feat: Handle vrml generated on the fly in Conway notation page #62
256
src/conway.civet
256
src/conway.civet
@ -19,28 +19,28 @@ icosahedron: Polyhedron :=
|
||||
[3,2,11], [3,10,2], [3,6,10], [3,7,6], [3,11,7]]
|
||||
xyz: [[0,ihp,1], [0,-ihp,1], [0,ihp,-1], [0,-ihp,-1],
|
||||
[ihp,1,0], [-ihp,1,0], [ihp,-1,0], [-ihp,-1,0],
|
||||
[1,0,ihp], [1,0,-ihp], [-1,0,ihp], [-1,0,-ihp]]
|
||||
[1,0,ihp], [-1,0,ihp], [1,0,-ihp], [-1,0,-ihp]]
|
||||
polyCache: Record<Notation, Polyhedron> :=
|
||||
'': face: [], xyz: []
|
||||
T:
|
||||
face: [[0,1,2], [0,2,3], [0,3,1], [1,3,2]]
|
||||
face: [[0,2,1], [0,3,2], [0,1,3], [1,2,3]]
|
||||
xyz: [[1,1,1], [1,-1,-1], [-1,1,-1], [-1,-1,1]]
|
||||
O:
|
||||
face: [[0,1,2], [0,2,3], [0,3,4], [0,4,1],
|
||||
[1,4,5], [1,5,2], [2,5,3], [3,5,4]]
|
||||
face: [[0,2,1], [0,3,2], [0,4,3], [0,1,4],
|
||||
[1,5,4], [1,2,5], [2,3,5], [3,4,5]]
|
||||
xyz: [[0,0,rt2], [rt2,0,0], [0,rt2,0], [-rt2,0,0], [0,-rt2,0], [0,0,-rt2]]
|
||||
C:
|
||||
face: [[3,0,1,2], [3,4,5,0], [0,5,6,1], [1,6,7,2], [2,7,4,3], [5,4,7,6]]
|
||||
face: [[0,3,2,1], [0,5,4,3], [0,1,6,5], [1,2,7,6], [2,3,4,7], [4,5,6,7]]
|
||||
xyz: [[rth,rth,rth], [-rth,rth,rth], [-rth,-rth,rth], [rth,-rth,rth],
|
||||
[rth,-rth,-rth], [rth,rth,-rth], [-rth,rth,-rth], [-rth,-rth,-rth]]
|
||||
I: icosahedron
|
||||
D: geomDual(icosahedron)
|
||||
D: geomDual icosahedron
|
||||
|
||||
export function generateVRML(notation: Notation): string
|
||||
outputVRML notation, generatePoly notation
|
||||
|
||||
function generatePoly(notation: Notation): Polyhedron
|
||||
getStandardPoly standardize notation
|
||||
getStandardPoly inform standardize notation
|
||||
|
||||
function getStandardPoly(notation: Notation): Polyhedron
|
||||
if notation in polyCache then return polyCache[notation]
|
||||
@ -48,23 +48,37 @@ function getStandardPoly(notation: Notation): Polyhedron
|
||||
parent := getStandardPoly rest
|
||||
// may have created what we want by side effect
|
||||
if notation in polyCache then return polyCache[notation]
|
||||
dispatch op, Number(arg or 0), parent, notation // will do the caching
|
||||
dispatch op, arg, parent, notation // will do the caching
|
||||
|
||||
// Convenience tuple maker
|
||||
function ð<Tup extends unknown[]>(...arg: Tup): Tup arg
|
||||
|
||||
// Note we now allow numeric arguments on all of the basic operations,
|
||||
// kis/truncate, join/ambo, and gyro/snub. Likely some of the operations
|
||||
// we are taking as composite could have reasonable numeric versions, but
|
||||
// there didn't seem to be any sensible way to propagate such an argument
|
||||
// to the operations in their rewrites. In other words, the numeric-limited
|
||||
// operations may not be composite, or at least not in the same way. So
|
||||
// we have just left them as applying throughout the polyhedron.
