chore: wrap at 80 characters #128
21 changed files with 644 additions and 487 deletions
|
@ -10,7 +10,7 @@ runs:
|
|||
using: "composite"
|
||||
steps:
|
||||
- run: rustup target add wasm32-unknown-unknown
|
||||
|
||||
|
||||
# install the Trunk binary to `ci-bin` within the workspace directory, which
|
||||
# is determined by the `github.workspace` label and reflected in the
|
||||
# `GITHUB_WORKSPACE` environment variable. then, make the `trunk` command
|
||||
|
|
|
@ -24,6 +24,6 @@ jobs:
|
|||
# workspace directory (action variable `github.workspace`, environment
|
||||
# variable `$GITHUB_WORKSPACE`):
|
||||
- uses: https://code.forgejo.org/actions/checkout@v4
|
||||
|
||||
|
||||
- uses: ./.forgejo/setup-trunk
|
||||
- run: RUSTFLAGS='-D warnings' cargo test
|
||||
- run: RUSTFLAGS='-D warnings' cargo test
|
||||
|
|
|
@ -52,20 +52,20 @@ The latest prototype is in the folder `app-proto`. It includes both a user inter
|
|||
1. Use `sh` to run the script `tools/run-examples.sh`.
|
||||
- The script is location-independent, so you can do this from anywhere in the dyna3 repository.
|
||||
- The call from the top level of the repository is:
|
||||
|
||||
|
||||
```bash
|
||||
sh tools/run-examples.sh
|
||||
```
|
||||
- For each example problem, the engine will print the value of the loss function at each optimization step.
|
||||
- The first example that prints is the same as the Irisawa hexlet example from the Julia version of the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then execute
|
||||
|
||||
|
||||
```julia
|
||||
include("irisawa-hexlet.jl")
|
||||
for (step, scaled_loss) in enumerate(history_alt.scaled_loss)
|
||||
println(rpad(step-1, 4), " | ", scaled_loss)
|
||||
end
|
||||
```
|
||||
|
||||
|
||||
you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show.
|
||||
|
||||
### Run the automated tests
|
||||
|
|
|
@ -15,9 +15,9 @@ fn main() {
|
|||
for k in 4..9 {
|
||||
println!(" {} sun", 1.0 / config[(3, k)]);
|
||||
}
|
||||
|
||||
|
||||
// print the completed Gram matrix
|
||||
print::gram_matrix(&config);
|
||||
}
|
||||
print::loss_history(&realization.history);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -14,7 +14,7 @@ fn main() {
|
|||
// print the completed Gram matrix and the realized configuration
|
||||
print::gram_matrix(&config);
|
||||
print::config(&config);
|
||||
|
||||
|
||||
// find the kaleidocycle's twist motion by projecting onto the tangent
|
||||
// space
|
||||
const N_POINTS: usize = 12;
|
||||
|
@ -29,4 +29,4 @@ fn main() {
|
|||
let normalization = 5.0 / twist_motion[(2, 0)];
|
||||
println!("\nTwist motion:{}", (normalization * twist_motion).to_string().trim_end());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
<link data-trunk rel="css" href="main.css"/>
|
||||
<link href="https://fonts.bunny.net/css?family=fira-sans:ital,wght@0,400;1,400&display=swap" rel="stylesheet">
|
||||
<link href="https://fonts.bunny.net/css?family=noto-emoji:wght@400&text=%f0%9f%94%97%e2%9a%a0&display=swap" rel="stylesheet">
|
||||
|
||||
|
||||
<!--
|
||||
the Charming visualization crate, which we use to show engine diagnostics,
|
||||
depends the ECharts JavaScript package
|
||||
|
|
|
@ -45,7 +45,7 @@ static NEXT_SERIAL: AtomicU64 = AtomicU64::new(0);
|
|||
pub trait Serial {
|
||||
// a serial number that uniquely identifies this element
|
||||
fn serial(&self) -> u64;
|
||||
|
||||
|
||||
// take the next serial number, panicking if that was the last one left
|
||||
fn next_serial() -> u64 where Self: Sized {
|
||||
// the technique we use to panic on overflow is taken from _Rust Atomics
|
||||
|
@ -101,33 +101,33 @@ pub trait ProblemPoser {
|
|||
pub trait Element: Serial + ProblemPoser + DisplayItem {
|
||||
// the default identifier for an element of this type
|
||||
fn default_id() -> String where Self: Sized;
|
||||
|
||||
|
||||
// the default example of an element of this type
|
||||
fn default(id: String, id_num: u64) -> Self where Self: Sized;
|
||||
|
||||
|
||||
// the default regulators that come with this element
|
||||
fn default_regulators(self: Rc<Self>) -> Vec<Rc<dyn Regulator>> {
|
||||
Vec::new()
|
||||
}
|
||||
|
||||
|
||||
fn id(&self) -> &String;
|
||||
fn label(&self) -> &String;
|
||||
fn representation(&self) -> Signal<DVector<f64>>;
|
||||
fn ghost(&self) -> Signal<bool>;
|
||||
|
||||
|
||||
// the regulators the element is subject to. the assembly that owns the
|
||||
// element is responsible for keeping this set up to date
|
||||
fn regulators(&self) -> Signal<BTreeSet<Rc<dyn Regulator>>>;
|
||||
|
||||
|
||||
// project a representation vector for this kind of element onto its
|
||||
// normalization variety
|
||||
fn project_to_normalized(&self, rep: &mut DVector<f64>);
|
||||
|
||||
|
||||
// the configuration matrix column index that was assigned to the element
|
||||
// last time the assembly was realized, or `None` if the element has never
|
||||
// been through a realization
|
||||
fn column_index(&self) -> Option<usize>;
|
||||
|
||||
|
||||
// assign the element a configuration matrix column index. this method must
|
||||
// be used carefully to preserve invariant (1), described in the comment on
|
||||
// the `tangent` field of the `Assembly` structure
|
||||
|
@ -179,7 +179,7 @@ pub struct Sphere {
|
|||
|
||||
impl Sphere {
|
||||
const CURVATURE_COMPONENT: usize = 3;
|
||||
|
||||
|
||||
pub fn new(
|
||||
id: String,
|
||||
label: String,
|
||||
|
@ -203,7 +203,7 @@ impl Element for Sphere {
|
|||
fn default_id() -> String {
|
||||
"sphere".to_string()
|
||||
}
|
||||
|
||||
|
||||
fn default(id: String, id_num: u64) -> Self {
|
||||
Self::new(
|
||||
id,
|
||||
|
@ -212,39 +212,39 @@ impl Element for Sphere {
|
|||
sphere(0.0, 0.0, 0.0, 1.0),
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
fn default_regulators(self: Rc<Self>) -> Vec<Rc<dyn Regulator>> {
|
||||
vec![Rc::new(HalfCurvatureRegulator::new(self))]
|
||||
}
|
||||
|
||||
|
||||
fn id(&self) -> &String {
|
||||
&self.id
|
||||
}
|
||||
|
||||
|
||||
fn label(&self) -> &String {
|
||||
&self.label
|
||||
}
|
||||
|
||||
|
||||
fn representation(&self) -> Signal<DVector<f64>> {
|
||||
self.representation
|
||||
}
|
||||
|
||||
|
||||
fn ghost(&self) -> Signal<bool> {
|
||||
self.ghost
|
||||
}
|
||||
|
||||
|
||||
fn regulators(&self) -> Signal<BTreeSet<Rc<dyn Regulator>>> {
|
||||
self.regulators
|
||||
}
|
||||
|
||||
|
||||
fn project_to_normalized(&self, rep: &mut DVector<f64>) {
|
||||
project_sphere_to_normalized(rep);
|
||||
}
|
||||
|
||||
|
||||
fn column_index(&self) -> Option<usize> {
|
||||
self.column_index.get()
|
||||
}
|
||||
|
||||
|
||||
fn set_column_index(&self, index: usize) {
|
||||
self.column_index.set(Some(index));
|
||||
}
|
||||
|
@ -261,7 +261,8 @@ impl ProblemPoser for Sphere {
|
|||
let index = self.column_index().expect(
|
||||
indexing_error("Sphere", &self.id, "it").as_str());
|
||||
problem.gram.push_sym(index, index, 1.0);
|
||||
problem.guess.set_column(index, &self.representation.get_clone_untracked());
|
||||
problem.guess.set_column(
|
||||
index, &self.representation.get_clone_untracked());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -279,7 +280,7 @@ pub struct Point {
|
|||
impl Point {
|
||||
const WEIGHT_COMPONENT: usize = 3;
|
||||
const NORM_COMPONENT: usize = 4;
|
||||
|
||||
|
||||
pub fn new(
|
||||
id: String,
|
||||
label: String,
|
||||
|
@ -303,7 +304,7 @@ impl Element for Point {
|
|||
fn default_id() -> String {
|
||||
"point".to_string()
|
||||
}
|
||||
|
||||
|
||||
fn default(id: String, id_num: u64) -> Self {
|
||||
Self::new(
|
||||
id,
|
||||
|
@ -321,35 +322,35 @@ impl Element for Point {
|
|||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
|
||||
fn id(&self) -> &String {
|
||||
&self.id
|
||||
}
|
||||
|
||||
|
||||
fn label(&self) -> &String {
|
||||
&self.label
|
||||
}
|
||||
|
||||
|
||||
fn representation(&self) -> Signal<DVector<f64>> {
|
||||
self.representation
|
||||
}
|
||||
|
||||
|
||||
fn ghost(&self) -> Signal<bool> {
|
||||
self.ghost
|
||||
}
|
||||
|
||||
|
||||
fn regulators(&self) -> Signal<BTreeSet<Rc<dyn Regulator>>> {
|
||||
self.regulators
|
||||
}
|
||||
|
||||
|
||||
fn project_to_normalized(&self, rep: &mut DVector<f64>) {
|
||||
project_point_to_normalized(rep);
|
||||
}
|
||||
|
||||
|
||||
fn column_index(&self) -> Option<usize> {
|
||||
self.column_index.get()
|
||||
}
|
||||
|
||||
|
||||
fn set_column_index(&self, index: usize) {
|
||||
self.column_index.set(Some(index));
|
||||
}
|
||||
|
@ -367,7 +368,8 @@ impl ProblemPoser for Point {
|
|||
indexing_error("Point", &self.id, "it").as_str());
|
||||
problem.gram.push_sym(index, index, 0.0);
|
||||
problem.frozen.push(Self::WEIGHT_COMPONENT, index, 0.5);
|
||||
problem.guess.set_column(index, &self.representation.get_clone_untracked());
|
||||
problem.guess.set_column(
|
||||
index, &self.representation.get_clone_untracked());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -412,7 +414,8 @@ pub struct InversiveDistanceRegulator {
|
|||
|
||||
impl InversiveDistanceRegulator {
|
||||
pub fn new(subjects: [Rc<dyn Element>; 2]) -> Self {
|
||||
let representations = subjects.each_ref().map(|subj| subj.representation());
|
||||
let representations = subjects.each_ref().map(
|
||||
|subj| subj.representation());
|
||||
let measurement = create_memo(move || {
|
||||
representations[0].with(|rep_0|
|
||||
representations[1].with(|rep_1|
|
||||
|
@ -420,10 +423,10 @@ impl InversiveDistanceRegulator {
|
|||
)
|
||||
)
|
||||
});
|
||||
|
||||
|
||||
let set_point = create_signal(SpecifiedValue::from_empty_spec());
|
||||
let serial = Self::next_serial();
|
||||
|
||||
|
||||
Self { subjects, measurement, set_point, serial }
|
||||
}
|
||||
}
|
||||
|
