94 lines
3.0 KiB
Plaintext
94 lines
3.0 KiB
Plaintext
# byconj.gi RAQ Implementation of quandles by conjugation
|
|
|
|
InstallMethod(ConjugatorFamily, "for a family",
|
|
[IsFamily],
|
|
function(fam)
|
|
local F;
|
|
# Does GAP provide any way to get at the name of a family other than
|
|
# fam!.NAME ?
|
|
F := NewFamily(Concatenation("ConjugatorFamily(", fam!.NAME, ")"),
|
|
IsConjugatorObject);
|
|
F!.ConjType := NewType(F, IsDefaultConjugatorObject);
|
|
return F;
|
|
end);
|
|
|
|
ConjugatorType@ := obj -> ConjugatorFamily(FamilyObj(obj))!.ConjType;
|
|
|
|
|
|
InstallMethod(ConjugatorObj,
|
|
"for a mult element that allows quotients (and should be assoc)",
|
|
[IsMultiplicativeElement and IsLeftQuotientElement and IsRightQuotientElement],
|
|
obj -> Objectify(ConjugatorType@(obj), Immutable(obj))
|
|
);
|
|
|
|
# Even though IsMultiplicativeElementWithInverse implies both
|
|
# IsLeftQuotientElement and IsRightQuotientElement, GAP doesn't seem to
|
|
# calculate these implications on built-in elements. So we need to repeat the
|
|
# method for IsMultiplicativeElementWithInverse, which is true of built-ins,
|
|
# particularly permutations, which serve as a common representation of group
|
|
# elements.
|
|
InstallMethod(ConjugatorObj,
|
|
"for a mult element with inverse (and should be assoc)",
|
|
[IsMultiplicativeElementWithInverse],
|
|
obj -> Objectify(ConjugatorType@(obj), Immutable(obj))
|
|
);
|
|
|
|
## Printing and viewing
|
|
InstallMethod(String, "for conjugator objects",
|
|
[IsDefaultConjugatorObject],
|
|
obj -> Concatenation("ConjugatorObj( ", String(obj![1]), " )")
|
|
);
|
|
|
|
InstallMethod(ViewString, "for conjugator objects",
|
|
[IsDefaultConjugatorObject],
|
|
obj -> Concatenation("^", ViewString(obj![1]), ":")
|
|
);
|
|
|
|
InstallMethod(UnderlyingMultiplicativeElement, "for a conjugator object",
|
|
[IsDefaultConjugatorObject],
|
|
obj -> obj![1]
|
|
);
|
|
|
|
InstallMethod( \=, "for two conjugator objects",
|
|
IsIdenticalObj,
|
|
[IsDefaultConjugatorObject, IsDefaultConjugatorObject],
|
|
function(l,r) return l![1] = r![1]; end
|
|
);
|
|
|
|
InstallMethod( \<, "for two conjugator objects",
|
|
IsIdenticalObj,
|
|
[IsDefaultConjugatorObject, IsDefaultConjugatorObject],
|
|
function(l,r) return l![1] < r![1]; end
|
|
);
|
|
|
|
InstallMethod( \*, "for two conjugator objects",
|
|
IsIdenticalObj,
|
|
[IsDefaultConjugatorObject, IsDefaultConjugatorObject],
|
|
function(l,r) return LeftQuotient(l![1],r![1])*l![1]; end
|
|
);
|
|
|
|
InstallOtherMethod(LeftQuotient, "for two conjugator objects",
|
|
IsIdenticalObj,
|
|
[IsDefaultConjugatorObject,IsDefaultConjugatorObject],
|
|
function(l,r) return (l*r)/l; end
|
|
);
|
|
|
|
InstallMethod(ConjugationQuandle, "for a group",
|
|
[IsGroup and IsFinite],
|
|
function(G)
|
|
local fam, elts;
|
|
fam := CollectionsFamily(ConjugatorFamily(ElementsFamily(FamilyObj(G))));
|
|
# Question: how do we easily/quickly determine a set of generators of
|
|
# Conj(G) from a set of generators of G, so that we can handle infinite
|
|
# conj-quandles here?
|
|
elts := List(Elements(G), g -> ConjugatorObj(g) );
|
|
# What we would like to do is
|
|
# return AsLeftQuandle[NC?](elts);
|
|
# but that's NIY.
|
|
return LeftQuandleNC(fam, elts);
|
|
end);
|
|
|
|
|
|
|
|
|