|
||||
rawStandardizations :=
|
||||
P4$: 'C', A3$: 'O', Y3$: 'T', // Seed synonyms
|
||||
e: 'aa', b: 'ta', o: 'jj', m: 'kj', // abbreviations
|
||||
[String.raw`t(\d*)`]: 'd$1d', j: 'dad', s: 'dgd', // dual operations
|
||||
dd: '', ad: 'a', gd: 'g', // absorption of duals
|
||||
[String.raw`t(\d*)`]: 'dk$1d',
|
||||
[String.raw`a(\d*)`]: 'dj$1d', // dual operations
|
||||
[String.raw`s(\d*)`]: 'dg$1d',
|
||||
dd: '', rr: '', jd: 'j', gd: 'rgr', // absorption rules
|
||||
rd: 'dr', // these commute; others? If so, move 'r' in to cancel w/ seed
|
||||
// Remainder are all simplifications/unique selections for seeds:
|
||||
aY: 'A', dT: 'T', gT: 'D', aT: 'O', dC: 'O', dO: 'C',
|
||||
dI: 'D', dD: 'I', aO: 'aC', aI: 'aD', gO: 'gC', gI: 'gD'
|
||||
aY: 'A', dT: 'T', gT: 'D', jT: 'C', dC: 'O', dO: 'C',
|
||||
dI: 'D', dD: 'I', rO: 'O', rC: 'C', rI: 'I', rD: 'D',
|
||||
jO: 'jC', jI: 'jD', gO: 'gC', gI: 'gD'
|
||||
standardizations :=
|
||||
(ð RegExp(pat, 'g'), rep for pat, rep in rawStandardizations)
|
||||
|
||||
function standardize(notation: Notation): Notation
|
||||
lastNotation .= ''
|
||||
while lastNotation != notation // iterate in case of rdrd, e.g.
|
||||
lastNotation = notation
|
||||
for [pat, rep] of standardizations
|
||||
notation = notation.replace(pat, rep)
|
||||
notation
|
||||
@ -80,6 +94,7 @@ function orb(r: number, n: number,
|
||||
|
||||
seeds :=
|
||||
P: (n: number) => // Prism
|
||||
unless n then n = 3
|
||||
theta := tau/n
|
||||
halfEdge := Math.sin theta/2
|
||||
xyz := orb(1, n, halfEdge) ++ orb(1, n, -halfEdge)
|
||||
@ -89,6 +104,7 @@ seeds :=
|
||||
face.push [i, ip1, ip1+n, i+n]
|
||||
{face, xyz}
|
||||
A: (n: number) => // Antiprism
|
||||
unless n then n = 4
|
||||
theta := tau/n
|
||||
halfHeight .= Math.sqrt
|
||||
1 - 4/(4 + 2*Math.cos(theta/2) - 2*Math.cos(theta))
|
||||
@ -98,20 +114,24 @@ seeds :=
|
||||
halfHeight /= f
|
||||
faceRadius /= f
|
||||
xyz := orb(faceRadius, n, halfHeight)
|
||||
++ orb(faceRadius, n, halfHeight, 0.5)
|
||||
++ orb(faceRadius, n, -halfHeight, 0.5)
|
||||
face := [[n-1..0], [n...2*n]] // top and bottom
|
||||
for i of [0...n]
|
||||
face.push [i, (i+1)%n, i+n]
|
||||
face.push [i, i+n, n + (n+i-1)%n]
|
||||
{face, xyz}
|
||||
Y: (n: number) => // pYramid
|
||||
unless n then n = 4
|
||||
// Canonical solution by Intelligenti Pauca and Ed Pegg, see
|
||||
// https://math.stackexchange.com/questions/2286628/canonical-pyramid-polynomials
|
||||
theta := tau/n
|
||||
c := Math.cos theta/2
|
||||
baseRadius := Math.sqrt 2/(c*(1+c))
|
||||
xyz := orb baseRadius, n, Math.tan theta/4
|
||||
xyz.push [0, 0, -1/Math.tan theta/4]
|
||||
depth := Math.sqrt (1-c)/(1+c)
|
||||
height := 2*Math.sqrt 1/(1 - c*c)
|
||||
xyz := orb baseRadius, n, depth
|
||||
edgeMid2 := add xyz[0], xyz[1]
|
||||
xyz.push [0, 0, depth-height]
|
||||
face := ([i, (i+1)%n, n] for i of [0...n])
|
||||
face.unshift [n-1..0]
|
||||
{face, xyz}
|
||||
@ -120,29 +140,94 @@ type SeedOp = keyof typeof seeds
|
||||
// Syntactic sugar to deal with weird TypeScript typing:
|
||||
operator æ<T>(A: T[], i: number) A.at(i) as T
|
||||
|
||||
transforms :=
|
||||
k: (P: Polyhedron, n: number, notation: string): Polyhedron => // kis[n]
|
||||
// aka "elevate" -- add a pyramid on each (n-sided) face
|
||||
centers := faceCenters P
|
||||
xyz := P.xyz.slice()
|
||||
function kisjoin(P: Polyhedron, notation: string,
|
||||
digits: string, join: boolean): Polyhedron
|
||||
// kis and join are closely related operations. Both of them add a
|
||||
// pyramid on a selection of faces; join then further deletes any
|
||||
// _original_ edge bordered by two _new_ triangles, producing a quad.