@ -432,11 +435,11 @@ impl Regulator for InversiveDistanceRegulator {
|
|||
fn subjects(&self) -> Vec<Rc<dyn Element>> {
|
||||
self.subjects.clone().into()
|
||||
}
|
||||
|
||||
|
||||
fn measurement(&self) -> ReadSignal<f64> {
|
||||
self.measurement
|
||||
}
|
||||
|
||||
|
||||
fn set_point(&self) -> Signal<SpecifiedValue> {
|
||||
self.set_point
|
||||
}
|
||||
|
@ -475,10 +478,10 @@ impl HalfCurvatureRegulator {
|
|||
let measurement = subject.representation().map(
|
||||
|rep| rep[Sphere::CURVATURE_COMPONENT]
|
||||
);
|
||||
|
||||
|
||||
let set_point = create_signal(SpecifiedValue::from_empty_spec());
|
||||
let serial = Self::next_serial();
|
||||
|
||||
|
||||
Self { subject, measurement, set_point, serial }
|
||||
}
|
||||
}
|
||||
|
@ -487,11 +490,11 @@ impl Regulator for HalfCurvatureRegulator {
|
|||
fn subjects(&self) -> Vec<Rc<dyn Element>> {
|
||||
vec![self.subject.clone()]
|
||||
}
|
||||
|
||||
|
||||
fn measurement(&self) -> ReadSignal<f64> {
|
||||
self.measurement
|
||||
}
|
||||
|
||||
|
||||
fn set_point(&self) -> Signal<SpecifiedValue> {
|
||||
self.set_point
|
||||
}
|
||||
|
@ -545,7 +548,9 @@ impl PointCoordinateRegulator {
|
|||
move |rep| rep[axis as usize]
|
||||
);
|
||||
let set_point = create_signal(SpecifiedValue::from_empty_spec());
|
||||
Self { subject, axis, measurement, set_point, serial: Self::next_serial() }
|
||||
Self {
|
||||
subject, axis, measurement, set_point, serial: Self::next_serial()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -579,8 +584,8 @@ impl ProblemPoser for PointCoordinateRegulator {
|
|||
}
|
||||
if nset == Axis::CARDINALITY {
|
||||
let [x, y, z] = coords;
|
||||
problem.frozen.push(
|
||||
Point::NORM_COMPONENT, col, point(x,y,z)[Point::NORM_COMPONENT]);
|
||||
problem.frozen.push(Point::NORM_COMPONENT,
|
||||
col, point(x,y,z)[Point::NORM_COMPONENT]);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
@ -601,7 +606,7 @@ pub struct Assembly {
|
|||
// elements and regulators
|
||||
pub elements: Signal<BTreeSet<Rc<dyn Element>>>,
|
||||
pub regulators: Signal<BTreeSet<Rc<dyn Regulator>>>,
|
||||
|
||||
|
||||
// solution variety tangent space. the basis vectors are stored in
|
||||
// configuration matrix format, ordered according to the elements' column
|
||||
// indices. when you realize the assembly, every element that's present
|
||||
|
@ -613,13 +618,13 @@ pub struct Assembly {
|
|||
// in that column of the tangent space basis matrices
|
||||
//
|
||||
pub tangent: Signal<ConfigSubspace>,
|
||||
|
||||
|
||||
// indexing
|
||||
pub elements_by_id: Signal<BTreeMap<String, Rc<dyn Element>>>,
|
||||
|
||||
|
||||
// realization control
|
||||
pub realization_trigger: Signal<()>,
|
||||
|
||||
|
||||
// realization diagnostics
|
||||
pub realization_status: Signal<Result<(), String>>,
|
||||
pub descent_history: Signal<DescentHistory>,
|
||||
|
@ -639,7 +644,7 @@ impl Assembly {
|
|||
descent_history: create_signal(DescentHistory::new()),
|
||||
step: create_signal(SpecifiedValue::from_empty_spec()),
|
||||
};
|
||||
|
||||
|
||||
// realize the assembly whenever the element list, the regulator list,
|
||||
// a regulator's set point, or the realization trigger is updated
|
||||
let assembly_for_realization = assembly.clone();
|
||||
|
@ -653,7 +658,7 @@ impl Assembly {
|
|||
assembly_for_realization.realization_trigger.track();
|
||||
assembly_for_realization.realize();
|
||||
});
|
||||
|
||||
|
||||
// load a configuration from the descent history whenever the active
|
||||
// step is updated
|
||||
let assembly_for_step_selection = assembly.clone();
|
||||
|
@ -665,12 +670,12 @@ impl Assembly {
|
|||
assembly_for_step_selection.load_config(&config)
|
||||
}
|
||||
});
|
||||
|
||||
|
||||
assembly
|
||||
}
|
||||
|
||||
|
||||
// --- inserting elements and regulators ---
|
||||
|
||||
|
||||
// insert an element into the assembly without checking whether we already
|
||||
// have an element with the same identifier. any element that does have the
|
||||
// same identifier will get kicked out of the `elements_by_id` index
|
||||
|
@ -679,14 +684,15 @@ impl Assembly {
|
|||
let id = elt.id().clone();
|
||||
let elt_rc = Rc::new(elt);
|
||||
self.elements.update(|elts| elts.insert(elt_rc.clone()));
|
||||
self.elements_by_id.update(|elts_by_id| elts_by_id.insert(id, elt_rc.clone()));
|
||||
|
||||
self.elements_by_id.update(
|
||||
|elts_by_id| elts_by_id.insert(id, elt_rc.clone()));
|
||||
|
||||
// create and insert the element's default regulators
|
||||
for reg in elt_rc.default_regulators() {
|
||||
self.insert_regulator(reg);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub fn try_insert_element(&self, elt: impl Element + 'static) -> bool {
|
||||
let can_insert = self.elements_by_id.with_untracked(
|
||||
|elts_by_id| !elts_by_id.contains_key(elt.id())
|
||||
|
@ -696,7 +702,7 @@ impl Assembly {
|
|||
}
|
||||
can_insert
|
||||
}
|
||||
|
||||
|
||||
pub fn insert_element_default<T: Element + 'static>(&self) {
|
||||
// find the next unused identifier in the default sequence
|
||||
let default_id = T::default_id();
|
||||
|
@ -708,17 +714,17 @@ impl Assembly {
|
|||
id_num += 1;
|
||||
id = format!("{default_id}{id_num}");
|
||||
}
|
||||
|
||||
|
||||
// create and insert the default example of `T`
|
||||
let _ = self.insert_element_unchecked(T::default(id, id_num));
|
||||
}
|
||||
|
||||
|
||||
pub fn insert_regulator(&self, regulator: Rc<dyn Regulator>) {
|
||||
// add the regulator to the assembly's regulator list
|
||||
self.regulators.update(
|
||||
|regs| regs.insert(regulator.clone())
|
||||
);
|
||||
|
||||
|
||||
// add the regulator to each subject's regulator list
|
||||
let subject_regulators: Vec<_> = regulator.subjects().into_iter().map(
|
||||
|subj| subj.regulators()
|
||||
|
@ -726,7 +732,7 @@ impl Assembly {
|
|||
for regulators in subject_regulators {
|
||||
regulators.update(|regs| regs.insert(regulator.clone()));
|
||||
}
|
||||
|
||||
|
||||
/* DEBUG */
|
||||
// print an updated list of regulators
|
||||
console_log!("Regulators:");
|
||||
|
@ -749,19 +755,20 @@ impl Assembly {
|
|||
}
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
// --- updating the configuration ---
|
||||
|
||||
|
||||
pub fn load_config(&self, config: &DMatrix<f64>) {
|
||||
for elt in self.elements.get_clone_untracked() {
|
||||
elt.representation().update(
|
||||
|rep| rep.set_column(0, &config.column(elt.column_index().unwrap()))
|
||||
|rep| rep.set_column(
|
||||
0, &config.column(elt.column_index().unwrap()))
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// --- realization ---
|
||||
|
||||
|
||||
pub fn realize(&self) {
|
||||
// index the elements
|
||||
self.elements.update_silent(|elts| {
|
||||
|
@ -769,7 +776,7 @@ impl Assembly {
|
|||
elt.set_column_index(index);
|
||||
}
|
||||
});
|
||||
|
||||
|
||||
// set up the constraint problem
|
||||
let problem = self.elements.with_untracked(|elts| {
|
||||
let mut problem = ConstraintProblem::new(elts.len());
|
||||
|
@ -783,21 +790,21 @@ impl Assembly {
|
|||
});
|
||||
problem
|
||||
});
|
||||
|
||||
|
||||
/* DEBUG */
|
||||
// log the Gram matrix
|
||||
console_log!("Gram matrix:\n{}", problem.gram);
|
||||
console_log!("Frozen entries:\n{}", problem.frozen);
|
||||
|
||||
|
||||
/* DEBUG */
|
||||
// log the initial configuration matrix
|
||||
console_log!("Old configuration:{:>8.3}", problem.guess);
|
||||
|
||||
|
||||
// look for a configuration with the given Gram matrix
|
||||
let Realization { result, history } = realize_gram(
|
||||
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
|
||||
|
||||
/* DEBUG */
|
||||
// report the outcome of the search in the browser console
|
||||
if let Err(ref message) = result {
|
||||
|
@ -809,20 +816,20 @@ impl Assembly {
|
|||
console_log!("Steps: {}", history.scaled_loss.len() - 1);
|
||||
console_log!("Loss: {}", history.scaled_loss.last().unwrap());
|
||||
}
|
||||
|
||||
|
||||
// report the descent history
|
||||
let step_cnt = history.config.len();
|
||||
self.descent_history.set(history);
|
||||
|
||||
|
||||
match result {
|
||||
Ok(ConfigNeighborhood { nbhd: tangent, .. }) => {
|
||||
/* DEBUG */
|
||||
// report the tangent dimension
|
||||
console_log!("Tangent dimension: {}", tangent.dim());
|
||||
|
||||
|
||||
// report the realization status
|
||||
self.realization_status.set(Ok(()));
|
||||
|
||||
|
||||
// display the last realization step
|
||||
self.step.set(
|
||||
if step_cnt > 0 {
|
||||
|
@ -832,7 +839,7 @@ impl Assembly {
|
|||
SpecifiedValue::from_empty_spec()
|
||||
}
|
||||
);
|
||||
|
||||
|
||||
// save the tangent space
|
||||
self.tangent.set_silent(tangent);
|
||||
},
|
||||
|
@ -842,15 +849,15 @@ impl Assembly {
|
|||
// `Err(message)` we received from the match: we're changing the
|
||||
// `Ok` type from `Realization` to `()`
|
||||
self.realization_status.set(Err(message));
|
||||
|
||||
|
||||
// display the initial guess
|
||||
self.step.set(SpecifiedValue::from(Some(0.0)));
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// --- deformation ---
|
||||
|
||||
|
||||
// project the given motion to the tangent space of the solution variety and
|
||||
// move the assembly along it. the implementation is based on invariant (1)
|
||||
// from above and the following additional invariant:
|
||||
|
@ -867,7 +874,7 @@ impl Assembly {
|
|||
if self.tangent.with(|tan| tan.dim() <= 0 && tan.assembly_dim() > 0) {
|
||||
console::log_1(&JsValue::from("The assembly is rigid"));
|
||||
}
|
||||
|
||||
|
||||
// give a column index to each moving element that doesn't have one yet.
|
||||
// this temporarily breaks invariant (1), but the invariant will be
|
||||
// restored when we realize the assembly at the end of the deformation.
