Add constructors for the other one-sided quasigroups and racks.
This commit is contained in:
parent
1c8d3fbe52
commit
bc8c892898
@ -20,6 +20,10 @@ DeclareCategoryCollections("IsLSelfDistElement");
|
||||
DeclareCategory("IsRSelfDistElement", IsMultiplicativeElement);
|
||||
DeclareCategoryCollections("IsRSelfDistElement");
|
||||
|
||||
# Predicates on tables:
|
||||
DeclareProperty( "IsLeftSelfDistributiveTable", IsMatrix );
|
||||
DeclareProperty( "IsRightSelfDistributiveTable", IsMatrix );
|
||||
|
||||
# Left self-distributive magmas:
|
||||
DeclareProperty("IsLSelfDistributive", IsMagma);
|
||||
InstallTrueMethod(IsLSelfDistributive,
|
||||
@ -71,13 +75,15 @@ InstallImmediateMethod(GeneratorsOfMagma,
|
||||
|
||||
## And now, build them from multiplication tables
|
||||
# Need attributes on the families to store the sections and division tables
|
||||
DeclareAttribute("LeftSectionList", IsFamily and HasMultiplicationTable);
|
||||
DeclareAttribute("RightSectionList", IsFamily and HasMultiplicationTable);
|
||||
DeclareAttribute("LeftDivisionTable", IsFamily and HasMultiplicationTable);
|
||||
DeclareAttribute("RightDivisionTable", IsFamily and HasMultiplicationTable);
|
||||
DeclareAttribute("LeftPerms", HasMultiplicationTable);
|
||||
DeclareAttribute("RightPerms", HasMultiplicationTable);
|
||||
DeclareAttribute("LeftDivisionTable", HasMultiplicationTable);
|
||||
DeclareAttribute("RightDivisionTable", HasMultiplicationTable);
|
||||
|
||||
# And the builders
|
||||
DeclareGlobalFunction("LeftQuasigroupByMultiplicationTable");
|
||||
DeclareGlobalFunction("LeftRackByMultiplicationTable");
|
||||
DeclareGlobalFunction("LeftRackByMultiplicationTableNC");
|
||||
DeclareGlobalFunction("RightQuasigroupByMultiplicationTable");
|
||||
DeclareGlobalFunction("RightRackByMultiplicationTable");
|
||||
DeclareGlobalFunction("RightRackByMultiplicationTableNC");
|
||||
|
132
gap/structure.gi
132
gap/structure.gi
@ -2,13 +2,14 @@
|
||||
|
||||
## Create structures with generators
|
||||
InstallGlobalFunction(CloneOfTypeByGenerators,
|
||||
function(cat, fam, gens, genAttrib)
|
||||
function(cat, fam, gens, genAttrib, tableCstr),
|
||||
local M;
|
||||
if not(IsEmpty(gens) or IsIdenticalObj(FamilyObj(gens), fam)) then
|
||||
Error("<fam> and family of <gens> do not match");
|
||||
fi;
|
||||
M := Objectify(NewType( fam, cat and IsAttributeStoringRep), rec());
|
||||
Setter(genAttrib)(M, AsList(gens));
|
||||
SetConstructorFromTable(M, tableCstr);
|
||||
return M;
|
||||
end);
|
||||
|
||||
@ -28,7 +29,8 @@ InstallGlobalFunction(LeftQuasigroup, function(arg)
|
||||
fam := FamilyObj(arg[1]);
|
||||
fi;
|
||||
return CloneOfTypeByGenerators(IsLeftQuasigroup, fam, arg,
|
||||
GeneratorsOfLeftQuasigroup);
|
||||
GeneratorsOfLeftQuasigroup,
|
||||
LeftQuasigroupByMultiplicationTable);
|
||||
end);
|
||||
|
||||
InstallGlobalFunction(LeftRack, function(arg)
|
||||
@ -46,7 +48,8 @@ InstallGlobalFunction(LeftRack, function(arg)
|
||||
fam := FamilyObj(arg[1]);
|
||||