|
||||
// Faces are selected by their numbers of sides, using the given digits.
|
||||
// If there are none, all faces are used. Otherwise, the digits are turned
|
||||
// into a list of numbers by breaking after every digit except as needed
|
||||
// to prevent leading 0s or isolated 1s or 2s (since no face has one or
|
||||
// two sides); this way you can list any subset of the numbers 3 - 32,
|
||||
// which is plenty.
|
||||
// The operation is then applied just to faces with the numbers of edges on
|
||||
// the list. e.g. k3412 will add pyramids to the triangles, quads, and
|
||||
// dodecagon faces.
|
||||
allowed := parseSides digits
|
||||
// first collect a directory from face indices to new vertex numbers
|
||||
nextVertex .= P.xyz.length
|
||||
newVixes :=
|
||||
for f of P.face
|
||||
!digits or f.length is in allowed ? nextVertex++ : 0
|
||||
if nextVertex is P.xyz.length then return P // nothing to do
|
||||
xyz := P.xyz ++ faceCenters(P).filter (f,ix) => newVixes[ix]
|
||||
face: Face[] := []
|
||||
for each f, ix of P.face
|
||||
if n is 0 or f.length is n
|
||||
v := xyz.length
|
||||
xyz.push centers[ix]
|
||||
for each j of [0...f.length]
|
||||
face.push [v, f æ (j-1), f[j]]
|
||||
else face.push f.slice()
|
||||
v := newVixes[ix]
|
||||
if v is 0
|
||||
face.push f.slice()
|
||||
continue
|
||||
// Add the pyramid, possibly eliding edges:
|
||||
for each w, jx of f
|
||||
pw := f æ (jx-1)
|
||||
neighbor .= 0
|
||||
if join
|
||||
neighbor = P.face.findIndex (g, gx) =>
|
||||
gx !== ix and w is in g and pw is in g
|
||||
if join and newVixes[neighbor] // elide this edge
|
||||
if pw < w // avoid adding same face twice
|
||||
face.push [v, pw, newVixes[neighbor], w]
|
||||
else face.push [v, pw, w]
|
||||
adjustXYZ({face, xyz}, notation, 3)
|
||||
|
||||
enum Gyway
|
||||
FromCenter
|
||||
AlongEdge
|
||||
function gyropel(P: Polyhedron, notation: string,
|
||||
digits: string, ...ways: Gyway[]): Polyhedron
|
||||
// gyro and propellor are closely related operations. Both of them add new
|
||||
// vertices one third of the way along each edge of each face selected
|
||||
// by the digits argument (see kisjoin). They then differ in what edges
|
||||
// are drawn to the new vertices. In gyro, another new vertex is added
|
||||
// at the center of each face and connected to each of them; in propellor,
|
||||
// they are just connected in sequence. For completeness, we also allow
|
||||
// both at the same time, which is equivalent to propellor followed by kis
|
||||
// just on the new rotated faces.