|
||||
|
@ -885,7 +892,7 @@ impl Assembly {
|
|||
}
|
||||
next_column_index
|
||||
};
|
||||
|
||||
|
||||
// project the element motions onto the tangent space of the solution
|
||||
// variety and sum them to get a deformation of the whole assembly. the
|
||||
// matrix `motion_proj` that holds the deformation has extra columns for
|
||||
|
@ -896,11 +903,12 @@ impl Assembly {
|
|||
// we can unwrap the column index because we know that every moving
|
||||
// element has one at this point
|
||||
let column_index = elt_motion.element.column_index().unwrap();
|
||||
|
||||
|
||||
if column_index < realized_dim {
|
||||
// this element had a column index when we started, so by
|
||||
// invariant (1), it's reflected in the tangent space
|
||||
let mut target_columns = motion_proj.columns_mut(0, realized_dim);
|
||||
let mut target_columns =
|
||||
motion_proj.columns_mut(0, realized_dim);
|
||||
target_columns += self.tangent.with(
|
||||
|tan| tan.proj(&elt_motion.velocity, column_index)
|
||||
);
|
||||
|
@ -908,13 +916,14 @@ impl Assembly {
|
|||
// this element didn't have a column index when we started, so
|
||||
// by invariant (2), it's unconstrained
|
||||
let mut target_column = motion_proj.column_mut(column_index);
|
||||
let unif_to_std = elt_motion.element.representation().with_untracked(
|
||||
|rep| local_unif_to_std(rep.as_view())
|
||||
);
|
||||
let unif_to_std =
|
||||
elt_motion.element.representation().with_untracked(
|
||||
|rep| local_unif_to_std(rep.as_view())
|
||||
);
|
||||
target_column += unif_to_std * elt_motion.velocity;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// step the assembly along the deformation. this changes the elements'
|
||||
// normalizations, so we restore those afterward
|
||||
for elt in self.elements.get_clone_untracked() {
|
||||
|
@ -927,12 +936,15 @@ impl Assembly {
|
|||
elt.project_to_normalized(rep);
|
||||
},
|
||||
None => {
|
||||
console_log!("No velocity to unpack for fresh element \"{}\"", elt.id())
|
||||
console_log!(
|
||||
"No velocity to unpack for fresh element \"{}\"",
|
||||
elt.id()
|
||||
)
|
||||
},
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
// trigger a realization to bring the configuration back onto the
|
||||
// solution variety. this also gets the elements' column indices and the
|
||||
// saved tangent space back in sync
|
||||
|
@ -943,9 +955,9 @@ impl Assembly {
|
|||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
|
||||
use crate::engine;
|
||||
|
||||
|
||||
#[test]
|
||||
#[should_panic(expected =
|
||||
"Sphere \"sphere\" must be indexed before it writes problem data")]
|
||||
|
@ -955,25 +967,27 @@ mod tests {
|
|||
elt.pose(&mut ConstraintProblem::new(1));
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
#[should_panic(expected = "Subject \"sphere1\" must be indexed before \
|
||||
inversive distance regulator writes problem data")]
|
||||
fn unindexed_subject_test_inversive_distance() {
|
||||
let _ = create_root(|| {
|
||||
let subjects = [0, 1].map(
|
||||
|k| Rc::new(Sphere::default(format!("sphere{k}"), k)) as Rc<dyn Element>
|
||||
|k| Rc::new(
|
||||
Sphere::default(format!("sphere{k}"), k)) as Rc<dyn Element>
|
||||
);
|
||||
subjects[0].set_column_index(0);
|
||||
InversiveDistanceRegulator {
|
||||
subjects: subjects,
|
||||
measurement: create_memo(|| 0.0),
|
||||
set_point: create_signal(SpecifiedValue::try_from("0.0".to_string()).unwrap()),
|
||||
set_point: create_signal(
|
||||
SpecifiedValue::try_from("0.0".to_string()).unwrap()),
|
||||
serial: InversiveDistanceRegulator::next_serial()
|
||||
}.pose(&mut ConstraintProblem::new(2));
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn curvature_drift_test() {
|
||||
const INITIAL_RADIUS: f64 = 0.25;
|
||||
|
@ -993,12 +1007,14 @@ mod tests {
|
|||
engine::sphere(0.0, 0.0, 0.0, INITIAL_RADIUS),
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// nudge the sphere repeatedly along the `z` axis
|
||||
const STEP_SIZE: f64 = 0.0025;
|
||||
const STEP_CNT: usize = 400;
|
||||
let sphere = assembly.elements_by_id.with(|elts_by_id| elts_by_id[sphere_id].clone());
|
||||
let velocity = DVector::from_column_slice(&[0.0, 0.0, STEP_SIZE, 0.0]);
|
||||
let sphere = assembly.elements_by_id.with(
|
||||
|elts_by_id| elts_by_id[sphere_id].clone());
|
||||
let velocity =
|
||||
DVector::from_column_slice(&[0.0, 0.0, STEP_SIZE, 0.0]);
|
||||
for _ in 0..STEP_CNT {
|
||||
assembly.deform(
|
||||
vec![
|
||||
|
@ -1009,14 +1025,15 @@ mod tests {
|
|||
]
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
// check how much the sphere's curvature has drifted
|
||||
const INITIAL_HALF_CURV: f64 = 0.5 / INITIAL_RADIUS;
|
||||
const DRIFT_TOL: f64 = 0.015;
|
||||
let final_half_curv = sphere.representation().with_untracked(
|
||||
|rep| rep[Sphere::CURVATURE_COMPONENT]
|
||||
);
|
||||
assert!((final_half_curv / INITIAL_HALF_CURV - 1.0).abs() < DRIFT_TOL);
|
||||
assert!((final_half_curv / INITIAL_HALF_CURV - 1.0).abs()
|
||||
< DRIFT_TOL);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
|
@ -39,7 +39,9 @@ pub fn AddRemove() -> View {
|
|||
}
|
||||
) { "Add point" }
|
||||
button(
|
||||
class = "emoji", /* KLUDGE */ // for convenience, we're using an emoji as a temporary icon for this button
|
||||
/* KLUDGE */ // for convenience, we're using an emoji as an
|
||||
// icon for this button
|
||||
class = "emoji",
|
||||
disabled = {
|
||||
let state = use_context::<AppState>();
|
||||
state.selection.with(|sel| sel.len() != 2)
|
||||
|
|
|
@ -54,7 +54,7 @@ fn StepInput() -> View {
|
|||
// get the assembly
|
||||
let state = use_context::<AppState>();
|
||||
let assembly = state.assembly;
|
||||
|
||||
|
||||
// the `last_step` signal holds the index of the last step
|
||||
let last_step = assembly.descent_history.map(
|
||||
|history| match history.config.len() {
|
||||
|
@ -63,15 +63,15 @@ fn StepInput() -> View {
|
|||
}
|
||||
);
|
||||
let input_max = last_step.map(|last| last.unwrap_or(0));
|
||||
|
||||
|
||||
// these signals hold the entered step number
|
||||
let value = create_signal(String::new());
|
||||
let value_as_number = create_signal(0.0);
|
||||
|
||||
|
||||
create_effect(move || {
|
||||
value.set(assembly.step.with(|n| n.spec.clone()));
|
||||
});
|
||||
|
||||
|
||||
view! {
|
||||
div(id = "step-input") {
|
||||
label { "Step" }
|
||||
|
@ -98,7 +98,7 @@ fn StepInput() -> View {
|
|||
|val| val.clamp(0.0, input_max.get() as f64)
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// set the input string and the assembly's active step
|
||||
value.set(step.spec.clone());
|
||||
assembly.step.set(step);
|
||||
|
@ -124,7 +124,7 @@ fn LossHistory() -> View {
|
|||
const CONTAINER_ID: &str = "loss-history";
|
||||
let state = use_context::<AppState>();
|
||||
let renderer = WasmRenderer::new_opt(None, Some(178));
|
||||
|
||||
|
||||
on_mount(move || {
|
||||
create_effect(move || {
|
||||
// get the loss history
|
||||
|
@ -136,13 +136,13 @@ fn LossHistory() -> View {
|
|||
.map(into_log10_time_point)
|
||||
.collect()
|
||||
);
|
||||
|
||||
|
||||
// initialize the chart axes
|
||||
let step_axis = Axis::new()
|
||||
.type_(AxisType::Category)
|
||||
.boundary_gap(false);
|
||||
let scaled_loss_axis = Axis::new();
|
||||
|
||||
|
||||
// load the chart data. when there's no history, we load the data
|
||||
// point (0, None) to clear the chart. it would feel more natural to
|
||||
// load empty data vectors, but that turns out not to clear the
|
||||
|
@ -164,7 +164,7 @@ fn LossHistory() -> View {
|
|||
renderer.render(CONTAINER_ID, &chart).unwrap();
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
view! {
|
||||
div(id = CONTAINER_ID, class = "diagnostics-chart")
|
||||
}
|
||||
|
@ -176,7 +176,7 @@ fn SpectrumHistory() -> View {
|
|||
const CONTAINER_ID: &str = "spectrum-history";
|
||||
let state = use_context::<AppState>();
|
||||
let renderer = WasmRenderer::new(478, 178);
|
||||
|
||||
|
||||
on_mount(move || {
|
||||
create_effect(move || {
|
||||
// get the spectrum of the Hessian at each step, split into its
|
||||
|
@ -208,13 +208,13 @@ fn SpectrumHistory() -> View {
|
|||
): (Vec<_>, Vec<_>) = hess_eigvals_nonzero
|
||||
.into_iter()
|
||||
.partition(|&(_, val)| val > 0.0);
|
||||
|
||||
|
||||
// initialize the chart axes
|
||||
let step_axis = Axis::new()
|
||||
.type_(AxisType::Category)
|
||||
.boundary_gap(false);
|
||||
let eigval_axis = Axis::new();
|
||||
|
||||
|
||||
// load the chart data. when there's no history, we load the data
|
||||
// point (0, None) to clear the chart. it would feel more natural to
|
||||
// load empty data vectors, but that turns out not to clear the
|
||||
|
@ -270,7 +270,7 @@ fn SpectrumHistory() -> View {
|
|||
renderer.render(CONTAINER_ID, &chart).unwrap();
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
view! {
|
||||
div(id = CONTAINER_ID, class = "diagnostics-chart")
|
||||
}
|
||||
|
@ -302,7 +302,7 @@ pub fn Diagnostics() -> View {
|
|||
let diagnostics_state = DiagnosticsState::new("loss".to_string());
|
||||
let active_tab = diagnostics_state.active_tab.clone();
|
||||
provide_context(diagnostics_state);
|
||||
|
||||
|
||||
view! {
|
||||
div(id = "diagnostics") {
|
||||
div(id = "diagnostics-bar") {
|
||||
|
@ -317,4 +317,4 @@ pub fn Diagnostics() -> View {
|
|||
DiagnosticsPanel(name = "spectrum") { SpectrumHistory {} }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -48,11 +48,12 @@ impl SceneSpheres {
|
|||
highlights: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fn len_i32(&self) -> i32 {
|
||||
self.representations.len().try_into().expect("Number of spheres must fit in a 32-bit integer")
|
||||
self.representations.len().try_into().expect(
|
||||
"Number of spheres must fit in a 32-bit integer")
|
||||
}
|
||||
|
||||
|
||||
fn push(
|
||||
&mut self, representation: DVector<f64>,
|
||||
color: ElementColor, opacity: f32, highlight: f32,
|
||||
|
@ -79,7 +80,7 @@ impl ScenePoints {
|
|||
selections: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fn push(
|
||||
&mut self, representation: DVector<f64>,
|
||||
color: ElementColor, opacity: f32, highlight: f32, selected: bool,
|
||||
|
@ -107,7 +108,7 @@ impl Scene {
|
|||
|
||||