fi;
|
||||
return CloneOfTypeByGenerators(IsLeftRack, fam, arg,
|
||||
GeneratorsOfLeftQuasigroup);
|
||||
GeneratorsOfLeftQuasigroup,
|
||||
LeftRackByMultiplicationTableNC);
|
||||
end);
|
||||
|
||||
InstallGlobalFunction(RightQuasigroup, function(arg)
|
||||
@ -64,7 +67,8 @@ InstallGlobalFunction(RightQuasigroup, function(arg)
|
||||
fam := FamilyObj(arg[1]);
|
||||
fi;
|
||||
return CloneOfTypeByGenerators(IsRightQuasigroup, fam, arg,
|
||||
GeneratorsOfRightQuasigroup);
|
||||
GeneratorsOfRightQuasigroup,
|
||||
RightQuasigroupByMultiplicationTable);
|
||||
end);
|
||||
|
||||
InstallGlobalFunction(RightRack, function(arg)
|
||||
@ -82,9 +86,29 @@ InstallGlobalFunction(RightRack, function(arg)
|
||||
fam := FamilyObj(arg[1]);
|
||||
fi;
|
||||
return CloneOfTypeByGenerators(IsRightRack, fam, arg,
|
||||
GeneratorsOfRightQuasigroup);
|
||||
GeneratorsOfRightQuasigroup,
|
||||
RightRackByMultiplicationTableNC);
|
||||
end);
|
||||
|
||||
## Predicates to check tables for distributivity
|
||||
InstallMethod(IsRightSelfDistributiveTable, "for matrix",
|
||||
[ IsMatrix ],
|
||||
T -> IsLeftSelfDistributiveTable(TransposedMat(T))
|
||||
);
|
||||
|
||||
InstallMethod(IsLeftSelfDistributiveTable, "for matrix",
|
||||
[ IsMatrix ],
|
||||
function(T)
|
||||
# Everybody else does it by checking all of the cases, so why not me, too?
|
||||
# Is there a better way?
|
||||
local n,i,j,k;
|
||||
n := Length(T);
|
||||
for i in [1..n] do for j in [1..n] do for k in [1..n] do
|
||||
if T[i, T[j,k]] <> T[T[i,j], T[i,k]] then return false; fi;
|
||||
od; od; od;
|
||||
return true;
|
||||
end);
|
||||
|
||||
## And now create them from multiplication tables
|
||||
InstallGlobalFunction(LeftQuasigroupByMultiplicationTable,
|
||||
function(T)
|
||||
@ -99,7 +123,60 @@ InstallGlobalFunction(LeftQuasigroupByMultiplicationTable,
|
||||
);
|
||||
end);
|
||||
|
||||
## And define the operation
|
||||
InstallGlobalFunction(RightQuasigroupByMultiplicationTable,
|
||||
function(T)
|
||||
if not IsRightQuasigroupTable(T) then
|
||||
Error("Multiplication table <T> must have each column a permutation of ",
|
||||
"the same entries.");
|
||||
fi;
|
||||
return MagmaByMultiplicationTableCreatorNC(
|
||||
CanonicalCayleyTable(T),
|
||||
RightQuasigroup,
|
||||
IsRightQuotientElement and IsMagmaByMultiplicationTableObj
|
||||
);
|
||||
end);
|
||||
|
||||
InstallGlobalFunction(LeftRackByMultiplicationTable,
|
||||
function(T)
|
||||
if not IsLeftQuasigroupTable(T) then
|
||||
Error("Multiplication table <T> must have each row a permutation of ",
|
||||
"the same entries.");
|
||||
fi;
|
||||
T := CanonicalCayleyTableOfLeftQuasigroupTable(T);
|
||||
if not IsLeftSelfDistributiveTable(T) then
|
||||
Error("Multiplication table <T> must be left self distributive.");
|
||||
fi;
|
||||
return LeftRackByMulitplicationTableNC(T);
|
||||
end);
|
||||
|
||||
InstallGlobalFunction(LeftRackByMulitplicationTableNC,
|
||||
T -> MagmaByMultiplicationTableCreatorNC(T, LeftRack,
|
||||
