(ctx)
freedom = Engine.dimension(ideal_ab_s)
println("Two points on a sphere: ", freedom, " degrees of freedom")
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
##tangencies = [
## Engine.AlignsWithBy{CoeffType}(
## spheres[n],
## spheres[mod1(n+1, length(spheres))],
## CoeffType(-1//1)
## )
## for n in 1:3
##]
##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
##ideal_tan_sph = Engine.realize(ctx_tan_sph)
##println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freedom")
# --- test rational cut ---
coordring = base_ring(ideal_ab_s)
vbls = Variable.(symbols(coordring))
##cut_system = CompiledSystem(System([eqns_ab_s; cut], variables = vbls))
##cut_result = HomotopyContinuation.solve(cut_system)
##println("non-singular solutions:")
##for soln in solutions(cut_result)
## display(soln)
##end
##println("singular solutions:")
##for sing in singular(cut_result)
## display(sing.solution)
##end
# test a random witness set
system = CompiledSystem(System(eqns_ab_s, variables = vbls))
sph_z_ind = indexin([sph.coords[5] for sph in ctx.spheres], gens(coordring))
println("sphere z variables: ", vbls[sph_z_ind])
trivial_soln = fill(0, length(gens(coordring)))
trivial_soln[sph_z_ind] .= 1
println("trivial solutions: $trivial_soln")
norm2 = vec -> real(dot(conj.(vec), vec))
is_nontrivial = soln -> norm2(abs.(real.(soln)) - trivial_soln) > 1e-4*length(gens(coordring))
max_slope = 5
binom = Binomial(2max_slope, 1/2)
Random.seed!(6071)
n_planes = 3
for through_trivial in [false, true]
samples = []
for _ in 1:n_planes
cut_matrix = rand(binom, freedom, length(gens(coordring))) .- max_slope
##cut_matrix = [
## 1 1 1 1 0 1 1 0 1 1 0;
## 1 2 1 2 0 1 1 0 1 1 0;
## 1 1 0 1 0 1 2 0 2 0 0
##]
## [verbose] display(cut_matrix)
if through_trivial
cut_offset = [sum(cf[sph_z_ind]) for cf in eachrow(cut_matrix)]
## [verbose] display(cut_offset)
cut_subspace = LinearSubspace(cut_matrix, cut_offset)
else
cut_subspace = LinearSubspace(cut_matrix, fill(0, freedom))
end
wtns = witness_set(system, cut_subspace)
real_solns = solution.(filter(isreal, results(wtns)))
nontrivial_solns = filter(is_nontrivial, real_solns)
println("$(length(real_solns) - length(nontrivial_solns)) trivial solutions found")
for soln in nontrivial_solns
##[test] for soln in filter(is_nontrivial, solution.(filter(isreal, results(wtns))))
if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples)
push!(samples, soln)
end
end
end
if through_trivial
println("--- planes through trivial solution ---")
else
println("--- planes through origin ---")
end
println("$(length(samples)) sample solutions, not including the trivial one:")
for soln in samples
## [verbose] display([vbls round.(soln, digits = 6)])
k_sq = abs2(soln[1])
if abs2(soln[end-2]) > 1e-12
if k_sq < 1e-12
println(" center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))")
else
sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq
println(" center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))")
end
else
sum_sq = sum(soln[[4, 7, 10]] .^ 2)
println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))")
end
end
end