pub trait DisplayItem {
|
||||
fn show(&self, scene: &mut Scene, selected: bool);
|
||||
|
||||
|
||||
// the smallest positive depth, represented as a multiple of `dir`, where
|
||||
// the line generated by `dir` hits the element. returns `None` if the line
|
||||
// misses the element
|
||||
|
@ -125,14 +126,18 @@ impl DisplayItem for Sphere {
|
|||
const DEFAULT_OPACITY: f32 = 0.5;
|
||||
const GHOST_OPACITY: f32 = 0.2;
|
||||
const HIGHLIGHT: f32 = 0.2;
|
||||
|
||||
|
||||
let representation = self.representation.get_clone_untracked();
|
||||
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
|
||||
let opacity = if self.ghost.get() { GHOST_OPACITY } else { DEFAULT_OPACITY };
|
||||
let color =
|
||||
if selected { self.color.map(|channel| 0.2 + 0.8*channel) }
|
||||
else { self.color };
|
||||
let opacity =
|
||||
if self.ghost.get() { GHOST_OPACITY }
|
||||
else { DEFAULT_OPACITY };
|
||||
let highlight = if selected { 1.0 } else { HIGHLIGHT };
|
||||
scene.spheres.push(representation, color, opacity, highlight);
|
||||
}
|
||||
|
||||
|
||||
// this method should be kept synchronized with `sphere_cast` in
|
||||
// `spheres.frag`, which does essentially the same thing on the GPU side
|
||||
fn cast(
|
||||
|
@ -144,12 +149,13 @@ impl DisplayItem for Sphere {
|
|||
// if `a/b` is less than this threshold, we approximate
|
||||
// `a*u^2 + b*u + c` by the linear function `b*u + c`
|
||||
const DEG_THRESHOLD: f64 = 1e-9;
|
||||
|
||||
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
|
||||
|
||||
let rep = self.representation.with_untracked(
|
||||
|rep| assembly_to_world * rep);
|
||||
let a = -rep[3] * dir.norm_squared();
|
||||
let b = rep.rows_range(..3).dot(&dir);
|
||||
let c = -rep[4];
|
||||
|
||||
|
||||
let adjust = 4.0*a*c/(b*b);
|
||||
if adjust < 1.0 {
|
||||
// as long as `b` is non-zero, the linear approximation of
|
||||
|
@ -184,14 +190,16 @@ impl DisplayItem for Point {
|
|||
/* SCAFFOLDING */
|
||||
const GHOST_OPACITY: f32 = 0.4;
|
||||
const HIGHLIGHT: f32 = 0.5;
|
||||
|
||||
|
||||
let representation = self.representation.get_clone_untracked();
|
||||
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
|
||||
let color =
|
||||
if selected { self.color.map(|channel| 0.2 + 0.8*channel) }
|
||||
else { self.color };
|
||||
let opacity = if self.ghost.get() { GHOST_OPACITY } else { 1.0 };
|
||||
let highlight = if selected { 1.0 } else { HIGHLIGHT };
|
||||
scene.points.push(representation, color, opacity, highlight, selected);
|
||||
}
|
||||
|
||||
|
||||
/* SCAFFOLDING */
|
||||
fn cast(
|
||||
&self,
|
||||
|
@ -199,20 +207,21 @@ impl DisplayItem for Point {
|
|||
assembly_to_world: &DMatrix<f64>,
|
||||
pixel_size: f64,
|
||||
) -> Option<f64> {
|
||||
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
|
||||
let rep = self.representation.with_untracked(
|
||||
|rep| assembly_to_world * rep);
|
||||
if rep[2] < 0.0 {
|
||||
// this constant should be kept synchronized with `point.frag`
|
||||
const POINT_RADIUS_PX: f64 = 4.0;
|
||||
|
||||
|
||||
// find the radius of the point in screen projection units
|
||||
let point_radius_proj = POINT_RADIUS_PX * pixel_size;
|
||||
|
||||
|
||||
// find the squared distance between the screen projections of the
|
||||
// ray and the point
|
||||
let dir_proj = -dir.fixed_rows::<2>(0) / dir[2];
|
||||
let rep_proj = -rep.fixed_rows::<2>(0) / rep[2];
|
||||
let dist_sq = (dir_proj - rep_proj).norm_squared();
|
||||
|
||||
|
||||
// if the ray hits the point, return its depth
|
||||
if dist_sq < point_radius_proj * point_radius_proj {
|
||||
Some(rep[2] / dir[2])
|
||||
|
@ -254,13 +263,13 @@ fn set_up_program(
|
|||
WebGl2RenderingContext::FRAGMENT_SHADER,
|
||||
fragment_shader_source,
|
||||
);
|
||||
|
||||
|
||||
// create the program and attach the shaders
|
||||
let program = context.create_program().unwrap();
|
||||
context.attach_shader(&program, &vertex_shader);
|
||||
context.attach_shader(&program, &fragment_shader);
|
||||
context.link_program(&program);
|
||||
|
||||
|
||||
/* DEBUG */
|
||||
// report whether linking succeeded
|
||||
let link_status = context
|
||||
|
@ -273,7 +282,7 @@ fn set_up_program(
|
|||
"Linking failed"
|
||||
};
|
||||
console::log_1(&JsValue::from(link_msg));
|
||||
|
||||
|
||||
program
|
||||
}
|
||||
|
||||
|
@ -318,7 +327,7 @@ fn load_new_buffer(
|
|||
// create a buffer and bind it to ARRAY_BUFFER
|
||||
let buffer = context.create_buffer();
|
||||
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
|
||||
|
||||
|
||||
// load the given data into the buffer. this block is unsafe because
|
||||
// `Float32Array::view` creates a raw view into our module's
|
||||
// `WebAssembly.Memory` buffer. allocating more memory will change the
|
||||
|
@ -332,7 +341,7 @@ fn load_new_buffer(
|
|||
WebGl2RenderingContext::STATIC_DRAW,
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
buffer
|
||||
}
|
||||
|
||||
|
@ -353,15 +362,16 @@ fn event_dir(event: &MouseEvent) -> (Vector3<f64>, f64) {
|
|||
let width = rect.width();
|
||||
let height = rect.height();
|
||||
let shortdim = width.min(height);
|
||||
|
||||
|
||||
// this constant should be kept synchronized with `spheres.frag` and
|
||||
// `point.vert`
|
||||
const FOCAL_SLOPE: f64 = 0.3;
|
||||
|
||||
let horizontal = f64::from(event.client_x()) - rect.left();
|
||||
let vertical = rect.bottom() - f64::from(event.client_y());
|
||||
(
|
||||
Vector3::new(
|
||||
FOCAL_SLOPE * (2.0*(f64::from(event.client_x()) - rect.left()) - width) / shortdim,
|
||||
FOCAL_SLOPE * (2.0*(rect.bottom() - f64::from(event.client_y())) - height) / shortdim,
|
||||
FOCAL_SLOPE * (2.0*horizontal - width) / shortdim,
|
||||
FOCAL_SLOPE * (2.0*vertical - height) / shortdim,
|
||||
-1.0,
|
||||
),
|
||||
FOCAL_SLOPE * 2.0 / shortdim,
|
||||
|
@ -373,13 +383,13 @@ fn event_dir(event: &MouseEvent) -> (Vector3<f64>, f64) {
|
|||
#[component]
|
||||
pub fn Display() -> View {
|
||||
let state = use_context::<AppState>();
|
||||
|
||||
|
||||
// canvas
|
||||
let display = create_node_ref();
|
||||
|
||||
|
||||
// viewpoint
|
||||
let assembly_to_world = create_signal(DMatrix::<f64>::identity(5, 5));
|
||||
|
||||
|
||||
// navigation
|
||||
let pitch_up = create_signal(0.0);
|
||||
let pitch_down = create_signal(0.0);
|
||||
|
@ -390,7 +400,7 @@ pub fn Display() -> View {
|
|||
let zoom_in = create_signal(0.0);
|
||||
let zoom_out = create_signal(0.0);
|
||||
let turntable = create_signal(false); /* BENCHMARKING */
|
||||
|
||||
|
||||
// manipulation
|
||||
let translate_neg_x = create_signal(0.0);
|
||||
let translate_pos_x = create_signal(0.0);
|
||||
|
@ -400,7 +410,7 @@ pub fn Display() -> View {
|
|||
let translate_pos_z = create_signal(0.0);
|
||||
let shrink_neg = create_signal(0.0);
|
||||
let shrink_pos = create_signal(0.0);
|
||||
|
||||
|
||||
// change listener
|
||||
let scene_changed = create_signal(true);
|
||||
create_effect(move || {
|
||||
|
@ -413,18 +423,18 @@ pub fn Display() -> View {
|
|||
state.selection.track();
|
||||
scene_changed.set(true);
|
||||
});
|
||||
|
||||
|
||||
/* INSTRUMENTS */
|
||||
const SAMPLE_PERIOD: i32 = 60;
|
||||
let mut last_sample_time = 0.0;
|
||||
let mut frames_since_last_sample = 0;
|
||||
let mean_frame_interval = create_signal(0.0);
|
||||
|
||||
|
||||
let assembly_for_raf = state.assembly.clone();
|
||||
on_mount(move || {
|
||||
// timing
|
||||
let mut last_time = 0.0;
|
||||
|
||||
|
||||
// viewpoint
|
||||
const ROT_SPEED: f64 = 0.4; // in radians per second
|
||||
const ZOOM_SPEED: f64 = 0.15; // multiplicative rate per second
|
||||
|
@ -432,48 +442,50 @@ pub fn Display() -> View {
|
|||
let mut orientation = DMatrix::<f64>::identity(5, 5);
|
||||
let mut rotation = DMatrix::<f64>::identity(5, 5);
|
||||
let mut location_z: f64 = 5.0;
|
||||
|
||||
|
||||
// manipulation
|
||||
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
|
||||
const SHRINKING_SPEED: f64 = 0.15; // in length units per second
|
||||
|
||||
|
||||
// display parameters
|
||||
const LAYER_THRESHOLD: i32 = 0; /* DEBUG */
|
||||
const DEBUG_MODE: i32 = 0; /* DEBUG */
|
||||
|
||||
|
||||
/* INSTRUMENTS */
|
||||
let performance = window().unwrap().performance().unwrap();
|
||||
|
||||
|
||||
// get the display canvas
|
||||
let canvas = display.get().unchecked_into::<web_sys::HtmlCanvasElement>();
|
||||
let canvas =
|
||||
display.get().unchecked_into::<web_sys::HtmlCanvasElement>();
|
||||
let ctx = canvas
|
||||
.get_context("webgl2")
|
||||
.unwrap()
|
||||
.unwrap()
|
||||
.dyn_into::<WebGl2RenderingContext>()
|
||||
.unwrap();
|
||||
|
||||
|
||||
// disable depth testing
|
||||
ctx.disable(WebGl2RenderingContext::DEPTH_TEST);
|
||||
|
||||
|
||||
// set blend mode
|
||||
ctx.enable(WebGl2RenderingContext::BLEND);
|
||||
ctx.blend_func(WebGl2RenderingContext::SRC_ALPHA, WebGl2RenderingContext::ONE_MINUS_SRC_ALPHA);
|
||||
|
||||
ctx.blend_func(WebGl2RenderingContext::SRC_ALPHA,
|
||||
WebGl2RenderingContext::ONE_MINUS_SRC_ALPHA);
|
||||
|
||||
// set up the sphere rendering program
|
||||
let sphere_program = set_up_program(
|
||||
&ctx,
|
||||
include_str!("identity.vert"),
|
||||
include_str!("spheres.frag"),
|
||||
);
|
||||
|
||||
|
||||
// set up the point rendering program
|
||||
let point_program = set_up_program(
|
||||
&ctx,
|
||||
include_str!("point.vert"),
|
||||
include_str!("point.frag"),
|
||||
);
|
||||
|
||||
|
||||
/* DEBUG */
|
||||
// print the maximum number of vectors that can be passed as
|
||||
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
|
||||
|
@ -487,16 +499,20 @@ pub fn Display() -> View {
|
|||
// machine, the the length of a float or genType array seems to be
|
||||
// capped at 1024 elements
|
||||
console::log_2(
|
||||
&ctx.get_parameter(WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
|
||||
&ctx.get_parameter(
|
||||
WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
|
||||
&JsValue::from("uniform vectors available"),
|
||||
);
|
||||
|
||||
|
||||
// find the sphere program's vertex attribute
|
||||
let viewport_position_attr = ctx.get_attrib_location(&sphere_program, "position") as u32;
|
||||
|
||||
let viewport_position_attr =
|
||||
ctx.get_attrib_location(&sphere_program, "position") as u32;
