Add trivial quandle construction
This commit is contained in:
parent
6428dddf56
commit
12f5e28112
13
gap/constructions.gd
Normal file
13
gap/constructions.gd
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
## constructions.gd RAQ Other quandle constructions
|
||||||
|
|
||||||
|
## Trivial quandles
|
||||||
|
|
||||||
|
DeclareGlobalFunction("TrivialLeftQuandle");
|
||||||
|
DeclareGlobalFunction("TrivialRightQuandle");
|
||||||
|
DeclareProperty("IsTrivial", IsLeftQuasigroup);
|
||||||
|
DeclareProperty("IsTrivial", IsRightQuasigroup);
|
||||||
|
|
||||||
|
## Convenience functions
|
||||||
|
|
||||||
|
DeclareGlobalFunction("Quandle");
|
||||||
|
DeclareGlobalFunction("Rack");
|
130
gap/constructions.gi
Normal file
130
gap/constructions.gi
Normal file
@ -0,0 +1,130 @@
|
|||||||
|
## constructions.gi RAQ Implementations of other quandle constructions
|
||||||
|
|
||||||
|
## Inert objects with which to build trivial quandles.
|
||||||
|
DeclareCategory("IsLRInertum", IsMultiplicativeElement);
|
||||||
|
DeclareCategory("IsLInertum", IsLRInertum and IsLeftQuotientElement);
|
||||||
|
DeclareCategory("IsRInertum", IsLRInertum and IsRightQuotientElement);
|
||||||
|
DeclareCategoryCollections("IsLInertum");
|
||||||
|
DeclareCategoryCollections("IsRInertum");
|
||||||
|
LInertumFamily@ := NewFamily("LeftInertFamily", IsLInertum,
|
||||||
|
IsLSelfDistElement and IsIdempotent);
|
||||||
|
RInertumFamily@ := NewFamily("RightInertFamily", IsRInertum,
|
||||||
|
IsRSelfDistElement and IsIdempotent);
|
||||||
|
LInertumType@ := NewType(LInertumFamily,
|
||||||
|
IsLInertum and IsPositionalObjectOneSlotRep);
|
||||||
|
RInertumType@ := NewType(RInertumFamily,
|
||||||
|
IsRInertum and IsPositionalObjectOneSlotRep);
|
||||||
|
LInertum@ := i -> Objectify(LInertumType, [i]);
|
||||||
|
RInertum@ := i -> Objectify(RInertumType, [i]);
|
||||||
|
|
||||||
|
WhichI@ := obj -> obj![1];
|
||||||
|
|
||||||
|
InstallMethod(String, "for left inert objects",
|
||||||
|
[IsLInertum],
|
||||||
|
obj -> Concatenation("LInertum@raq(", String(WhichI@(obj)), ")")
|
||||||
|
);
|
||||||
|
InstallMethod(String, "for rightt inert objects",
|
||||||
|
[IsRInertum],
|
||||||
|
obj -> Concatenation("RInertum@raq(", String(WhichI@(obj)), ")")
|
||||||
|
);
|
||||||
|
|
||||||
|
InstallMethod(ViewString, "for left inert objects",
|
||||||
|
[IsLInertum],
|
||||||
|
obj -> Concatenation("i", String(WhichI@(obj)), ">")
|
||||||
|
);
|
||||||
|
InstallMethod(ViewString, "for right inert objects",
|
||||||
|
[IsRInertum],
|
||||||
|
obj -> Concatenation("<i", String(WhichI@(obj)))
|
||||||
|
);
|
||||||
|
|
||||||
|
InstallMethod(\=, "for two inert objects",
|
||||||
|
IsIdenticalObj,
|
||||||
|
[IsLRInertum, IsLRInertum],
|
||||||
|
function(l,r) return l![1] = r![1]; end
|
||||||
|
);
|
||||||
|
|
||||||
|
InstallMethod(\<, "for two inert objects",
|
||||||
|
IsIdenticalObj,
|
||||||
|
[IsLRInertum, IsLRInertum],
|
||||||
|
function(l,r) return l![1] < r![1]; end
|
||||||
|
);
|
||||||
|
|
||||||
|
InstallMethod(\*, "for a left inert object and anything",
|
