Application prototype #14
7
app-proto/inversive-display/src/identity.vert
Normal file
7
app-proto/inversive-display/src/identity.vert
Normal file
@ -0,0 +1,7 @@
|
||||
#version 300 es
|
||||
|
||||
in vec4 position;
|
||||
|
||||
void main() {
|
||||
gl_Position = position;
|
||||
}
|
187
app-proto/inversive-display/src/inversive.frag
Normal file
187
app-proto/inversive-display/src/inversive.frag
Normal file
@ -0,0 +1,187 @@
|
||||
#version 300 es
|
||||
|
||||
precision highp float;
|
||||
|
||||
out vec4 outColor;
|
||||
|
||||
// view
|
||||
uniform vec2 resolution;
|
||||
uniform float shortdim;
|
||||
|
||||
// controls
|
||||
uniform vec2 ctrl;
|
||||
uniform vec2 radius;
|
||||
uniform float opacity;
|
||||
uniform float highlight;
|
||||
uniform int layer_threshold;
|
||||
|
||||
// light and camera
|
||||
const float focal_slope = 0.3;
|
||||
const vec3 light_dir = normalize(vec3(2., 2., 1.));
|
||||
const float ixn_threshold = 0.005;
|
||||
|
||||
// --- sRGB ---
|
||||
|
||||
// map colors from RGB space to sRGB space, as specified in the sRGB standard
|
||||
// (IEC 61966-2-1:1999)
|
||||
//
|
||||
// https://www.color.org/sRGB.pdf
|
||||
// https://www.color.org/chardata/rgb/srgb.xalter
|
||||
//
|
||||
// in RGB space, color value is proportional to light intensity, so linear
|
||||
// color-vector interpolation corresponds to physical light mixing. in sRGB
|
||||
// space, the color encoding used by many monitors, we use more of the value
|
||||
// interval to represent low intensities, and less of the interval to represent
|
||||
// high intensities. this improves color quantization
|
||||
|
||||
float sRGB(float t) {
|
||||
if (t <= 0.0031308) {
|
||||
return 12.92*t;
|
||||
} else {
|
||||
return 1.055*pow(t, 5./12.) - 0.055;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 sRGB(vec3 color) {
|
||||
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
|
||||
}
|
||||
|
||||
// --- inversive geometry ---
|
||||
|
||||
struct vecInv {
|
||||
vec3 sp;
|
||||
vec2 lt;
|
||||
};
|
||||
|
||||
vecInv sphere(vec3 center, float radius) {
|
||||
return vecInv(
|
||||
center / radius,
|
||||
vec2(
|
||||
0.5 / radius,
|
||||
0.5 * (dot(center, center) / radius - radius)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// --- shading ---
|
||||
|
||||
struct taggedFrag {
|
||||
int id;
|
||||
vec4 color;
|
||||
vec3 pt;
|
||||
vec3 normal;
|
||||
};
|
||||
|
||||
taggedFrag[2] sort(taggedFrag a, taggedFrag b) {
|
||||
taggedFrag[2] result;
|
||||
if (a.pt.z > b.pt.z) {
|
||||
result[0] = a;
|
||||
result[1] = b;
|
||||
} else {
|
||||
result[0] = b;
|
||||
result[1] = a;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color, int id) {
|
||||
// the expression for normal needs to be checked. it's supposed to give the
|
||||
// negative gradient of the lorentz product between the impact point vector
|
||||
// and the sphere vector with respect to the coordinates of the impact
|
||||
// point. i calculated it in my head and decided that the result looked good
|
||||
// enough for now
|
||||
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
|
||||
|
||||
float incidence = dot(normal, light_dir);
|
||||
float illum = mix(0.4, 1.0, max(incidence, 0.0));
|
||||
return taggedFrag(id, vec4(illum * base_color, opacity), pt, normal);