|
||||
|
||||
// find the sphere program's uniforms
|
||||
const SPHERE_MAX: usize = 200;
|
||||
let sphere_cnt_loc = ctx.get_uniform_location(&sphere_program, "sphere_cnt");
|
||||
let sphere_cnt_loc = ctx.get_uniform_location(
|
||||
&sphere_program, "sphere_cnt"
|
||||
);
|
||||
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &sphere_program, "sphere_list", Some("sp")
|
||||
);
|
||||
|
@ -509,11 +525,19 @@ pub fn Display() -> View {
|
|||
let sphere_highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &sphere_program, "highlight_list", None
|
||||
);
|
||||
let resolution_loc = ctx.get_uniform_location(&sphere_program, "resolution");
|
||||
let shortdim_loc = ctx.get_uniform_location(&sphere_program, "shortdim");
|
||||
let layer_threshold_loc = ctx.get_uniform_location(&sphere_program, "layer_threshold");
|
||||
let debug_mode_loc = ctx.get_uniform_location(&sphere_program, "debug_mode");
|
||||
|
||||
let resolution_loc = ctx.get_uniform_location(
|
||||
&sphere_program, "resolution"
|
||||
);
|
||||
let shortdim_loc = ctx.get_uniform_location(
|
||||
&sphere_program, "shortdim"
|
||||
);
|
||||
let layer_threshold_loc = ctx.get_uniform_location(
|
||||
&sphere_program, "layer_threshold"
|
||||
);
|
||||
let debug_mode_loc = ctx.get_uniform_location(
|
||||
&sphere_program, "debug_mode"
|
||||
);
|
||||
|
||||
// load the viewport vertex positions into a new vertex buffer object
|
||||
const VERTEX_CNT: usize = 6;
|
||||
let viewport_positions: [f32; 3*VERTEX_CNT] = [
|
||||
|
@ -526,21 +550,26 @@ pub fn Display() -> View {
|
|||
1.0, 1.0, 0.0,
|
||||
1.0, -1.0, 0.0,
|
||||
];
|
||||
let viewport_position_buffer = load_new_buffer(&ctx, &viewport_positions);
|
||||
|
||||
let viewport_position_buffer =
|
||||
load_new_buffer(&ctx, &viewport_positions);
|
||||
|
||||
// find the point program's vertex attributes
|
||||
let point_position_attr = ctx.get_attrib_location(&point_program, "position") as u32;
|
||||
let point_color_attr = ctx.get_attrib_location(&point_program, "color") as u32;
|
||||
let point_highlight_attr = ctx.get_attrib_location(&point_program, "highlight") as u32;
|
||||
let point_selection_attr = ctx.get_attrib_location(&point_program, "selected") as u32;
|
||||
|
||||
let point_position_attr =
|
||||
ctx.get_attrib_location(&point_program, "position") as u32;
|
||||
let point_color_attr =
|
||||
ctx.get_attrib_location(&point_program, "color") as u32;
|
||||
let point_highlight_attr =
|
||||
ctx.get_attrib_location(&point_program, "highlight") as u32;
|
||||
let point_selection_attr =
|
||||
ctx.get_attrib_location(&point_program, "selected") as u32;
|
||||
|
||||
// set up a repainting routine
|
||||
let (_, start_animation_loop, _) = create_raf(move || {
|
||||
// get the time step
|
||||
let time = performance.now();
|
||||
let time_step = 0.001*(time - last_time);
|
||||
last_time = time;
|
||||
|
||||
|
||||
// get the navigation state
|
||||
let pitch_up_val = pitch_up.get();
|
||||
let pitch_down_val = pitch_down.get();
|
||||
|
@ -551,7 +580,7 @@ pub fn Display() -> View {
|
|||
let zoom_in_val = zoom_in.get();
|
||||
let zoom_out_val = zoom_out.get();
|
||||
let turntable_val = turntable.get(); /* BENCHMARKING */
|
||||
|
||||
|
||||
// get the manipulation state
|
||||
let translate_neg_x_val = translate_neg_x.get();
|
||||
let translate_pos_x_val = translate_pos_x.get();
|
||||
|
@ -561,7 +590,7 @@ pub fn Display() -> View {
|
|||
let translate_pos_z_val = translate_pos_z.get();
|
||||
let shrink_neg_val = shrink_neg.get();
|
||||
let shrink_pos_val = shrink_pos.get();
|
||||
|
||||
|
||||
// update the assembly's orientation
|
||||
let ang_vel = {
|
||||
let pitch = pitch_up_val - pitch_down_val;
|
||||
|
@ -582,11 +611,11 @@ pub fn Display() -> View {
|
|||
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
|
||||
);
|
||||
orientation = &rotation * &orientation;
|
||||
|
||||
|
||||
// update the assembly's location
|
||||
let zoom = zoom_out_val - zoom_in_val;
|
||||
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
|
||||
|
||||
|
||||
// manipulate the assembly
|
||||
/* KLUDGE */
|
||||
// to avoid the complexity of making tangent space projection
|
||||
|
@ -596,7 +625,8 @@ pub fn Display() -> View {
|
|||
let realization_successful = state.assembly.realization_status.with(
|
||||
|status| status.is_ok()
|
||||
);
|
||||
let step_val = state.assembly.step.with_untracked(|step| step.value);
|
||||
let step_val =
|
||||
state.assembly.step.with_untracked(|step| step.value);
|
||||
let on_init_step = step_val.is_some_and(|n| n == 0.0);
|
||||
let on_last_step = step_val.is_some_and(
|
||||
|n| state.assembly.descent_history.with_untracked(
|
||||
|
@ -606,7 +636,8 @@ pub fn Display() -> View {
|
|||
let on_manipulable_step =
|
||||
!realization_successful && on_init_step
|
||||
|| realization_successful && on_last_step;
|
||||
if on_manipulable_step && state.selection.with(|sel| sel.len() == 1) {
|
||||
if on_manipulable_step
|
||||
&& state.selection.with(|sel| sel.len() == 1) {
|
||||
let sel = state.selection.with(
|
||||
|sel| sel.into_iter().next().unwrap().clone()
|
||||
);
|
||||
|
@ -642,24 +673,25 @@ pub fn Display() -> View {
|
|||
scene_changed.set(true);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if scene_changed.get() {
|
||||
const SPACE_DIM: usize = 3;
|
||||
const COLOR_SIZE: usize = 3;
|
||||
|
||||
|
||||
/* INSTRUMENTS */
|
||||
// measure mean frame interval
|
||||
frames_since_last_sample += 1;
|
||||
if frames_since_last_sample >= SAMPLE_PERIOD {
|
||||
mean_frame_interval.set((time - last_sample_time) / (SAMPLE_PERIOD as f64));
|
||||
mean_frame_interval.set(
|
||||
(time - last_sample_time) / (SAMPLE_PERIOD as f64));
|
||||
last_sample_time = time;
|
||||
frames_since_last_sample = 0;
|
||||
}
|
||||
|
||||
|
||||
// --- get the assembly ---
|
||||
|
||||
|
||||
let mut scene = Scene::new();
|
||||
|
||||
|
||||
// find the map from assembly space to world space
|
||||
let location = {
|
||||
let u = -location_z;
|
||||
|
@ -672,35 +704,37 @@ pub fn Display() -> View {
|
|||
])
|
||||
};
|
||||
let asm_to_world = &location * &orientation;
|
||||
|
||||
|
||||
// set up the scene
|
||||
state.assembly.elements.with_untracked(
|
||||
|elts| for elt in elts {
|
||||
let selected = state.selection.with(|sel| sel.contains(elt));
|
||||
let selected =
|
||||
state.selection.with(|sel| sel.contains(elt));
|
||||
elt.show(&mut scene, selected);
|
||||
}
|
||||
);
|
||||
let sphere_cnt = scene.spheres.len_i32();
|
||||
|
||||
|
||||
// --- draw the spheres ---
|
||||
|
||||
|
||||
// use the sphere rendering program
|
||||
ctx.use_program(Some(&sphere_program));
|
||||
|
||||
|
||||
// enable the sphere program's vertex attribute
|
||||
ctx.enable_vertex_attrib_array(viewport_position_attr);
|
||||
|
||||
|
||||
// write the spheres in world coordinates
|
||||
let sphere_reps_world: Vec<_> = scene.spheres.representations.into_iter().map(
|
||||
|rep| (&asm_to_world * rep).cast::<f32>()
|
||||
).collect();
|
||||
|
||||
let sphere_reps_world: Vec<_> =
|
||||
scene.spheres.representations.into_iter().map(
|
||||
|rep| (&asm_to_world * rep).cast::<f32>()
|
||||
).collect();
|
||||
|
||||
// set the resolution
|
||||
let width = canvas.width() as f32;
|
||||
let height = canvas.height() as f32;
|
||||
ctx.uniform2f(resolution_loc.as_ref(), width, height);
|
||||
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
|
||||
|
||||
|
||||
// pass the scene data
|
||||
ctx.uniform1i(sphere_cnt_loc.as_ref(), sphere_cnt);
|
||||
for n in 0..sphere_reps_world.len() {
|
||||
|
@ -722,33 +756,35 @@ pub fn Display() -> View {
|
|||
scene.spheres.highlights[n],
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
// pass the display parameters
|
||||
ctx.uniform1i(layer_threshold_loc.as_ref(), LAYER_THRESHOLD);
|
||||
ctx.uniform1i(debug_mode_loc.as_ref(), DEBUG_MODE);
|
||||
|
||||
|
||||
// bind the viewport vertex position buffer to the position
|
||||
// attribute in the vertex shader
|
||||
bind_to_attribute(&ctx, viewport_position_attr, SPACE_DIM as i32, &viewport_position_buffer);
|
||||
|
||||
bind_to_attribute(&ctx, viewport_position_attr,
|
||||
SPACE_DIM as i32, &viewport_position_buffer);
|
||||
|
||||
// draw the scene
|
||||
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
|
||||
|
||||
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0,
|
||||
VERTEX_CNT as i32);
|
||||
|
||||
// disable the sphere program's vertex attribute
|
||||
ctx.disable_vertex_attrib_array(viewport_position_attr);
|
||||
|
||||
|
||||
// --- draw the points ---
|
||||
|
||||
|
||||
if !scene.points.representations.is_empty() {
|
||||
// use the point rendering program
|
||||
ctx.use_program(Some(&point_program));
|
||||
|
||||
|
||||
// enable the point program's vertex attributes
|
||||
ctx.enable_vertex_attrib_array(point_position_attr);
|
||||
ctx.enable_vertex_attrib_array(point_color_attr);
|
||||
ctx.enable_vertex_attrib_array(point_highlight_attr);
|
||||
ctx.enable_vertex_attrib_array(point_selection_attr);
|
||||
|
||||
|
||||
// write the points in world coordinates
|
||||
let asm_to_world_sp = asm_to_world.rows(0, SPACE_DIM);
|
||||
let point_positions = DMatrix::from_columns(
|
||||
|
@ -756,30 +792,36 @@ pub fn Display() -> View {
|
|||
|rep| &asm_to_world_sp * rep
|
||||
).collect::<Vec<_>>().as_slice()
|
||||
).cast::<f32>();
|
||||
|
||||
|
||||
// load the point positions and colors into new buffers and
|
||||
// bind them to the corresponding attributes in the vertex
|
||||
// shader
|
||||
bind_new_buffer_to_attribute(&ctx, point_position_attr, SPACE_DIM as i32, point_positions.as_slice());
|
||||
bind_new_buffer_to_attribute(&ctx, point_color_attr, (COLOR_SIZE + 1) as i32, scene.points.colors_with_opacity.concat().as_slice());
|
||||
bind_new_buffer_to_attribute(&ctx, point_highlight_attr, 1 as i32, scene.points.highlights.as_slice());
|
||||
bind_new_buffer_to_attribute(&ctx, point_selection_attr, 1 as i32, scene.points.selections.as_slice());
|
||||
|
||||
bind_new_buffer_to_attribute(&ctx, point_position_attr,
|
||||
SPACE_DIM as i32, point_positions.as_slice());
|
||||
bind_new_buffer_to_attribute(&ctx, point_color_attr,
