RAQ/lib/structure.gi
Glen Whitney 82c69a16a9 Make first pass at full doc coverage for structure.g[di]
To do this, the structure of the manual needed to be elaborated, which was
accomplished with a skeleton file, doc/chapters.autodoc, which is explicitly
loaded first.

Note that this portion of the manual may still need polishing; in particular,
perhaps it could use more examples, which would then double as tests in
tst/testall.g
2018-09-01 11:12:31 -04:00

741 lines
27 KiB
Plaintext

## structure.gi RAQ Implementation of definitiions, reps, and elt operations
## Testing properties of collections the hard way if we have to
InstallMethod(IsElementwiseIdempotent, "for finite collections",
[IsMultiplicativeElementCollection and IsFinite],
M -> ForAll(Elements(M), m->IsIdempotent(m))
);
InstallMethod(IsLSelfDistributive,
"for arbitrary multiplicative collections, the hard way",
[IsMultiplicativeElementCollection],
function (C)
local a,b,d;
for a in C do for b in C do for d in C do
if d*(a*b) <> (d*a)*(d*b) then return false; fi;
od; od; od;
return true;
end);
InstallMethod(IsRSelfDistributive,
"for arbitrary multiplicative collections, the hard way",
[IsMultiplicativeElementCollection],
function (C)
local a,b,d;
for a in C do for b in C do for d in C do
if (a*b)*d <> (a*d)*(b*d) then return false; fi;
od; od; od;
return true;
end);
## Create structures with generators
InstallMethod(GeneratorsOfMagma,
"finite left quasigroups",
[IsLeftQuasigroup and IsFinite],
q -> GeneratorsOfLeftQuasigroup(q)
);
InstallMethod(GeneratorsOfMagma,
"finite right quasigroups",
[IsRightQuasigroup and IsFinite],
q -> GeneratorsOfRightQuasigroup(q)
);
InstallGlobalFunction(CloneOfTypeByGenerators,
function(cat, fam, gens, genAttrib, tableCstr)
local M, elf;
if not(IsEmpty(gens) or IsIdenticalObj(FamilyObj(gens), fam)) then
Error("<fam> and family of <gens> do not match");
fi;
M := Objectify(NewType( fam, cat and IsAttributeStoringRep), rec());
Setter(genAttrib)(M, AsList(gens));
SetConstructorFromTable(M, tableCstr);
elf := ElementsFamily(fam);
# Since there doesn't seem to be a way to make the IsFinite method based
# on the family being finite into an immediate method:
if HasIsFinite(elf) and IsFinite(elf) then SetIsFinite(M, true); fi;
return M;
end);
## Helpers for the constructors below:
ArgHelper@ := function(parmlist)
local fam;
# returns a list of the family and the list of elements of parmlist
if Length(parmlist) = 0 then
Error("usage: RAQ constructors take an optional family, followed by gens");
fi;
fam := fail;
if IsFamily(parmlist[1]) then fam := Remove(parmlist,1); fi;
if Length(parmlist) = 1 and IsList(parmlist[1])
and not IsDirectProductElement(parmlist[1]) then
parmlist := parmlist[1];
fi;
if fam = fail then fam := FamilyObj(parmlist); fi;
return [fam, parmlist];
end;
CheckLQGprop@ := function(gens)
local g, h;
# Make sure all elements in gens have left quotient property pairwise
for g in gens do for h in gens do
if g*LeftQuotient(g,h) <> h or LeftQuotient(g,g*h) <> h then