|
||||
}
|
||||
|
||||
// --- ray-casting ---
|
||||
|
||||
vec2 sphere_cast(vecInv v, vec3 dir) {
|
||||
float a = -v.lt.s * dot(dir, dir);
|
||||
float b = dot(v.sp, dir);
|
||||
float c = -v.lt.t;
|
||||
|
||||
float scale = -b/(2.*a);
|
||||
float adjust = 4.*a*c/(b*b);
|
||||
|
||||
if (adjust < 1.) {
|
||||
float offset = sqrt(1. - adjust);
|
||||
return vec2(
|
||||
scale * (1. - offset),
|
||||
scale * (1. + offset)
|
||||
);
|
||||
} else {
|
||||
// these parameters describe points behind the camera, so the
|
||||
// corresponding fragments won't be drawn
|
||||
return vec2(-1., -1.);
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
|
||||
vec3 dir = vec3(focal_slope * scr, -1.);
|
||||
|
||||
// initialize two spheres
|
||||
vecInv v [2];
|
||||
v[0] = sphere(vec3(0.5, 0.5, -5. + ctrl.x), radius.x);
|
||||
v[1] = sphere(vec3(-0.5, -0.5, -5. + ctrl.y), radius.y);
|
||||
vec3 color0 = vec3(1., 0.214, 0.);
|
||||
vec3 color1 = vec3(0., 0.214, 1.);
|
||||
|
||||
// cast rays through the spheres
|
||||
vec2 u0 = sphere_cast(v[0], dir);
|
||||
vec2 u1 = sphere_cast(v[1], dir);
|
||||
|
||||
// shade and depth-sort the impact points
|
||||
taggedFrag front_hits[2] = sort(
|
||||
sphere_shading(v[0], u0[0] * dir, color0, 0),
|
||||
sphere_shading(v[1], u1[0] * dir, color1, 1)
|
||||
);
|
||||
taggedFrag back_hits[2] = sort(
|
||||
sphere_shading(v[0], u0[1] * dir, color0, 0),
|
||||
sphere_shading(v[1], u1[1] * dir, color1, 1)
|
||||
);
|
||||
taggedFrag middle_frags[2] = sort(front_hits[1], back_hits[0]);
|
||||
|
||||
// finish depth sorting
|
||||
taggedFrag frags_by_depth[4];
|
||||
frags_by_depth[0] = front_hits[0];
|
||||
frags_by_depth[1] = middle_frags[0];
|
||||
frags_by_depth[2] = middle_frags[1];
|
||||
frags_by_depth[3] = back_hits[1];
|
||||
|
||||
// highlight intersections and cusps
|
||||
for (int i = 3; i >= 1; --i) {
|
||||
// intersections
|
||||
taggedFrag frag0 = frags_by_depth[i];
|
||||
taggedFrag frag1 = frags_by_depth[i-1];
|
||||
float ixn_sin = length(cross(frag0.normal, frag1.normal));
|
||||
vec3 disp = frag0.pt - frag1.pt;
|
||||
float ixn_dist = max(
|
||||
abs(dot(frag1.normal, disp)),
|
||||
abs(dot(frag0.normal, disp))
|
||||
) / ixn_sin;
|
||||
float ixn_highlight = 0.5 * highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
|
||||
frags_by_depth[i].color = mix(frags_by_depth[i].color, vec4(1.), ixn_highlight);
|
||||
frags_by_depth[i-1].color = mix(frags_by_depth[i-1].color, vec4(1.), ixn_highlight);
|
||||
|
||||
// cusps
|
||||
float cusp_cos = abs(dot(dir, frag0.normal));
|
||||
float cusp_threshold = 2.*sqrt(ixn_threshold * v[frag0.id].lt.s);
|
||||
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
|
||||
frags_by_depth[i].color = mix(frags_by_depth[i].color, vec4(1.), cusp_highlight);
|
||||
}
|
||||
|
||||
// composite the sphere fragments
|
||||
vec3 color = vec3(0.);
|
||||
for (int i = 3; i >= layer_threshold; --i) {
|
||||
if (frags_by_depth[i].pt.z < 0.) {
|
||||
vec4 frag_color = frags_by_depth[i].color;
|
||||
color = mix(color, frag_color.rgb, frag_color.a);
|
||||
}
|
||||
}
|
||||
outColor = vec4(sRGB(color), 1.);
|
||||
}
|
@ -95,208 +95,12 @@ fn main() {
|
||||
let vertex_shader = compile_shader(
|
||||
&ctx,
|
||||
WebGl2RenderingContext::VERTEX_SHADER,