|
||||
(COLOR_SIZE + 1) as i32,
|
||||
scene.points.colors_with_opacity.concat().as_slice());
|
||||
bind_new_buffer_to_attribute(&ctx, point_highlight_attr,
|
||||
1i32, scene.points.highlights.as_slice());
|
||||
bind_new_buffer_to_attribute(&ctx, point_selection_attr,
|
||||
1i32, scene.points.selections.as_slice());
|
||||
|
||||
// draw the scene
|
||||
ctx.draw_arrays(WebGl2RenderingContext::POINTS, 0, point_positions.ncols() as i32);
|
||||
|
||||
ctx.draw_arrays(WebGl2RenderingContext::POINTS, 0,
|
||||
point_positions.ncols() as i32);
|
||||
|
||||
// disable the point program's vertex attributes
|
||||
ctx.disable_vertex_attrib_array(point_position_attr);
|
||||
ctx.disable_vertex_attrib_array(point_color_attr);
|
||||
ctx.disable_vertex_attrib_array(point_highlight_attr);
|
||||
ctx.disable_vertex_attrib_array(point_selection_attr);
|
||||
}
|
||||
|
||||
|
||||
// --- update the display state ---
|
||||
|
||||
|
||||
// update the viewpoint
|
||||
assembly_to_world.set(asm_to_world);
|
||||
|
||||
|
||||
// clear the scene change flag
|
||||
scene_changed.set(
|
||||
pitch_up_val != 0.0
|
||||
|
@ -799,7 +841,7 @@ pub fn Display() -> View {
|
|||
});
|
||||
start_animation_loop();
|
||||
});
|
||||
|
||||
|
||||
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
|
||||
let mut navigating = true;
|
||||
let shift = event.shift_key();
|
||||
|
@ -819,7 +861,7 @@ pub fn Display() -> View {
|
|||
event.prevent_default();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
|
||||
let mut manipulating = true;
|
||||
let shift = event.shift_key();
|
||||
|
@ -838,7 +880,7 @@ pub fn Display() -> View {
|
|||
event.prevent_default();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
view! {
|
||||
/* TO DO */
|
||||
// switch back to integer-valued parameters when that becomes possible
|
||||
|
@ -860,7 +902,7 @@ pub fn Display() -> View {
|
|||
yaw_left.set(0.0);
|
||||
pitch_up.set(0.0);
|
||||
pitch_down.set(0.0);
|
||||
|
||||
|
||||
// swap manipulation inputs
|
||||
translate_pos_z.set(translate_neg_y.get());
|
||||
translate_neg_z.set(translate_pos_y.get());
|
||||
|
@ -886,7 +928,7 @@ pub fn Display() -> View {
|
|||
roll_ccw.set(0.0);
|
||||
zoom_in.set(0.0);
|
||||
zoom_out.set(0.0);
|
||||
|
||||
|
||||
// swap manipulation inputs
|
||||
translate_pos_y.set(translate_neg_z.get());
|
||||
translate_neg_y.set(translate_pos_z.get());
|
||||
|
@ -915,7 +957,9 @@ pub fn Display() -> View {
|
|||
.into_iter()
|
||||
.filter(|elt| !elt.ghost().get());
|
||||
for elt in tangible_elts {
|
||||
match assembly_to_world.with(|asm_to_world| elt.cast(dir, asm_to_world, pixel_size)) {
|
||||
let target = assembly_to_world.with(
|
||||
|asm_to_world| elt.cast(dir, asm_to_world, pixel_size));
|
||||
match target {
|
||||
Some(depth) => match clicked {
|
||||
Some((_, best_depth)) => {
|
||||
if depth < best_depth {
|
||||
|
@ -927,7 +971,7 @@ pub fn Display() -> View {
|
|||
None => (),
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// if we clicked something, select it
|
||||
match clicked {
|
||||
Some((elt, _)) => state.select(&elt, event.shift_key()),
|
||||
|
@ -936,4 +980,4 @@ pub fn Display() -> View {
|
|||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -21,16 +21,16 @@ fn RegulatorInput(regulator: Rc<dyn Regulator>) -> View {
|
|||
// get the regulator's measurement and set point signals
|
||||
let measurement = regulator.measurement();
|
||||
let set_point = regulator.set_point();
|
||||
|
||||
|
||||
// the `valid` signal tracks whether the last entered value is a valid set
|
||||
// point specification
|
||||
let valid = create_signal(true);
|
||||
|
||||
|
||||
// the `value` signal holds the current set point specification
|
||||
let value = create_signal(
|
||||
set_point.with_untracked(|set_pt| set_pt.spec.clone())
|
||||
);
|
||||
|
||||
|
||||
// this `reset_value` closure resets the input value to the regulator's set
|
||||
// point specification
|
||||
let reset_value = move || {
|
||||
|
@ -39,11 +39,11 @@ fn RegulatorInput(regulator: Rc<dyn Regulator>) -> View {
|
|||
value.set(set_point.with(|set_pt| set_pt.spec.clone()));
|
||||
})
|
||||
};
|
||||
|
||||
|
||||
// reset the input value whenever the regulator's set point specification
|
||||
// is updated
|
||||
create_effect(reset_value);
|
||||
|
||||
|
||||
view! {
|
||||
input(
|
||||
r#type = "text",
|
||||
|
@ -63,8 +63,10 @@ fn RegulatorInput(regulator: Rc<dyn Regulator>) -> View {
|
|||
placeholder = measurement.with(|result| result.to_string()),
|
||||
bind:value = value,
|
||||
on:change = move |_| {
|
||||
let specification =
|
||||
SpecifiedValue::try_from(value.get_clone_untracked());
|
||||
valid.set(
|
||||
match SpecifiedValue::try_from(value.get_clone_untracked()) {
|
||||
match specification {
|
||||
Ok(set_pt) => {
|
||||
set_point.set(set_pt);
|
||||
true
|
||||
|
@ -141,7 +143,9 @@ fn ElementOutlineItem(element: Rc<dyn Element>) -> View {
|
|||
let class = {
|
||||
let element_for_class = element.clone();
|
||||
state.selection.map(
|
||||
move |sel| if sel.contains(&element_for_class) { "selected" } else { "" }
|
||||
move |sel|
|
||||
if sel.contains(&element_for_class) { "selected" }
|
||||
else { "" }
|
||||
)
|
||||
};
|
||||
let label = element.label().clone();
|
||||
|
@ -175,7 +179,8 @@ fn ElementOutlineItem(element: Rc<dyn Element>) -> View {
|
|||
move |event: KeyboardEvent| {
|
||||
match event.key().as_str() {
|
||||
"Enter" => {
|
||||
state.select(&element_for_handler, event.shift_key());
|
||||
state.select(&element_for_handler,
|
||||
event.shift_key());
|
||||
event.prevent_default();
|
||||
},
|
||||
"ArrowRight" if regulated.get() => {
|
||||
|
@ -205,18 +210,22 @@ fn ElementOutlineItem(element: Rc<dyn Element>) -> View {
|
|||
let state_for_handler = state.clone();
|
||||
let element_for_handler = element.clone();
|
||||
move |event: MouseEvent| {
|
||||
state_for_handler.select(&element_for_handler, event.shift_key());
|
||||
state_for_handler.select(&element_for_handler,
|
||||
event.shift_key());
|
||||
event.stop_propagation();
|
||||
event.prevent_default();
|
||||
}
|
||||
}
|
||||
) {
|
||||
div(class = "element-label") { (label) }
|
||||
div(class = "element-representation") { (rep_components) }
|
||||
div(class = "element-representation") {
|
||||
(rep_components)
|
||||
}
|
||||
input(
|
||||
r#type = "checkbox",
|
||||
bind:checked = element.ghost(),
|
||||
on:click = |event: MouseEvent| event.stop_propagation()
|
||||
on:click =
|
||||
|event: MouseEvent| event.stop_propagation()
|
||||
)
|
||||
}
|
||||
}
|
||||
|
@ -241,7 +250,7 @@ fn ElementOutlineItem(element: Rc<dyn Element>) -> View {
|
|||
#[component]
|
||||
pub fn Outline() -> View {
|
||||
let state = use_context::<AppState>();
|
||||
|
||||
|
||||
// list the elements alphabetically by ID
|
||||
/* TO DO */
|
||||
// this code is designed to generalize easily to other sort keys. if we only
|
||||
|
@ -254,7 +263,7 @@ pub fn Outline() -> View {
|
|||
.sorted_by_key(|elt| elt.id().clone())
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
|
||||
|
||||
view! {
|
||||
ul(
|
||||
id = "outline",
|
||||
|
@ -272,4 +281,4 @@ pub fn Outline() -> View {
|
|||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -10,10 +10,10 @@ out vec4 outColor;
|
|||
|
||||
void main() {
|
||||
float r = total_radius * length(2.*gl_PointCoord - vec2(1.));
|
||||
|
||||
|
||||
const float POINT_RADIUS = 4.;
|
||||
float border = smoothstep(POINT_RADIUS - 1., POINT_RADIUS, r);
|
||||
float disk = 1. - smoothstep(total_radius - 1., total_radius, r);
|
||||
vec4 color = mix(point_color, vec4(1.), border * point_highlight);
|
||||
outColor = vec4(vec3(1.), disk) * color;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -14,11 +14,11 @@ const float focal_slope = 0.3;
|
|||
|
||||
void main() {
|
||||
total_radius = 5. + 0.5*selected;
|
||||
|
||||
|
||||
float depth = -focal_slope * position.z;
|
||||
gl_Position = vec4(position.xy / depth, 0., 1.);
|
||||
gl_PointSize = 2.*total_radius;
|
||||
|
||||
|
||||
point_color = color;
|
||||
point_highlight = highlight;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -75,7 +75,7 @@ Fragment sphere_shading(vecInv v, vec3 pt, vec4 base_color) {
|
|||
// point. i calculated it in my head and decided that the result looked good
|
||||
// enough for now
|
||||
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
|
||||
|
||||
|
||||
float incidence = dot(normal, light_dir);
|
||||
float illum = mix(0.4, 1.0, max(incidence, 0.0));
|
||||
return Fragment(pt, normal, vec4(illum * base_color.rgb, base_color.a));
|
||||
|
@ -110,7 +110,7 @@ vec2 sphere_cast(vecInv v, vec3 dir) {
|
|||
float a = -v.lt.s * dot(dir, dir);
|
||||
float b = dot(v.sp, dir);
|
||||
float c = -v.lt.t;
|
||||
|
||||
|
||||
float adjust = 4.*a*c/(b*b);
|
||||
if (adjust < 1.) {
|
||||
// as long as `b` is non-zero, the linear approximation of
|
||||
|
@ -136,7 +136,7 @@ vec2 sphere_cast(vecInv v, vec3 dir) {
|
|||
void main() {
|
||||
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
|
||||
vec3 dir = vec3(focal_slope * scr, -1.);
|
||||
|
||||
|
||||
// cast rays through the spheres
|
||||
const int LAYER_MAX = 12;
|
||||
TaggedDepth top_hits [LAYER_MAX];
|
||||
|
@ -144,7 +144,7 @@ void main() {
|
|||
for (int id = 0; id < sphere_cnt; ++id) {
|
||||
// find out where the ray hits the sphere
|
||||
vec2 hit_depths = sphere_cast(sphere_list[id], dir);
|
||||
|
||||
|
||||
// insertion-sort the points we hit into the hit list
|
||||
float dimming = 1.;
|
||||
for (int side = 0; side < 2; ++side) {
|
||||
|
@ -169,14 +169,15 @@ void main() {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* DEBUG */
|
||||
// in debug mode, show the layer count instead of the shaded image
|
||||
if (debug_mode) {
|
||||
// at the bottom of the screen, show the color scale instead of the
|
||||
// layer count
|
||||
if (gl_FragCoord.y < 10.) layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
|
||||
|
||||
if (gl_FragCoord.y < 10.) {
|
||||
layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
|
||||
}
|
||||
// convert number to color
|
||||
ivec3 bits = layer_cnt / ivec3(1, 2, 4);
|
||||
vec3 color = mod(vec3(bits), 2.);