|
||||
// TO BE IMPLEMENTED
|
||||
|
||||
function parseSides(digits: string): number[]
|
||||
unless digits return []
|
||||
tooSmall := ['1', '2']
|
||||
last := digits.length - 1
|
||||
return := []
|
||||
current .= ''
|
||||
pos .= 0
|
||||
while pos <= last
|
||||
current += digits[pos++]
|
||||
nextDigit := digits[pos]
|
||||
if (current is in tooSmall
|
||||
or nextDigit is '0'
|
||||
or pos == last and nextDigit is in tooSmall)
|
||||
continue
|
||||
return.value.push parseInt current
|
||||
current = ''
|
||||
|
||||
transforms :=
|
||||
k: (P: Polyhedron, notation: string, digits: string) => // kis[n]
|
||||
kisjoin P, notation, digits, false
|
||||
j: (P: Polyhedron, notation: string, digits: string) => // join
|
||||
kisjoin P, notation, digits, true
|
||||
|
||||
type TransformOp = keyof typeof transforms
|
||||
|
||||
function dispatch(op: string, n: number,
|
||||
function dispatch(op: string, digits: string,
|
||||
P: Polyhedron, notation: string): Polyhedron
|
||||
return .= P
|
||||
if op in seeds
|
||||
return = seeds[op as SeedOp] n
|
||||
return = seeds[op as SeedOp] Number(digits) or 0
|
||||
else if op in transforms
|
||||
return = transforms[op as TransformOp] P, n, notation
|
||||
return = transforms[op as TransformOp] P, notation, digits
|
||||
polyCache[notation] = return.value
|
||||
|
||||
function topoDual(P: Polyhedron): Polyhedron
|
||||
@ -151,34 +236,67 @@ function topoDual(P: Polyhedron): Polyhedron
|
||||
// in some way.
|
||||
face:
|
||||
for v of [0...P.xyz.length]
|
||||
infaces :=
|
||||
infaces := // gather labeled list of faces contining v
|
||||
for f, index of P.face
|
||||
unless f.includes v continue
|
||||
ð f, index
|
||||
start := infaces[0][1];
|
||||
current .= start
|
||||
newface := []
|
||||
do
|
||||
verts := P.face[current]
|
||||
preV := verts æ (verts.indexOf(v)-1)
|
||||
nextIx := infaces.findIndex ([face, label]) =>
|
||||
label !== current and face.includes preV
|
||||
current = infaces[nextIx][1]
|
||||
newface.push current
|
||||
if newface.length > infaces.length
|
||||
console.error 'In topoDual: Malformed polyhedron', P
|
||||
break
|
||||
until current is start
|
||||
newface
|
||||
xyz:
|
||||
Array(P.face.length).fill([0,0,0]) // warning, every vertex is ===
|
||||
|
||||
function geomDual(P: Polyhedron): Polyhedron
|
||||
// Takes the vertices of the dual to be the face centers of P
|
||||
// all scaled so that the midpoint of the first edge is unit distance
|
||||
// from the origin
|
||||
return := topoDual(P)
|
||||
newVertices := faceCenters(P)
|
||||
aface := return.value.face[0]
|
||||
mid2 := add newVertices[aface[0]], newVertices[aface[1]]
|
||||
factor := 2/mag mid2
|
||||
for each v of newVertices
|
||||
scale(v, factor)
|
||||
return.value.xyz = newVertices
|
||||
return := topoDual P
|
||||
return.value.xyz = approxDualVertices P
|
||||
|
||||
function approxDualVertices(P: Polyhedron): XYZ[]
|
||||
P.face.map (f) => approxDualVertex f, P.xyz
|
||||
|
||||
operator dot(v: number[], w: number[])
|
||||
v.reduce (l,r,i) => l + r*w[i], 0
|
||||
|
||||
function approxDualVertex(f: Face, v: XYZ[]): XYZ
|
||||
// For each edge of f, there is a plane containing it perpendicular
|
||||
// to the line joining the origin to its nearest approach to the origin.
|
||||
// This function returns the point closest to being on all of those planes
|
||||
// (in the least-squares sense).
|
||||
// This method seems to work well when the neighborhood of f is convex,
|
||||
// and very poorly otherwise. So it probably would not provide any better
|
||||
// canonicalization than other methods of approximating the dual.