|
||||
r##"#version 300 es
|
||||
|
||||
in vec4 position;
|
||||
|
||||
void main() {
|
||||
gl_Position = position;
|
||||
}
|
||||
"##,
|
||||
include_str!("identity.vert"),
|
||||
);
|
||||
let fragment_shader = compile_shader(
|
||||
&ctx,
|
||||
WebGl2RenderingContext::FRAGMENT_SHADER,
|
||||
r##"#version 300 es
|
||||
|
||||
precision highp float;
|
||||
|
||||
out vec4 outColor;
|
||||
|
||||
// view
|
||||
uniform vec2 resolution;
|
||||
uniform float shortdim;
|
||||
|
||||
// controls
|
||||
uniform vec2 ctrl;
|
||||
uniform vec2 radius;
|
||||
uniform float opacity;
|
||||
uniform float highlight;
|
||||
uniform int layer_threshold;
|
||||
|
||||
// light and camera
|
||||
const float focal_slope = 0.3;
|
||||
const vec3 light_dir = normalize(vec3(2., 2., 1.));
|
||||
const float ixn_threshold = 0.005;
|
||||
|
||||
// --- sRGB ---
|
||||
|
||||
// map colors from RGB space to sRGB space, as specified in the
|
||||
// sRGB standard (IEC 61966-2-1:1999)
|
||||
//
|
||||
// https://www.color.org/sRGB.pdf
|
||||
// https://www.color.org/chardata/rgb/srgb.xalter
|
||||
//
|
||||
// in RGB space, color value is proportional to light intensity,
|
||||
// so linear color-vector interpolation corresponds to physical
|
||||
// light mixing. in sRGB space, the color encoding used by many
|
||||
// monitors, we use more of the value interval to represent low
|
||||
// intensities, and less of the interval to represent high
|
||||
// intensities. this improves color quantization
|
||||
|
||||
float sRGB(float t) {
|
||||
if (t <= 0.0031308) {
|
||||
return 12.92*t;
|
||||
} else {
|
||||
return 1.055*pow(t, 5./12.) - 0.055;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 sRGB(vec3 color) {
|
||||
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
|
||||
}
|
||||
|
||||
// --- inversive geometry ---
|
||||
|
||||
struct vecInv {
|
||||
vec3 sp;
|
||||
vec2 lt;
|
||||
};
|
||||
|
||||
vecInv sphere(vec3 center, float radius) {
|
||||
return vecInv(
|
||||
center / radius,
|
||||
vec2(
|
||||
0.5 / radius,
|
||||
0.5 * (dot(center, center) / radius - radius)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// --- shading ---
|
||||
|
||||
struct taggedFrag {
|
||||
int id;
|
||||
vec4 color;
|
||||
vec3 pt;
|
||||
vec3 normal;
|
||||
};
|
||||
|
||||
taggedFrag[2] sort(taggedFrag a, taggedFrag b) {
|
||||
taggedFrag[2] result;
|
||||
if (a.pt.z > b.pt.z) {
|
||||
result[0] = a;
|
||||
result[1] = b;
|
||||
} else {
|
||||
result[0] = b;
|
||||
result[1] = a;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color, int id) {
|
||||
// the expression for normal needs to be checked. it's
|
||||
// supposed to give the negative gradient of the lorentz
|
||||
// product between the impact point vector and the sphere
|
||||
// vector with respect to the coordinates of the impact
|
||||
// point. i calculated it in my head and decided that
|
||||
// the result looked good enough for now
|
||||
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
|
||||
|
||||
float incidence = dot(normal, light_dir);
|
||||
float illum = mix(0.4, 1.0, max(incidence, 0.0));
|
||||
return taggedFrag(id, vec4(illum * base_color, opacity), pt, normal);
|
||||
}
|
||||
|
||||
// --- ray-casting ---
|
||||
|
||||