|
||||
|
@ -186,7 +187,7 @@ void main() {
|
|||
outColor = vec4(color, 1.);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// composite the sphere fragments
|
||||
vec3 color = vec3(0.);
|
||||
int layer = layer_cnt - 1;
|
||||
|
@ -203,7 +204,7 @@ void main() {
|
|||
// load the current fragment
|
||||
Fragment frag = frag_next;
|
||||
float highlight = highlight_next;
|
||||
|
||||
|
||||
// shade the next fragment
|
||||
hit = top_hits[layer];
|
||||
sphere_color = color_list[hit.id];
|
||||
|
@ -213,23 +214,26 @@ void main() {
|
|||
vec4(hit.dimming * sphere_color.rgb, sphere_color.a)
|
||||
);
|
||||
highlight_next = highlight_list[hit.id];
|
||||
|
||||
|
||||
// highlight intersections
|
||||
float ixn_dist = intersection_dist(frag, frag_next);
|
||||
float max_highlight = max(highlight, highlight_next);
|
||||
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
|
||||
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(
|
||||
2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
|
||||
frag.color = mix(frag.color, vec4(1.), ixn_highlight);
|
||||
frag_next.color = mix(frag_next.color, vec4(1.), ixn_highlight);
|
||||
|
||||
|
||||
// highlight cusps
|
||||
float cusp_cos = abs(dot(dir, frag.normal));
|
||||
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[hit.id].lt.s);
|
||||
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
|
||||
float cusp_threshold = 2.*sqrt(
|
||||
ixn_threshold * sphere_list[hit.id].lt.s);
|
||||
float cusp_highlight = highlight * (1. - smoothstep(
|
||||
2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
|
||||
frag.color = mix(frag.color, vec4(1.), cusp_highlight);
|
||||
|
||||
|
||||
// composite the current fragment
|
||||
color = mix(color, frag.color.rgb, frag.color.a);
|
||||
}
|
||||
color = mix(color, frag_next.color.rgb, frag_next.color.a);
|
||||
outColor = vec4(sRGB(color), 1.);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -144,7 +144,7 @@ fn load_low_curvature(assembly: &Assembly) {
|
|||
engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0),
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// impose the desired tangencies and make the sides planar
|
||||
let index_range = 1..=3;
|
||||
let [central, assemb_plane] = ["central", "assemb_plane"].map(
|
||||
|
@ -167,29 +167,36 @@ fn load_low_curvature(assembly: &Assembly) {
|
|||
let curvature = plane.regulators().with_untracked(
|
||||
|regs| regs.first().unwrap().clone()
|
||||
);
|
||||
curvature.set_point().set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
curvature.set_point().set(
|
||||
SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
}
|
||||
let all_perpendicular = [central.clone()].into_iter()
|
||||
.chain(sides.clone())
|
||||
.chain(corners.clone());
|
||||
for sphere in all_perpendicular {
|
||||
// make each side and packed sphere perpendicular to the assembly plane
|
||||
let right_angle = InversiveDistanceRegulator::new([sphere, assemb_plane.clone()]);
|
||||
right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
let right_angle = InversiveDistanceRegulator::new(
|
||||
[sphere, assemb_plane.clone()]);
|
||||
right_angle.set_point.set(
|
||||
SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(right_angle));
|
||||
}
|
||||
for sphere in sides.clone().chain(corners.clone()) {
|
||||
// make each side and corner sphere tangent to the central sphere
|
||||
let tangency = InversiveDistanceRegulator::new([sphere.clone(), central.clone()]);
|
||||
tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
let tangency = InversiveDistanceRegulator::new(
|
||||
[sphere.clone(), central.clone()]);
|
||||
tangency.set_point.set(
|
||||
SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(tangency));
|
||||
}
|
||||
for (side_index, side) in sides.enumerate() {
|
||||
// make each side tangent to the two adjacent corner spheres
|
||||
for (corner_index, corner) in corners.clone().enumerate() {
|
||||
if side_index != corner_index {
|
||||
let tangency = InversiveDistanceRegulator::new([side.clone(), corner]);
|
||||
tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
let tangency = InversiveDistanceRegulator::new(
|
||||
[side.clone(), corner]);
|
||||
tangency.set_point.set(
|
||||
SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(tangency));
|
||||
}
|
||||
}
|
||||
|
@ -217,21 +224,24 @@ fn load_pointed(assembly: &Assembly) {
|
|||
for index_y in 0..=1 {
|
||||
let x = index_x as f64 - 0.5;
|
||||
let y = index_y as f64 - 0.5;
|
||||
|
||||
let x32 = x as f32;
|
||||
let y32 = y as f32;
|
||||
let coords =
|
||||
[0.5*(1.0 + x32), 0.5*(1.0 + y32), 0.5*(1.0 - x32*y32)];
|
||||
let _ = assembly.try_insert_element(
|
||||
Sphere::new(
|
||||
format!("sphere{index_x}{index_y}"),
|
||||
format!("Sphere {index_x}{index_y}"),
|
||||
[0.5*(1.0 + x) as f32, 0.5*(1.0 + y) as f32, 0.5*(1.0 - x*y) as f32],
|
||||
coords,
|
||||
engine::sphere(x, y, 0.0, 1.0),
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
let _ = assembly.try_insert_element(
|
||||
Point::new(
|
||||
format!("point{index_x}{index_y}"),
|
||||
format!("Point {index_x}{index_y}"),
|
||||
[0.5*(1.0 + x) as f32, 0.5*(1.0 + y) as f32, 0.5*(1.0 - x*y) as f32],
|
||||
coords,
|
||||
engine::point(x, y, 0.0),
|
||||
)
|
||||
);
|
||||
|
@ -310,7 +320,7 @@ fn load_tridiminished_icosahedron(assembly: &Assembly) {
|
|||
for vertex in vertices {
|
||||
let _ = assembly.try_insert_element(vertex);
|
||||
}
|
||||
|
||||
|
||||
// create the faces
|
||||
const COLOR_FACE: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
|
||||
let frac_1_sqrt_6 = 1.0 / 6.0_f64.sqrt();
|
||||
|
@ -320,26 +330,32 @@ fn load_tridiminished_icosahedron(assembly: &Assembly) {
|
|||
"face1".to_string(),
|
||||
"Face 1".to_string(),
|
||||
COLOR_FACE,
|
||||
engine::sphere_with_offset(frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, 0.0),
|
||||
engine::sphere_with_offset(
|
||||
frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6,
|
||||
-frac_1_sqrt_6, 0.0),
|
||||
),
|
||||
Sphere::new(
|
||||
"face2".to_string(),
|
||||
"Face 2".to_string(),
|
||||
COLOR_FACE,
|
||||
engine::sphere_with_offset(-frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, 0.0),
|
||||
engine::sphere_with_offset(
|
||||
-frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6,
|
||||
-frac_1_sqrt_6, 0.0),
|
||||
),
|
||||
Sphere::new(
|
||||
"face3".to_string(),
|
||||
"Face 3".to_string(),
|
||||
COLOR_FACE,
|
||||
engine::sphere_with_offset(-frac_1_sqrt_6, -frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6, 0.0),
|
||||
engine::sphere_with_offset(
|
||||
-frac_1_sqrt_6, -frac_1_sqrt_6, frac_2_sqrt_6,
|
||||
-frac_1_sqrt_6, 0.0),
|
||||
),
|
||||
];
|
||||
for face in faces {
|
||||
face.ghost().set(true);
|
||||
let _ = assembly.try_insert_element(face);
|
||||
}
|
||||
|
||||
|
||||
let index_range = 1..=3;
|
||||
for j in index_range.clone() {
|
||||
// make each face planar
|
||||
|
@ -352,15 +368,17 @@ fn load_tridiminished_icosahedron(assembly: &Assembly) {
|
|||
curvature_regulator.set_point().set(
|
||||
SpecifiedValue::try_from("0".to_string()).unwrap()
|
||||
);
|
||||
|
||||
|
||||
// put each A vertex on the face it belongs to
|
||||
let vertex_a = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("a{j}")].clone()
|
||||
);
|
||||
let incidence_a = InversiveDistanceRegulator::new([face.clone(), vertex_a.clone()]);
|
||||
incidence_a.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
let incidence_a = InversiveDistanceRegulator::new(
|
||||
[face.clone(), vertex_a.clone()]);
|
||||
incidence_a.set_point.set(
|
||||
SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(incidence_a));
|
||||
|
||||
|
||||
// regulate the B-C vertex distances
|
||||
let vertices_bc = ["b", "c"].map(
|
||||
|series| assembly.elements_by_id.with_untracked(
|
||||
|
@ -370,27 +388,30 @@ fn load_tridiminished_icosahedron(assembly: &Assembly) {
|
|||
assembly.insert_regulator(
|
||||
Rc::new(InversiveDistanceRegulator::new(vertices_bc))
|
||||
);
|
||||
|
||||
|
||||
// get the pair of indices adjacent to `j`
|
||||
let adjacent_indices = [j % 3 + 1, (j + 1) % 3 + 1];
|
||||
|
||||
|
||||
for k in adjacent_indices.clone() {
|
||||
for series in ["b", "c"] {
|
||||
// put each B and C vertex on the faces it belongs to
|
||||
let vertex = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("{series}{k}")].clone()
|
||||
);
|
||||
let incidence = InversiveDistanceRegulator::new([face.clone(), vertex.clone()]);
|
||||
incidence.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
let incidence = InversiveDistanceRegulator::new(
|
||||
[face.clone(), vertex.clone()]);
|
||||
incidence.set_point.set(
|
||||
SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(incidence));
|
||||
|
||||
|
||||
// regulate the A-B and A-C vertex distances
|
||||
assembly.insert_regulator(
|
||||
Rc::new(InversiveDistanceRegulator::new([vertex_a.clone(), vertex]))
|
||||
Rc::new(InversiveDistanceRegulator::new(
|
||||
[vertex_a.clone(), vertex]))
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// regulate the A-A and C-C vertex distances
|
||||
let adjacent_pairs = ["a", "c"].map(
|
||||
|series| adjacent_indices.map(
|
||||
|
@ -422,19 +443,20 @@ fn load_dodecahedral_packing(assembly: &Assembly) {
|
|||
let substrate = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id["substrate"].clone()
|
||||
);
|
||||
|
||||
|
||||
// fix the substrate's curvature
|
||||
substrate.regulators().with_untracked(
|
||||
|regs| regs.first().unwrap().clone()
|
||||
).set_point().set(
|
||||
SpecifiedValue::try_from("0.5".to_string()).unwrap()
|
||||
);
|
||||
|
||||
|
||||
// add the circles to be packed
|
||||
const COLOR_A: ElementColor = [1.00_f32, 0.25_f32, 0.00_f32];
|
||||
const COLOR_B: ElementColor = [1.00_f32, 0.00_f32, 0.25_f32];
|
||||
const COLOR_C: ElementColor = [0.25_f32, 0.00_f32, 1.00_f32];
|
||||
let phi = 0.5 + 1.25_f64.sqrt(); /* TO DO */ // replace with std::f64::consts::PHI when that gets stabilized
|
||||
/* TO DO */ // replace with std::f64::consts::PHI when that gets stabilized
|
||||
let phi = 0.5 + 1.25_f64.sqrt();
|
||||
let phi_inv = 1.0 / phi;
|
||||
let coord_scale = (phi + 2.0).sqrt();
|
||||
