include("HittingSet.jl") module Engine include("Engine.Algebraic.jl") include("Engine.Numerical.jl") using .Algebraic using .Numerical export Construction, mprod, codimension, dimension end # ~~~ sandbox setup ~~~ using Random using Distributions using LinearAlgebra using AbstractAlgebra using HomotopyContinuation CoeffType = Rational{Int64} a = Engine.Point{CoeffType}() s = Engine.Sphere{CoeffType}() a_on_s = Engine.LiesOn{CoeffType}(a, s) ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s])) ##ideal_a_s = Engine.realize(ctx) ##println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freedom") b = Engine.Point{CoeffType}() b_on_s = Engine.LiesOn{CoeffType}(b, s) Engine.push!(ctx, b) Engine.push!(ctx, s) Engine.push!(ctx, b_on_s) ideal_ab_s, eqns_ab_s = Engine.realize(ctx) freedom = Engine.dimension(ideal_ab_s) println("Two points on a sphere: ", freedom, " degrees of freedom") ##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3] ##tangencies = [ ## Engine.AlignsWithBy{CoeffType}( ## spheres[n], ## spheres[mod1(n+1, length(spheres))], ## CoeffType(-1//1) ## ) ## for n in 1:3 ##] ##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies)) ##ideal_tan_sph = Engine.realize(ctx_tan_sph) ##println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freedom") # --- test rational cut --- coordring = base_ring(ideal_ab_s) vbls = Variable.(symbols(coordring)) ##cut_system = CompiledSystem(System([eqns_ab_s; cut], variables = vbls)) ##cut_result = HomotopyContinuation.solve(cut_system) ##println("non-singular solutions:") ##for soln in solutions(cut_result) ## display(soln) ##end ##println("singular solutions:") ##for sing in singular(cut_result) ## display(sing.solution) ##end # test a random witness set system = CompiledSystem(System(eqns_ab_s, variables = vbls)) sph_z_ind = indexin([sph.coords[5] for sph in ctx.spheres], gens(coordring)) println("sphere z variables: ", vbls[sph_z_ind]) trivial_soln = fill(0, length(gens(coordring))) trivial_soln[sph_z_ind] .= 1 println("trivial solutions: $trivial_soln") norm2 = vec -> real(dot(conj.(vec), vec)) is_nontrivial = soln -> norm2(abs.(real.(soln)) - trivial_soln) > 1e-4*length(gens(coordring)) max_slope = 5 binom = Binomial(2max_slope, 1/2) Random.seed!(6071) n_planes = 3 for through_trivial in [false, true] samples = [] for _ in 1:n_planes cut_matrix = rand(binom, freedom, length(gens(coordring))) .- max_slope ##cut_matrix = [ ## 1 1 1 1 0 1 1 0 1 1 0; ## 1 2 1 2 0 1 1 0 1 1 0; ## 1 1 0 1 0 1 2 0 2 0 0 ##] ## [verbose] display(cut_matrix) if through_trivial cut_offset = [sum(cf[sph_z_ind]) for cf in eachrow(cut_matrix)] ## [verbose] display(cut_offset) cut_subspace = LinearSubspace(cut_matrix, cut_offset) else cut_subspace = LinearSubspace(cut_matrix, fill(0, freedom)) end wtns = witness_set(system, cut_subspace) real_solns = solution.(filter(isreal, results(wtns))) nontrivial_solns = filter(is_nontrivial, real_solns) println("$(length(real_solns) - length(nontrivial_solns)) trivial solutions found") for soln in nontrivial_solns ##[test] for soln in filter(is_nontrivial, solution.(filter(isreal, results(wtns)))) if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples) push!(samples, soln) end end end if through_trivial println("--- planes through trivial solution ---") else println("--- planes through origin ---") end println("$(length(samples)) sample solutions, not including the trivial one:") for soln in samples ## [verbose] display([vbls round.(soln, digits = 6)]) k_sq = abs2(soln[1]) if abs2(soln[end-2]) > 1e-12 if k_sq < 1e-12 println(" center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))") else sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq println(" center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))") end else sum_sq = sum(soln[[4, 7, 10]] .^ 2) println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))") end end end