vec2 sphere_cast(vecInv v, vec3 dir) {
|
||||
float a = -v.lt.s * dot(dir, dir);
|
||||
float b = dot(v.sp, dir);
|
||||
float c = -v.lt.t;
|
||||
|
||||
float scale = -b/(2.*a);
|
||||
float adjust = 4.*a*c/(b*b);
|
||||
|
||||
if (adjust < 1.) {
|
||||
float offset = sqrt(1. - adjust);
|
||||
return vec2(
|
||||
scale * (1. - offset),
|
||||
scale * (1. + offset)
|
||||
);
|
||||
} else {
|
||||
// these parameters describe points behind the camera,
|
||||
// so the corresponding fragments won't be drawn
|
||||
return vec2(-1., -1.);
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
|
||||
vec3 dir = vec3(focal_slope * scr, -1.);
|
||||
|
||||
// initialize two spheres
|
||||
vecInv v [2];
|
||||
v[0] = sphere(vec3(0.5, 0.5, -5. + ctrl.x), radius.x);
|
||||
v[1] = sphere(vec3(-0.5, -0.5, -5. + ctrl.y), radius.y);
|
||||
vec3 color0 = vec3(1., 0.214, 0.);
|
||||
vec3 color1 = vec3(0., 0.214, 1.);
|
||||
|
||||
// cast rays through the spheres
|
||||
vec2 u0 = sphere_cast(v[0], dir);
|
||||
vec2 u1 = sphere_cast(v[1], dir);
|
||||
|
||||
// shade and depth-sort the impact points
|
||||
taggedFrag front_hits[2] = sort(
|
||||
sphere_shading(v[0], u0[0] * dir, color0, 0),
|
||||
sphere_shading(v[1], u1[0] * dir, color1, 1)
|
||||
);
|
||||
taggedFrag back_hits[2] = sort(
|
||||
sphere_shading(v[0], u0[1] * dir, color0, 0),
|
||||
sphere_shading(v[1], u1[1] * dir, color1, 1)
|
||||
);
|
||||
taggedFrag middle_frags[2] = sort(front_hits[1], back_hits[0]);
|
||||
|
||||
// finish depth sorting
|
||||
taggedFrag frags_by_depth[4];
|
||||
frags_by_depth[0] = front_hits[0];
|
||||
frags_by_depth[1] = middle_frags[0];
|
||||
frags_by_depth[2] = middle_frags[1];
|
||||
frags_by_depth[3] = back_hits[1];
|
||||
|
||||
// highlight intersections and cusps
|
||||
for (int i = 3; i >= 1; --i) {
|
||||
// intersections
|
||||
taggedFrag frag0 = frags_by_depth[i];
|
||||
taggedFrag frag1 = frags_by_depth[i-1];
|
||||
float ixn_sin = length(cross(frag0.normal, frag1.normal));
|
||||
vec3 disp = frag0.pt - frag1.pt;
|
||||
float ixn_dist = max(
|
||||
abs(dot(frag1.normal, disp)),
|
||||
abs(dot(frag0.normal, disp))
|
||||
) / ixn_sin;
|
||||
float ixn_highlight = 0.5 * highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
|
||||
frags_by_depth[i].color = mix(frags_by_depth[i].color, vec4(1.), ixn_highlight);
|
||||
frags_by_depth[i-1].color = mix(frags_by_depth[i-1].color, vec4(1.), ixn_highlight);
|
||||
|
||||
// cusps
|
||||
float cusp_cos = abs(dot(dir, frag0.normal));
|
||||
float cusp_threshold = 2.*sqrt(ixn_threshold * v[frag0.id].lt.s);
|
||||
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
|
||||
frags_by_depth[i].color = mix(frags_by_depth[i].color, vec4(1.), cusp_highlight);
|
||||
}
|
||||
|
||||
// composite the sphere fragments
|
||||
vec3 color = vec3(0.);
|
||||
for (int i = 3; i >= layer_threshold; --i) {
|
||||
if (frags_by_depth[i].pt.z < 0.) {
|
||||
vec4 frag_color = frags_by_depth[i].color;
|
||||
color = mix(color, frag_color.rgb, frag_color.a);
|
||||
}
|
||||
}
|
||||
outColor = vec4(sRGB(color), 1.);
|
||||
}
|
||||
"##,
|
||||
include_str!("inversive.frag"),
|
||||
);
|
||||
let program = ctx.create_program().unwrap();
|
||||
ctx.attach_shader(&program, &vertex_shader);
|
||||
|
Loading…
Reference in New Issue
Block a user