IsLeftQuotientElement and IsLSelfDistributiveElement and
|
||||
IsMagmaByMultiplicationTableObj
|
||||
);
|
||||
);
|
||||
|
||||
InstallGlobalFunction(RightRackByMultiplicationTable,
|
||||
function(T)
|
||||
if not IsRightQuasigroupTable(T) then
|
||||
Error("Multiplication table <T> must have each column a permutation of ",
|
||||
"the same entries.");
|
||||
fi;
|
||||
T := CanonicalCayleyTable(T);
|
||||
if not IsRightSelfDistributiveTable(T) then
|
||||
Error("Multiplication table <T> must be right self distributive.");
|
||||
fi;
|
||||
return RightRackByMultiplicationTableNC(T);
|
||||
end);
|
||||
|
||||
InstallGlobalFunction(RightRackByMultiplicationTableNC,
|
||||
T -> MagmaByMultiplicationTableCreatorNC(T, RightRack,
|
||||
IsRightQuotientElement and IsRSelfDistributiveElement and
|
||||
IsMagmaByMultiplicationTableObj
|
||||
);
|
||||
);
|
||||
|
||||
## And define the operations
|
||||
|
||||
InstallOtherMethod(LeftQuotient,
|
||||
"for two elts in magma by mult table, when left has left quotients",
|
||||
@ -112,24 +189,49 @@ InstallOtherMethod(LeftQuotient,
|
||||
return fam!.set[ix];
|
||||
end);
|
||||
|
||||
InstallOtherMethod(\/,
|
||||
"for two elts in magma by mult table, when right has right quotients",
|
||||
IsIdenticalObj,
|
||||
[IsMagmaByMultiplicationTableObj, IsRightQuotientElement],
|
||||
function (l,r)
|
||||
local fam, ix;
|
||||
fam := FamilyObj(r);
|
||||
ix := RightDivisionTable(fam)[l![1],r![1]];
|
||||
return fam!.set[ix];
|
||||
end);
|
||||
|
||||
## Create division tables as needed
|
||||
InstallMethod(LeftDivisionTable,
|
||||
"for a family with a multiplication table",
|
||||
[IsFamily and HasMultiplicationTable],
|
||||
"for an object with a multiplication table",
|
||||
[HasMultiplicationTable],
|
||||
function(fam)
|
||||
local LS, n;
|
||||
LS := LeftSectionList(fam);
|
||||
LS := LeftPerms(fam);
|
||||
n := Size(LS);
|
||||
return List(LS, x->ListPerm(Inverse(x), n));
|
||||
end);
|
||||
|
||||
## Create section lists as needed
|
||||
InstallMethod(LeftSectionList,
|
||||
"for a family with a multiplication table",
|
||||
[IsFamily and HasMultiplicationTable],
|
||||
InstallMethod(RightDivisionTable,
|
||||
"for an object with a multiplication table",
|
||||
[HasMultiplicationTable],
|
||||
function (obj)
|
||||
local RS, n;
|
||||
RS := RightPerms(fam);
|
||||
n := Size(RS);
|
||||
return TransposedMat(List(RS, x->ListPerm(Inverse(x), n)));
|
||||
end);
|
||||
|
||||
## Create perm lists as needed
|
||||
InstallMethod(LeftPerms,
|
||||
"for an object with a multiplication table",
|
||||
[HasMultiplicationTable],
|
||||
function(fam)
|
||||
return List(MultiplicationTable(fam), x->PermList(x));
|
||||
end);
|
||||
|
||||
|
||||
|
||||
InstallMethod(RightPerms,
|
||||
"for an object with a muliplication table",
|
||||
[HasMultiplicationTable],
|
||||
function(fam)
|
||||
return List(TransposedMat(MultiplicationTable(fam)), x->PermList(x));
|
||||
end);
|
||||
|
Loading…
Reference in New Issue
Block a user