||||||
|
[IsLInertum, IsExtLElement],
|
||||||
|
function(l,r) return r; end
|
||||||
|
);
|
||||||
|
|
||||||
|
InstallMethod(\*, "for anything and a right inert object",
|
||||||
|
[IsExtRElement, IsRInertum], ReturnFirst
|
||||||
|
);
|
||||||
|
|
||||||
|
InstallMethod(LeftQuotient, "for a left inert object and anything",
|
||||||
|
[IsLInertum, IsExtLElement],
|
||||||
|
function(l,r) return r; end
|
||||||
|
);
|
||||||
|
|
||||||
|
InstallMethod(\/, "for anything and a right inert object",
|
||||||
|
[IsExtRElement, IsRInertum], ReturnFirst
|
||||||
|
);
|
||||||
|
|
||||||
|
LeftTrivs@ := [];
|
||||||
|
RigthTrivs@ := [];
|
||||||
|
|
||||||
|
InstallGlobalFunction(TrivialLeftQuandle,
|
||||||
|
function(n)
|
||||||
|
local I;
|
||||||
|
if not IsBound(LeftTrivs@[n]) then
|
||||||
|
I := AsLeftQuandle(List([1..n], LInertum@));
|
||||||
|
SetIsTrivial(I, true);
|
||||||
|
SetIsBuiltFromMultiplicationTable(I, true);
|
||||||
|
SetMultiplicationTable(I, ListWithIdenticalEntries(n, [1..n]));
|
||||||
|
LeftTrivs@[n] := I;
|
||||||
|
fi;
|
||||||
|
return LeftTrivs@[n];
|
||||||
|
end);
|
||||||
|
|
||||||
|
InstallGlobalFunction(TrivialRightQuandle,
|
||||||
|
function(n)
|
||||||
|
local I;
|
||||||
|
if not IsBound(RightTrivs@[n]) then
|
||||||
|
I := AsRightQuandle(List([1..n], RInertum@));
|
||||||
|
SetIsTrivial(I, true);
|
||||||
|
SetIsBuiltFromMultiplicationTable(I, true);
|
||||||
|
SetMultiplicationTable(I,
|
||||||
|
List([1..n], i -> ListWithIdenticalEntries(n, i)));
|
||||||
|
RightTrivs@[n] := I;
|
||||||
|
fi;
|
||||||
|
return RightTrivs@[n];
|
||||||
|
end);
|
||||||
|
|
||||||
|
InstallMethod(IsTrivial, "for a left quasigroup",
|
||||||
|
[IsLeftQuasigroup],
|
||||||
|
Q -> ForAll(LeftPerms(Q), p -> p = ())
|
||||||
|
);
|
||||||
|
|
||||||
|
InstallMethod(IsTrivial, "for a left quasigroup",
|
||||||
|
[IsRightQuasigroup],
|
||||||
|
Q -> ForAll(RightPerms(Q), p -> p = ())
|
||||||
|
);
|
||||||
|
|
||||||
|
## Convenience functions
|
||||||
|
|
||||||
|
InstallGlobalFunction(Quandle,
|
||||||
|
function(arg)
|
||||||
|
if Length(arg) = 0 then
|
||||||
|
return LeftQuandleNC(CollectionsFamily(LInertumFamily@),[]);
|
||||||
|
fi;
|
||||||
|
if Length(arg) = 1 and IsInt(arg[1]) then
|
||||||
|
return TrivialLeftQuandle(arg[1]);
|
||||||
|
fi;
|
||||||
|
## Will put more stuff here, but for now, just a convenient wrapper for
|
||||||
|
## perms
|
||||||
|
return LeftQuandleByPerms(arg);
|
||||||
|
end);
|
||||||
|
|
||||||
|
InstallGlobalFunction(Rack,
|
||||||
|
function(arg)
|
||||||
|
## Will put more stuff here, but for now, just a convenient wrapper for
|
||||||
|
## perms
|
||||||
|
return LeftQuandleByPerms(arg);
|
||||||
|
end);
|
2
init.g
2
init.g
@ -9,3 +9,5 @@ ReadPackage("raq", "gap/bytable.gd");
|
|||||||
# Quandles by conjugation
|
# Quandles by conjugation
|
||||||
ReadPackage("raq", "gap/byconj.gd");
|
ReadPackage("raq", "gap/byconj.gd");
|
||||||
|
|
||||||
|
# Other quandle constructions
|
||||||
|
ReadPackage("raq", "gap/constructions.gd");
|
||||||
|
Loading…
Reference in New Issue
Block a user