Error("left quasigroup property of left quotients violated");
fi;
od; od;
return;
end;
CheckRQGprop@ := function(gens)
local g, h;
# Make sure all elements in gens have right quotient property pairwise
for g in gens do for h in gens do
if (h*g)/g <> h or (h/g)*g <> h then
Error("right quasigroup property of / violated");
fi;
od; od;
return;
end;
## Functions for each of the magma categories here
InstallGlobalFunction(LeftQuasigroup, function(arg)
arg := ArgHelper@(arg);
CheckLQGprop@(arg[2]);
return LeftQuasigroupNC(arg[1], arg[2]);
end);
InstallGlobalFunction(LeftQuasigroupNC, function(fam, gens)
return CloneOfTypeByGenerators(IsLeftQuasigroup, fam, gens,
GeneratorsOfLeftQuasigroup,
LeftQuasigroupByMultiplicationTableNC);
end);
InstallGlobalFunction(LeftRack, function(arg)
arg := ArgHelper@(arg);
CheckLQGprop@(arg[2]);
if not IsLSelfDistributive(arg[2]) then
Error("Left rack must have left distributive generators");
fi;
return LeftRackNC(arg[1], arg[2]);
end);
InstallGlobalFunction(LeftRackNC, function(fam, gens)
return CloneOfTypeByGenerators(IsLeftRack, fam, gens,
GeneratorsOfLeftQuasigroup,
LeftRackByMultiplicationTableNC);
end);
InstallGlobalFunction(LeftQuandle, function(arg)
arg := ArgHelper@(arg);
CheckLQGprop@(arg[2]);
if not IsLSelfDistributive(arg[2]) then
Error("Left quandle must have left distributive generators");
fi;
if not IsElementwiseIdempotent(arg[2]) then
Error("Quandles must contain only idempotent elements");
fi;
return LeftQuandleNC(arg[1], arg[2]);
end);
InstallGlobalFunction(LeftQuandleNC, function(fam, gens)
return CloneOfTypeByGenerators(IsLeftQuandle, fam, gens,
GeneratorsOfLeftQuasigroup,
LeftQuandleByMultiplicationTableNC);
end);
InstallGlobalFunction(RightQuasigroup, function(arg)
arg := ArgHelper@(arg);
CheckRQGprop@(arg[2]);
return RightQuasigroupNC(arg[1], arg[2]);
end);
InstallGlobalFunction(RightQuasigroupNC, function(fam, gens)
return CloneOfTypeByGenerators(IsRightQuasigroup, fam, gens,
GeneratorsOfRightQuasigroup,
RightQuasigroupByMultiplicationTableNC);
end);
InstallGlobalFunction(RightRack, function(arg)
arg := ArgHelper@(arg);
CheckRQGprop@(arg[2]);
if not IsRSelfDistributive(arg[2]) then
Error("Right rack must have right distributive generators");
fi;
return RightRackNC(arg[1], arg[2]);
end);
InstallGlobalFunction(RightRackNC, function(fam, gens)
return CloneOfTypeByGenerators(IsRightRack, fam, gens,
GeneratorsOfRightQuasigroup,
RightRackByMultiplicationTableNC);
end);
InstallGlobalFunction(RightQuandle, function(arg)
arg := ArgHelper@(arg);
CheckRQGprop@(arg[2]);
if not IsRSelfDistributive(arg[2]) then
Error("Right quandle must have right distributive generators");
fi;
if not IsElementwiseIdempotent(arg[2]) then
Error("Quandles must contain only idempotent elements");
fi;
return RightQuandleNC(arg[1], arg[2]);
end);
InstallGlobalFunction(RightQuandleNC, function(fam, gens)
return CloneOfTypeByGenerators(IsRightQuandle, fam, gens,
GeneratorsOfRightQuasigroup,
RightQuandleByMultiplicationTableNC);
end);