|
||||
normals := (tangentPoint(v[f æ (i-1)], v[f[i]]) for i of [0...f.length])
|
||||
sqlens := normals.map mag2
|
||||
columns := (normals.map(&[i]) for i of [0..2])
|
||||
target := (columns[i] dot sqlens for i of [0..2]) as XYZ
|
||||
CMsource := (for c of [0..2]
|
||||
(columns[r] dot columns[c] for r of [0..2])) as [XYZ, XYZ, XYZ]
|
||||
cramerD := det ...CMsource
|
||||
if Math.abs(cramerD) < 1e-6
|
||||
console.error `Face ${f} of ${v.map (p) => '['+p+']'} ill conditioned`
|
||||
return [0, 0, 0]
|
||||
[ det(target,CMsource[1],CMsource[2])/cramerD,
|
||||
det(CMsource[0],target,CMsource[2])/cramerD,
|
||||
det(CMsource[0],CMsource[1],target)/cramerD ]
|
||||
|
||||
function det(a: XYZ, b: XYZ, c:XYZ)
|
||||
a[0]*b[1]*c[2] + a[1]*b[2]*c[0] + a[2]*b[0]*c[1]
|
||||
- a[2]*b[1]*c[0] - a[1]*b[0]*c[2] - a[0]*b[2]*c[1]
|
||||
|
||||
function tangentPoint(v: XYZ, w: XYZ) // closest point on vw to origin
|
||||
d := sub w,v
|
||||
sub v, scale d, d dot v / mag2 d
|
||||
|
||||
function faceCenters(P: Polyhedron): XYZ[]
|
||||
for each face of P.face
|
||||
@ -209,12 +327,21 @@ function accumulate(basket: XYZ, egg: XYZ)
|
||||
basket[2] += egg[2]
|
||||
basket
|
||||
|
||||
function diminish(basket: XYZ, egg: XYZ)
|
||||
basket[0] -= egg[0]
|
||||
basket[1] -= egg[1]
|
||||
basket[2] -= egg[2]
|
||||
basket
|
||||
|
||||
function copy(a: XYZ)
|
||||
ð a[0], a[1], a[2]
|
||||
|
||||
function add(a: XYZ, b: XYZ)
|
||||
accumulate copy(a), b
|
||||
|
||||
function sub(a: XYZ, b: XYZ)
|
||||
diminish copy(a), b
|
||||
|
||||
function mag2(a: XYZ)
|
||||
a[0]*a[0] + a[1]*a[1] + a[2]*a[2]
|
||||
|
||||
@ -227,6 +354,13 @@ function scale(subject: XYZ, by: number)
|
||||
subject[2] *= by
|
||||
subject
|
||||
|
||||
// Feedback
|
||||
|
||||
function inform(x: string)
|
||||
$('input[name="inform"]').val(x)
|
||||
x
|
||||
|
||||
|
||||
// VRML97 generation
|
||||
|
||||
function outputVRML(notation: Notation, P: Polyhedron): string
|
||||
@ -235,17 +369,26 @@ function outputVRML(notation: Notation, P: Polyhedron): string
|
||||
Group { children [
|
||||
WorldInfo { # Generated by GTW's reimplementation of GWH's Conway script.
|
||||
title "${notation} ${stats P}"
|
||||
info "Generated by GTW's Conway-notation script inspired by GWH's."
|
||||
info "By using this script, you agree that this image is released"
|
||||
info "into the public domain, although you are requested to cite"
|
||||
info "George Hart's Encyclopedia of Polyhedra as the source." }
|
||||
info "Generated by GTW's Conway-notation script inspired by GWH's.
|
||||
By using this script, you agree that this image is released
|
||||
into the public domain, although you are requested to cite
|
||||
George Hart's Encyclopedia of Polyhedra as the source." }
|
||||
Background {
|
||||
groundColor [ .2 .5 1 ] # light blue
|
||||
skycolor [ .2 .5 1] }
|
||||
skyColor [ .2 .5 1 ] }
|
||||
NavigationInfo { type [ "EXAMINE" ] }
|
||||
DirectionalLight {direction -.5 -1 1 intensity 0.75}
|
||||
DirectionalLight {direction .5 1 -1 intensity 0.75}
|
||||
${polyVRML P, colorScheme()} ] }
|
||||
${polyVRML P, colorScheme()}
|
||||
Shape {
|
||||
appearance Appearance {
|
||||
material Material {
|
||||
diffuseColor 0 0 0 } }
|
||||
geometry IndexedLineSet {
|
||||
coord ${useVerts}
|
||||
coordIndex [
|
||||
${edgeIndices P} ] } }
|
||||
${showDual() ? polyVRML geomDual(P), '0.5 0.5 0.5' : ''} ] }
|
||||
```
|
||||
|
||||
function stats(P: Polyhedron): string
|
||||
@ -274,15 +417,19 @@ function polyVRML(P: Polyhedron, color: string): string
