Try a version of README dependent on an experimental AutoDoc

This commit is contained in:
Glen Whitney 2018-08-21 00:38:28 -07:00
parent 4fac5682b8
commit 5f41ae5bbf

View File

@ -32,26 +32,19 @@ Perhaps the following GAP interactive session, which constructs the
conjugation quandle of the symmetric group on three elements and then performs
a few simple computations on that quandle, will give the flavor of RAQ. (It is
presumed that the RAQ package has already been loaded with
`LoadPackage("RAQ");` prior to these example commands being executed.
<!--@EndAutoDocPlainText -->
<!--#! @DONT_SCAN_NEXT_LINE -->
Also, please excuse/ignore the `#!` at the beginning of each line in the
example session, they're there just because this file is also used as part of
the RAQ manual produced via AutoDoc.)
<!--We have to close the AutoDoc parenthetical, too: -->
<!--#!)
<!--#!@BeginExampleSession -->
`LoadPackage("RAQ");` prior to these example commands being executed.)
<!--@BeginExampleSession ``` -->
```
#! gap> S3 := SymmetricGroup(3);
#! Sym( [ 1 .. 3 ] )
#! gap> Elements(S3);
#! [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ]
#! gap> Q3 := ConjugationQuandle(S3);
#! <left quandle with 6 generators>
#! gap> elt := Elements(Q3); # the element ^p: below means conjugation by p in S3
#! [ ^():, ^(2,3):, ^(1,2):, ^(1,2,3):, ^(1,3,2):, ^(1,3): ]
#! gap> elt[4]*elt[3]; # So this will produce (1,2,3)^{-1}(1,2)(1,2,3)
#! ^(2,3):
gap> S3 := SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> Elements(S3);
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ]
gap> Q3 := ConjugationQuandle(S3);
<left quandle with 6 generators>
gap> elt := Elements(Q3); # the element ^p: below means conjugation by p in S3
[ ^():, ^(2,3):, ^(1,2):, ^(1,2,3):, ^(1,3,2):, ^(1,3): ]
gap> elt[4]*elt[3]; # So this will produce (1,2,3)^{-1}(1,2)(1,2,3)
^(2,3):
```
<!--@EndExampleSession
@AutoDocPlainText -->