## NOTE: If it is the case that the magma generated by the
## GeneratorsOf[Left|Right]Quasigroup is finite, then since the [left|right]
## multiplication is injective, it is also surjective on that set and in fact
## it is the whole quasigroup. However, it is not yet clear to me how best to
## capture this fact in GAP in a computationally useful way.
## View and print and such
LeftObjString@ := function(Q)
# Don't test distributivity if we haven't already
if HasIsLSelfDistributive(Q) and IsLeftRack(Q) then
if HasIsElementwiseIdempotent(Q) and IsElementwiseIdempotent(Q) then
return "LeftQuandle";
fi;
return "LeftRack";
fi;
return "LeftQuasigroup";
end;
RightObjString@ := function(Q)
# Don't test distributivity if we haven't already
if HasIsRSelfDistributive(Q) and IsRightRack(Q) then
if HasIsElementwiseIdempotent(Q) and IsElementwiseIdempotent(Q) then
return "RightQuandle";
fi;
return "RightRack";
fi;
return "RightQuasigroup";
end;
InstallMethod(String, "for a left quasigroup",
[IsLeftQuasigroup],
Q -> Concatenation(LeftObjString@(Q), "(...)"));
InstallMethod(String, "for a left quasigroup with generators",
[IsLeftQuasigroup and HasGeneratorsOfLeftQuasigroup],
Q -> Concatenation(LeftObjString@(Q), "( ",
String(GeneratorsOfLeftQuasigroup(Q)), " )"));
InstallMethod(String, "for a left quasigroup with multiplication table",
[IsLeftQuasigroup and HasMultiplicationTable],
Q -> Concatenation(LeftObjString@(Q),
"ByMultiplicationTableNC( ",
String(MultiplicationTable(Q)), " )"));
InstallMethod(String, "for a right quasigroup",
[IsRightQuasigroup],
Q -> Concatenation(RightObjString@(Q), "(...)"));
InstallMethod(String, "for a right quasigroup with generators",
[IsRightQuasigroup and HasGeneratorsOfRightQuasigroup],
Q -> Concatenation(RightObjString@(Q), "( ",
String(GeneratorsOfRightQuasigroup(Q)), " )"));
InstallMethod(String, "for a right quasigroup with multiplication table",
[IsRightQuasigroup and HasMultiplicationTable],
Q -> Concatenation(RightObjString@(Q),
"ByMultiplicationTableNC( ",
String(MultiplicationTable(Q)), " )"));
InstallMethod(PrintString, "for a left quasigroup",
[IsLeftQuasigroup], Q -> String(Q));
InstallMethod(PrintString, "for a right quasigroup",
[IsRightQuasigroup], Q -> String(Q));
InstallMethod(DisplayString, "for a left quasigroup",
[IsLeftQuasigroup], Q -> String(Q));
InstallMethod(DisplayString, "for a right quasigroup",
[IsRightQuasigroup], Q -> String(Q));
InstallMethod(Display, "for a left quasigroup with multiplication table",
[IsLeftQuasigroup and HasMultiplicationTable],
function(Q)
Print(LeftObjString@(Q), " with ", Size(Q),
" elements, generated by ",
GeneratorsOfLeftQuasigroup(Q), ", with table\n");
Display(MultiplicationTable(Q));
end);
InstallMethod(Display, "for a right quasigroup with multiplication table",
[IsRightQuasigroup and HasMultiplicationTable],
function(Q)
Print(RightObjString@(Q), " with ", Size(Q),
" elements, generated by ",
GeneratorsOfRightQuasigroup(Q), ", with table\n");
Display(MultiplicationTable(Q));
end);
LeftObjView@ := function(Q)
# Don't test distributivity if we haven't already
if HasIsLSelfDistributive(Q) and IsLeftRack(Q) then
if HasIsElementwiseIdempotent(Q) and IsElementwiseIdempotent(Q) then
return "<left quandle";
fi;
return "<left rack";
fi;
return "<left quasigroup";
end;
RightObjView@ := function(Q)
# Don't test distributivity if we haven't already
if HasIsRSelfDistributive(Q) and IsRightRack(Q) then
if HasIsElementwiseIdempotent(Q) and IsElementwiseIdempotent(Q) then
return "<right quandle";
fi;
return "<right rack";
fi;
return "<right quasigroup";
end;
InstallMethod(ViewString, "for a left quasigroup",
[IsLeftQuasigroup],
Q -> Concatenation(LeftObjView@(Q), ">"));
InstallMethod(ViewString, "for a left quasigroup with generators",
[IsLeftQuasigroup and HasGeneratorsOfLeftQuasigroup],
Q -> Concatenation(LeftObjView@(Q), " with ",
String(Size(GeneratorsOfLeftQuasigroup(Q))),
" generators>"));
InstallMethod(ViewString, "for a right quasigroup",
[IsRightQuasigroup],
Q -> Concatenation(RightObjView@(Q), ">"));
InstallMethod(ViewString, "for a right quasigroup with generators",
[IsRightQuasigroup and HasGeneratorsOfRightQuasigroup],
Q -> Concatenation(RightObjView@(Q), " with ",
String(Size(GeneratorsOfRightQuasigroup(Q))),
" generators>"));
## Opposite structures
OFDir@ := NewDictionary("strings", true);