|
||||
material Material {
|
||||
diffuseColor ${color or colorBySides part[0].length} } }
|
||||
geometry IndexedFaceSet {
|
||||
ccw FALSE
|
||||
coord ${emittedCoords ? useVerts : (emittedCoords = defVerts P.xyz)}
|
||||
coordIndex [
|
||||
${part.map(.join ', ').join(", -1,\n ")}, -1 ] }}`
|
||||
shapes.join "\n"
|
||||
|
||||
function colorScheme()
|
||||
function colorScheme
|
||||
button := document.getElementsByName('color')[0] as HTMLInputElement
|
||||
button.checked ? '1 1 1' : ''
|
||||
|
||||
function showDual
|
||||
false
|
||||
|
||||
faceColors: Record<number, string> :=
|
||||
3: '0.9 0.3 0.3' // red
|
||||
4: '0.4 0.4 1.0' // blue
|
||||
@ -297,4 +444,15 @@ faceColors: Record<number, string> :=
|
||||
function colorBySides(n: number)
|
||||
if n in faceColors
|
||||
return faceColors[n]
|
||||
return '0.5 0.5 0.5' // gray
|
||||
'0.5 0.5 0.5' // gray
|
||||
|
||||
function filtmap<T,U>(A: T[], m: (e:T, i: number, arr: T[]) => U)
|
||||
A.map(m).filter (e) => !!e
|
||||
|
||||
function edgeIndices(P: Polyhedron)
|
||||
sep := ",\n "
|
||||
filtmap(P.face, (thisf) =>
|
||||
filtmap(thisf, (v, ix, f) =>
|
||||
preV := f æ (ix-1)
|
||||
preV < v ? `${preV}, ${v}, -1` : '').join sep)
|
||||
.join sep
|
||||
|
@ -45,7 +45,7 @@ function makeBrowser(url: string, width: string, height: string)
|
||||
browser3D.baseURL = url
|
||||
scene := await browser3D.createX3DFromString text
|
||||
browser3D.replaceWorld scene
|
||||
canvas
|
||||
{canvas, browser3D}
|
||||
|
||||
// Put eye icons after all of the eligible links
|
||||
links := $('a').filter -> knownExtensions.test @.getAttribute('href') ?? ''
|
||||
@ -79,7 +79,7 @@ links.after ->
|
||||
overImg := floatLike and floatLike.tagName is 'IMG'
|
||||
width := overImg ? ($(floatLike).width() + 'px') : '150px'
|
||||
height := overImg ? ($(floatLike).height() + 'px') : '150px'
|
||||
canvas := await makeBrowser url, width, height
|
||||
{canvas} := await makeBrowser url, width, height
|
||||
if float
|
||||
canvas.style.float = float
|
||||
if overImg
|
||||
@ -102,6 +102,9 @@ links.after ->
|
||||
$(eye).css 'text-decoration', 'none'
|
||||
$(eye.lastElementChild as Element).hide()
|
||||
|
||||
let conwayBrowser: any
|
||||
madeConway .= false
|
||||
|
||||
// See if we are on George Hart's Conway-notation generator page
|
||||
inputs := $('input[type="button"][value="Generate"][onclick="viewVRML()"]')
|
||||
if inputs.length is 1
|
||||
@ -114,12 +117,19 @@ if inputs.length is 1
|
||||
notation := $('input[name="notation"]').val()
|
||||
unless notation then return
|
||||
vrml := conway.generateVRML notation.toString()
|
||||
viewerSpan := $(`<span>${vrml}</span>`)
|
||||
viewerSpan.css 'float', 'left'
|
||||
$('form[name="input"]').first().before viewerSpan
|
||||
unless madeConway
|
||||
{canvas, browser3D} := await makeBrowser '', '250px', '250px'
|
||||
conwayBrowser = browser3D
|
||||
canvas.style.float = 'left'
|
||||
canvas.style.marginRight = '1em'
|
||||
$('form[name="input"]').first().before canvas
|
||||
madeConway = true
|
||||
scene := await conwayBrowser.createX3DFromString vrml
|
||||
conwayBrowser.replaceWorld scene
|
||||
|
||||
// See if we are on George Hart's prism generator page
|
||||
prisms := $('input[type="button"][value="View"][onclick="ViewVRML()"]')
|
||||
if prisms.length is 1
|
||||
// Seems so, fix the generator
|
||||
console.log 'Need to fix the prism generator'
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user