# What property does the Opposite family have for each property of the
# underlying elements? Hopefully we have gotten all of the relevant
# properties. What we really want is the implied (and maybe the required)
# properties of the family of the elements that we are taking the Opposite of,
# but there is not any documented way of obtaining those.
AddDictionary(OFDir@, "CanEasilyCompareElements", CanEasilyCompareElements);
AddDictionary(OFDir@, "CanEasilySortElements", CanEasilySortElements);
AddDictionary(OFDir@, "IsAssociativeElement", IsAssociativeElement);
AddDictionary(OFDir@, "IsCommutativeElement", IsCommutativeElement);
AddDictionary(OFDir@, "IsExtLElement", IsExtRElement);
AddDictionary(OFDir@, "IsExtRElement", IsExtLElement);
AddDictionary(OFDir@, "IsFiniteOrderElement", IsFiniteOrderElement);
AddDictionary(OFDir@, "IsLeftQuotientElement", IsRightQuotientElement);
AddDictionary(OFDir@, "IsLSelfDistElement", IsRSelfDistElement);
AddDictionary(OFDir@, "IsMultiplicativeElementWithInverse",
IsMultiplicativeElementWithInverse);
AddDictionary(OFDir@, "IsMultiplicativeElementWithOne",
IsMultiplicativeElementWithOne);
AddDictionary(OFDir@, "IsRightQuotientElement", IsLeftQuotientElement);
AddDictionary(OFDir@, "IsRSelfDistElement", IsLSelfDistElement);
InstallMethod(OppositeFamily, "for a family",
[IsFamily],
function(fam)
local F, elt, elt_props, opp_props, prop, opp_filt, filt;
elt := Representative(fam);
elt_props := CategoriesOfObject(elt);
Append(elt_props, KnownTruePropertiesOfObject(elt));
opp_props := [];
for prop in elt_props do
if KnowsDictionary(OFDir@, prop) then
Add(opp_props, LookupDictionary(OFDir@, prop));
fi;
od;
opp_filt := IsMultiplicativeElement;
for filt in opp_props do opp_filt := opp_filt and filt; od;
return NewFamily(Concatenation("OppositeFamily(", fam!.NAME, ")"),
IsOppositeObject, opp_filt);
end);
InstallMethod(OppositeType, "for a family",
[IsFamily],
fam -> NewType(OppositeFamily(fam), IsDefaultOppositeObject)
);
InstallMethod(OppositeObj, "for a multiplicative element",
[IsMultiplicativeElement],
function (obj)
local fam;
fam := FamilyObj(obj);
SetRepresentative(fam, obj);
return Objectify(OppositeType(fam), [Immutable(obj)]);
end);
InstallMethod(OppositeObj, "for a commutative element",
[IsMultiplicativeElement and IsCommutativeElement],
IdFunc
);
InstallMethod(UnderlyingMultiplicativeElement, "for a default opposite obj",
[IsDefaultOppositeObject],
obj -> obj![1]
);
## Printing and viewing opposite objects
InstallMethod(String, "for opposite objects",
[IsDefaultOppositeObject],
obj -> Concatenation("OppositeObj( ", String(obj![1]), " )")
);
InstallMethod(ViewString, "for opposite objects",
[IsDefaultOppositeObject],
obj -> Concatenation("o", ViewString(obj![1]))
);
InstallMethod(\=, "for two opposite objects",
IsIdenticalObj,
[IsDefaultOppositeObject, IsDefaultOppositeObject],
function(l,r) return l![1] = r![1]; end
);
InstallMethod(\<, "for two opposite objects",
IsIdenticalObj,
[IsDefaultOppositeObject, IsDefaultOppositeObject],
function(l,r) return l![1] < r![1]; end
);
InstallMethod(\*, "for two opposite objects",
IsIdenticalObj,
[IsDefaultOppositeObject, IsDefaultOppositeObject],
function(l,r) return OppositeObj(r![1]*l![1]); end
);
InstallOtherMethod(LeftQuotient, "for two opposite objects",
IsIdenticalObj,
[IsDefaultOppositeObject and IsLeftQuotientElement, IsDefaultOppositeObject],
function(l,r) return OppositeObj(r![1]/l![1]); end
);
InstallOtherMethod(\/, "for two opposite objects",
IsIdenticalObj,
[IsDefaultOppositeObject, IsDefaultOppositeObject and IsRightQuotientElement],
function(l,r) return OppositeObj(LeftQuotient(r![1], l![1])); end
);
InstallMethod(OneOp, "for an opposite object",
[IsDefaultOppositeObject and IsMultiplicativeElementWithOne],
ob -> OppositeObj(One(ob![1]))
);
InstallMethod(InverseOp, "for an opposite object",
[IsDefaultOppositeObject and IsMultiplicativeElementWithInverse],
ob -> OppositeObj(Inverse(ob![1]))
);
# Now the many Opposite implementations. How can we cut this down?
InstallMethod(Opposite, "for a commutative magma",
[IsMagma and IsCommutative],
IdFunc
);
InstallMethod(Opposite, "for a finitely generated magma",
[IsMagma and HasGeneratorsOfMagma],
function(M)
local fam, elts;
# Get elements first to prime the representative of the family
elts := List(GeneratorsOfMagma(M), m -> OppositeObj(m));
fam := CollectionsFamily(OppositeFamily(ElementsFamily(FamilyObj(M))));
return Magma(fam, elts);
end);
InstallMethod(Opposite, "for a finitely generated magma with one",
[IsMagmaWithOne and HasGeneratorsOfMagmaWithOne],
function(M)
local fam, elts;
# Get elements first to prime the representative of the family
elts := List(GeneratorsOfMagmaWithOne(M), m -> OppositeObj(m));
fam := CollectionsFamily(OppositeFamily(ElementsFamily(FamilyObj(M))));
return MagmaWithOne(fam, elts);
end);
InstallMethod(Opposite, "for a finitely generated magma with inverse",
[IsMagmaWithInverses and HasGeneratorsOfMagmaWithInverses],
function(M)
local fam, elts;
# Get elements first to prime the representative of the family
elts := List(GeneratorsOfMagmaWithInverses(M), m -> OppositeObj(m));
fam := CollectionsFamily(OppositeFamily(ElementsFamily(FamilyObj(M))));
return MagmaWithInverses(fam, elts);
end);
# Do we need Opposite() methods for Semigroups, Monoids, and Groups? Or have
# we copied enough properties that those filters will simply carry over? The
# couple of small tests I did the Opposite of a Group was again reported as a
# Group, so let's leave those methods out for now, and move on to quasigroups,
# racks, and quandles.
OppHelper@ := function(Q, whichgens, cnstr)
local fam, elts, opp;
elts := List(whichgens(Q), q -> OppositeObj(q));
fam := CollectionsFamily(OppositeFamily(ElementsFamily(FamilyObj(Q))));
opp := cnstr(fam, elts);
if HasIsFinite(Q) then SetIsFinite(opp, IsFinite(Q)); fi;
return opp;
end;
#! @Chapter construct
#! @Section from_quasigroups
#! @Arguments magma
#! @ItemType Attr
#! @Label for various finitely-generated magmas
#! @Description Given `q`, one of the structures covered in &RAQ;,
#! `Opposite(q)` returns a structure which is just the same except the order
#! of the operation is exactly reversed: `a*b` in the new structure means
#! exactly what `b*a` did in the original structure. (This is the same
#! operation as transposing the Cayley table.) Actually, this operation is
#! originally defined in &LOOPS;, and it is extended in &RAQ; to one-sided
#! quasigroups, racks, and quandles. Moreover, since Opposite actually makes
#! sense for an arbitrary magma, &RAQ; makes an effort to extend it to as
#! wide a class of arguments as are easily implemented. Note for example
#! Opposite has no effect on a commutative magma, and &RAQ;
#! recognizes this fact.
#! @Returns a magma of the same category
InstallMethod(Opposite, "for a left quasigroup",
[IsLeftQuasigroup and HasGeneratorsOfLeftQuasigroup],
Q -> OppHelper@(Q, GeneratorsOfLeftQuasigroup, RightQuasigroupNC)
);
InstallMethod(Opposite, "for a left rack",
[IsLeftRack and HasGeneratorsOfLeftQuasigroup],
Q -> OppHelper@(Q, GeneratorsOfLeftQuasigroup, RightRackNC)
);
InstallMethod(Opposite, "for a left quandle",
[IsLeftQuandle and HasGeneratorsOfLeftQuasigroup],
Q -> OppHelper@(Q, GeneratorsOfLeftQuasigroup, RightQuandleNC)
);
InstallMethod(Opposite, "for a right quasigroup",
[IsRightQuasigroup and HasGeneratorsOfRightQuasigroup],
Q -> OppHelper@(Q, GeneratorsOfRightQuasigroup, LeftQuasigroupNC)
);
InstallMethod(Opposite, "for a right rack",
[IsRightRack and HasGeneratorsOfRightQuasigroup],
Q -> OppHelper@(Q, GeneratorsOfRightQuasigroup, LeftRackNC)
);
InstallMethod(Opposite, "for a right quandle",
[IsRightQuandle and HasGeneratorsOfRightQuasigroup],
Q -> OppHelper@(Q, GeneratorsOfRightQuasigroup, LeftQuandleNC)
);
# Direct Products
# We actually try to handle here the general cases that are not otherwise
# handled by the groups functions in GAP as a whole, or the LOOPS package
# Helper for roughly creating the join of the filters of a bunch of objects.
FiltersOfObj@ := function(obj)
local f;
f := CategoriesOfObject(obj);
Append(f,KnownTruePropertiesOfObject(obj));
Append(f,List(KnownAttributesOfObject(obj), x -> Concatenation("Has", x)));
return f;
end;
# From the implementation of DirectProductOp for groups and quasigroups, the
# below will only be called with a second-argument collection which is not a
# group or quasigroup.
# This is a helper that creates a rough join of the filters of a list of
# objects, using the same arguments as directproduct op (the redundant "first"
# argument, which is handy for seeding the filter list)
RoughJoinOfFilters@ := function(list, first)
local item, jof;
jof := Set(FiltersOfObj@(first));
for item in list{[2..Length(list)]} do
IntersectSet(jof, FiltersOfObj@(item));
od;
return jof;
end;
#! @ItemType Meth
#! @Arguments list-of-factors, distinguished-factor
#! @Returns a magma with only the structure common to all factors
#! @Description Extends the `DirectProduct` operation to allow factors that
#! are not even quasigroups, such as the one-sided quasigroups, racks, and
#! quandles with which &RAQ; is concerned. This direct product operation
#! makes its best effort to find the most structured category for the result
#! that it can, given that every factor in the product must lie in that
#! category.
InstallOtherMethod(DirectProductOp, "for a list and non-quasigroup magma",
[IsList, IsMagma],
function (list, first)
local item, i, jof, ids, gens, g, current, genfunc, genlists;
# Simple checks
if IsEmpty(list) then
Error("Usage: Cannot take DirectProduct of zero items.");
elif Length(list) = 1 then
return list[1];
fi;
jof := RoughJoinOfFilters@(list, first);
# The dispatch below is somewhat ad-hoc, but covers the major existing cases
# First, if we don't have generators for all of the items, we're kinda out
# of luck here:
if not ForAny(jof, nm -> StartsWith(nm,"HasGenerators")) then
TryNextMethod();
fi;
# Next, if anything is not even a magma, recommend cartesian product
if not "IsMagma" in jof then
Info(InfoRAQ, 1, "Try Cartesian() for products of collections.");
TryNextMethod();
fi;
# The primary division now is between entities with identities, for which
# the product will have a smaller generating set, and those which do
# not, for which the generators is the full cartesian product of generators.
if "IsMagmaWithOne" in jof then
# Code basically copied from DirectProductOp() for general groups;
# would be better if this could be moved into the GAP core
ids := List(list, One);
gens := [];
for i in [1..Length(list)] do
for g in GeneratorsOfMagmaWithOne(list[i]) do
current := ShallowCopy(ids);
current[i] := g;
Add(gens, DirectProductElement(current));
od;
od;
# Now, we want the most specific structure we know about here.
# Only aware of MagmaWithOne and Monoid, as direct products of
# loops are already covered by the LOOPS package:
if "IsMonoid" in jof then
return MonoidByGenerators(gens);
fi;
return MagmaWithOneByGenerators(gens);
fi;
# OK, here we know not all structures have inverses. Therefore, we must
# resort to the full cartesian product of generators.
# But we need to figure out what function to use to obtain the generators.
if "HasGeneratorsOfLeftQuasigroup" in jof then
genfunc := GeneratorsOfLeftQuasigroup;
elif "HasGeneratorsOfRightQuasigroup" in jof then
genfunc := GeneratorsOfRightQuasigroup;
elif "HasGeneratorsOfMagma" in jof then
genfunc := GeneratorsOfMagma;
elif "HasGeneratorsOfDomain" in jof then
genfunc := GeneratorsOfDomain;
else
Info(InfoRAQ,1, "RAQ: Unusual product, each of ", list,
" has generators, but not sure what kind; trying next method.");
TryNextMethod();
fi;
genlists := List(list, genfunc);
gens := Cartesian(genlists);
Apply(gens, DirectProductElement);
# Again, we need to figure out what sort of structure we might have
if "IsAssociative" in jof then
return SemigroupByGenerators(gens);
elif "IsLeftQuasigroup" in jof then
if "IsLSelfDistributive" in jof then
if "IsElementwiseIdempotent" in jof then
return LeftQuandleNC(FamilyObj(gens), gens);
fi;
return LeftRackNC(FamilyObj(gens), gens);
fi;
return LeftQuasigroupNC(FamilyObj(gens), gens);
elif "IsRightQuasigroup" in jof then
if "IsRSelfDistributive" in jof then
if "IsElementwiseIdempotent" in jof then
return RightQuandleNC(FamilyObj(gens), gens);
fi;
return RightRackNC(FamilyObj(gens), gens);
fi;
return RightQuasigroupNC(FamilyObj(gens), gens);
fi;
# Not seeing any additional structure; did I miss anything?
return MagmaByGenerators(gens);
end);
# Make sure that we can take quotients properly in the direct product
InstallOtherMethod(LeftQuotient,
IsIdenticalObj,
[IsDirectProductElement, IsDirectProductElement],
function (l,r)
local i, comps;
comps := [];
for i in [1..Length(l)] do
Add(comps, LeftQuotient(l![i],r![i]));
od;
return DirectProductElement(comps);
end);
InstallOtherMethod(\/,
IsIdenticalObj,
[IsDirectProductElement, IsDirectProductElement],
function (l,r)
local i, comps;
comps := [];
for i in [1..Length(l)] do
Add(comps, l![i] / r![i]);
od;
return DirectProductElement(comps);
end);
## Coversions among the structure types
InstallMethod(AsLeftQuasigroup, "for a left quasigroup",
[IsLeftQuasigroup], IdFunc);
InstallMethod(AsLeftRack, "for a left rack",
[IsLeftRack], IdFunc);
InstallMethod(AsLeftQuandle, "for a left quandle",
[IsLeftQuandle], IdFunc);
InstallMethod(AsRightQuasigroup, "for a right quasigroup",
[IsRightQuasigroup], IdFunc);
InstallMethod(AsRightRack, "for a right rack",
[IsRightRack], IdFunc);
InstallMethod(AsRightQuandle, "for a right quandle",
[IsRightQuandle], IdFunc);
AsAStructure@ := function(struc, D)
local T,S;
D := AsSSortedList(D);
# Check if D is closed under *
T := MultiplicationTable(D);
if ForAny(T, l -> fail in l) then
return fail;
fi;
# it is, so check if it satisfies the properties of struc
S := struc(D);
# OK, good, so we are there, just record what we know
SetAsSSortedList(S, D);
SetMultiplicationTable(S, T);
SetIsFinite(S, true);
SetSize(S, Length(D));
return S;
end;
InstallMethod(AsLeftQuasigroup, "for an arbitrary collection",
[IsCollection], D -> AsAStructure@(LeftQuasigroup, D));
InstallMethod(AsLeftRack, "for an arbitrary collection",
[IsCollection], D -> AsAStructure@(LeftRack, D));
InstallMethod(AsLeftQuandle, "for an arbitrary collection",
[IsCollection], D -> AsAStructure@(LeftQuandle, D));
InstallMethod(AsRightQuasigroup, "for an arbitrary collection",
[IsCollection], D -> AsAStructure@(RightQuasigroup, D));
InstallMethod(AsRightRack, "for an arbitrary collection",
[IsCollection], D -> AsAStructure@(RightRack, D));
InstallMethod(AsRightQuandle, "for an arbitrary collection",
[IsCollection], D -> AsAStructure@(RightQuandle, D));