let face_scales = [phi_inv, (13.0 / 12.0) / coord_scale];
|
||||
|
@ -445,10 +467,10 @@ fn load_dodecahedral_packing(assembly: &Assembly) {
|
|||
for k in 0..2 {
|
||||
let small_coord = face_scales[k] * (2.0*(j as f64) - 1.0);
|
||||
let big_coord = face_scales[k] * (2.0*(k as f64) - 1.0) * phi;
|
||||
|
||||
|
||||
let id_num = format!("{j}{k}");
|
||||
let label_sub = format!("{}{}", subscripts[j], subscripts[k]);
|
||||
|
||||
|
||||
// add the A face
|
||||
let id_a = format!("a{id_num}");
|
||||
let _ = assembly.try_insert_element(
|
||||
|
@ -464,7 +486,7 @@ fn load_dodecahedral_packing(assembly: &Assembly) {
|
|||
|elts_by_id| elts_by_id[&id_a].clone()
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// add the B face
|
||||
let id_b = format!("b{id_num}");
|
||||
let _ = assembly.try_insert_element(
|
||||
|
@ -480,7 +502,7 @@ fn load_dodecahedral_packing(assembly: &Assembly) {
|
|||
|elts_by_id| elts_by_id[&id_b].clone()
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// add the C face
|
||||
let id_c = format!("c{id_num}");
|
||||
let _ = assembly.try_insert_element(
|
||||
|
@ -498,16 +520,19 @@ fn load_dodecahedral_packing(assembly: &Assembly) {
|
|||
);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// make each face sphere perpendicular to the substrate
|
||||
for face in faces {
|
||||
let right_angle = InversiveDistanceRegulator::new([face, substrate.clone()]);
|
||||
right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
let right_angle = InversiveDistanceRegulator::new(
|
||||
[face, substrate.clone()]);
|
||||
right_angle.set_point.set(
|
||||
SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(right_angle));
|
||||
}
|
||||
|
||||
|
||||
// set up the tangencies that define the packing
|
||||
for [long_edge_plane, short_edge_plane] in [["a", "b"], ["b", "c"], ["c", "a"]] {
|
||||
for [long_edge_plane, short_edge_plane]
|
||||
in [["a", "b"], ["b", "c"], ["c", "a"]] {
|
||||
for k in 0..2 {
|
||||
let long_edge_ids = [
|
||||
format!("{long_edge_plane}{k}0"),
|
||||
|
@ -524,14 +549,16 @@ fn load_dodecahedral_packing(assembly: &Assembly) {
|
|||
)
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// set up the short-edge tangency
|
||||
let short_tangency = InversiveDistanceRegulator::new(short_edge.clone());
|
||||
let short_tangency = InversiveDistanceRegulator::new(
|
||||
short_edge.clone());
|
||||
if k == 0 {
|
||||
short_tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
short_tangency.set_point.set(
|
||||
SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
}
|
||||
assembly.insert_regulator(Rc::new(short_tangency));
|
||||
|
||||
|
||||
// set up the side tangencies
|
||||
for i in 0..2 {
|
||||
for j in 0..2 {
|
||||
|
@ -539,7 +566,9 @@ fn load_dodecahedral_packing(assembly: &Assembly) {
|
|||
[long_edge[i].clone(), short_edge[j].clone()]
|
||||
);
|
||||
if i == 0 && k == 0 {
|
||||
side_tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
|
||||
side_tangency.set_point.set(
|
||||
SpecifiedValue::try_from("-1".to_string()).unwrap()
|
||||
);
|
||||
}
|
||||
assembly.insert_regulator(Rc::new(side_tangency));
|
||||
}
|
||||
|
@ -577,14 +606,14 @@ fn load_balanced(assembly: &Assembly) {
|
|||
for sphere in spheres {
|
||||
let _ = assembly.try_insert_element(sphere);
|
||||
}
|
||||
|
||||
|
||||
// get references to the spheres
|
||||
let [outer, a, b] = ["outer", "a", "b"].map(
|
||||
|id| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[id].clone()
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// fix the diameters of the outer, sun, and moon spheres
|
||||
for (sphere, radius) in [
|
||||
(outer.clone(), R_OUTER),
|
||||
|
@ -599,12 +628,13 @@ fn load_balanced(assembly: &Assembly) {
|
|||
SpecifiedValue::try_from(curvature.to_string()).unwrap()
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
// set the inversive distances between the spheres. as described above, the
|
||||
// initial configuration deliberately violates these constraints
|
||||
for inner in [a, b] {
|
||||
let tangency = InversiveDistanceRegulator::new([outer.clone(), inner]);
|
||||
tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
tangency.set_point.set(
|
||||
SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(tangency));
|
||||
}
|
||||
}
|
||||
|
@ -629,14 +659,14 @@ fn load_off_center(assembly: &Assembly) {
|
|||
engine::sphere(0.0, 0.0, 0.0, 1.0),
|
||||
),
|
||||
);
|
||||
|
||||
|
||||
// get references to the elements
|
||||
let point_and_sphere = ["point", "sphere"].map(
|
||||
|id| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[id].clone()
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// put the point on the sphere
|
||||
let incidence = InversiveDistanceRegulator::new(point_and_sphere);
|
||||
incidence.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
|
@ -650,7 +680,7 @@ fn load_off_center(assembly: &Assembly) {
|
|||
// inversive distance of 0 between the circumsphere and each vertex
|
||||
fn load_radius_ratio(assembly: &Assembly) {
|
||||
let index_range = 1..=4;
|
||||
|
||||
|
||||
// create the spheres
|
||||
const GRAY: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
|
||||
let spheres = [
|
||||
|
@ -670,7 +700,7 @@ fn load_radius_ratio(assembly: &Assembly) {
|
|||
for sphere in spheres {
|
||||
let _ = assembly.try_insert_element(sphere);
|
||||
}
|
||||
|
||||
|
||||
// create the vertices
|
||||
let vertices = izip!(
|
||||
index_range.clone(),
|
||||
|
@ -699,7 +729,7 @@ fn load_radius_ratio(assembly: &Assembly) {
|
|||
for vertex in vertices {
|
||||
let _ = assembly.try_insert_element(vertex);
|
||||
}
|
||||
|
||||
|
||||
// create the faces
|
||||
let base_dir = Vector3::new(1.0, 0.75, 1.0).normalize();
|
||||
let offset = base_dir.dot(&Vector3::new(-0.6, 0.8, 0.6));
|
||||
|
@ -712,10 +742,14 @@ fn load_radius_ratio(assembly: &Assembly) {
|
|||
[0.25_f32, 0.00_f32, 1.00_f32],
|
||||
].into_iter(),
|
||||
[
|
||||
engine::sphere_with_offset(base_dir[0], base_dir[1], base_dir[2], offset, 0.0),
|
||||
engine::sphere_with_offset(base_dir[0], -base_dir[1], -base_dir[2], offset, 0.0),
|
||||
engine::sphere_with_offset(-base_dir[0], base_dir[1], -base_dir[2], offset, 0.0),
|
||||
engine::sphere_with_offset(-base_dir[0], -base_dir[1], base_dir[2], offset, 0.0),
|
||||
engine::sphere_with_offset(
|
||||
base_dir[0], base_dir[1], base_dir[2], offset, 0.0),
|
||||
engine::sphere_with_offset(
|
||||
base_dir[0], -base_dir[1], -base_dir[2], offset, 0.0),
|
||||
engine::sphere_with_offset(
|
||||
-base_dir[0], base_dir[1], -base_dir[2], offset, 0.0),
|
||||
engine::sphere_with_offset(
|
||||
-base_dir[0], -base_dir[1], base_dir[2], offset, 0.0),
|
||||
].into_iter()
|
||||
).map(
|
||||
|(k, color, representation)| {
|
||||
|
@ -731,7 +765,7 @@ fn load_radius_ratio(assembly: &Assembly) {
|
|||
face.ghost().set(true);
|
||||
let _ = assembly.try_insert_element(face);
|
||||
}
|
||||
|
||||
|
||||
// impose the constraints
|
||||
for j in index_range.clone() {
|
||||
let [face_j, vertex_j] = [
|
||||
|
@ -742,7 +776,7 @@ fn load_radius_ratio(assembly: &Assembly) {
|
|||
|elts_by_id| elts_by_id[&id].clone()
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// make the faces planar
|
||||
let curvature_regulator = face_j.regulators().with_untracked(
|
||||
|regs| regs.first().unwrap().clone()
|
||||
|
@ -750,12 +784,12 @@ fn load_radius_ratio(assembly: &Assembly) {
|
|||
curvature_regulator.set_point().set(
|
||||
SpecifiedValue::try_from("0".to_string()).unwrap()
|
||||
);
|
||||
|
||||
|
||||
for k in index_range.clone().filter(|&index| index != j) {
|
||||
let vertex_k = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("v{k}")].clone()
|
||||
);
|
||||
|
||||
|
||||
// fix the distances between the vertices
|
||||
if j < k {
|
||||
let distance_regulator = InversiveDistanceRegulator::new(
|
||||
|
@ -763,10 +797,12 @@ fn load_radius_ratio(assembly: &Assembly) {
|
|||
);
|
||||
assembly.insert_regulator(Rc::new(distance_regulator));
|
||||
}
|
||||
|
||||
|
||||
// put the vertices on the faces
|
||||
let incidence_regulator = InversiveDistanceRegulator::new([face_j.clone(), vertex_k.clone()]);
|
||||
incidence_regulator.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
let incidence_regulator = InversiveDistanceRegulator::new(
|
||||
[face_j.clone(), vertex_k.clone()]);
|
||||
incidence_regulator.set_point.set(
|
||||
SpecifiedValue::try_from("0".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(incidence_regulator));
|
||||
}
|
||||
}
|
||||
|
@ -799,7 +835,7 @@ fn load_irisawa_hexlet(assembly: &Assembly) {
|
|||
[0.00_f32, 0.25_f32, 1.00_f32],
|
||||
[0.25_f32, 0.00_f32, 1.00_f32],
|
||||
].into_iter();
|
||||
|
||||
|
||||
// create the spheres
|
||||
let spheres = [
|
||||
Sphere::new(
|
||||
|
@ -836,7 +872,7 @@ fn load_irisawa_hexlet(assembly: &Assembly) {
|
|||
for sphere in spheres {
|
||||
let _ = assembly.try_insert_element(sphere);
|
||||
}
|
||||
|
||||
|
||||
// put the outer sphere in ghost mode and fix its curvature
|
||||
let outer = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id["outer"].clone()
|
||||
|
@ -848,7 +884,7 @@ fn load_irisawa_hexlet(assembly: &Assembly) {
|
|||
outer_curvature_regulator.set_point().set(
|
||||
SpecifiedValue::try_from((1.0 / 3.0).to_string()).unwrap()
|
||||
);
|
||||
|
||||
|
||||
// impose the desired tangencies
|
||||
let [outer, sun, moon] = ["outer", "sun", "moon"].map(
|
||||
|id| assembly.elements_by_id.with_untracked(
|
||||
|
@ -860,25 +896,33 @@ fn load_irisawa_hexlet(assembly: &Assembly) {
|
|||
|elts_by_id| elts_by_id[&format!("chain{k}")].clone()
|
||||
)
|
||||
);
|
||||
for (chain_sphere, chain_sphere_next) in chain.clone().zip(chain.cycle().skip(1)) {
|
||||
for (chain_sphere, chain_sphere_next)
|
||||
in chain.clone().zip(chain.cycle().skip(1)) {
|
||||
for (other_sphere, inversive_distance) in [
|
||||
(outer.clone(), "1"),
|
||||
(sun.clone(), "-1"),
|
||||
(moon.clone(), "-1"),
|
||||
(chain_sphere_next.clone(), "-1"),
|
||||
] {
|
||||
let tangency = InversiveDistanceRegulator::new([chain_sphere.clone(), other_sphere]);
|
||||
tangency.set_point.set(SpecifiedValue::try_from(inversive_distance.to_string()).unwrap());
|
||||
let tangency = InversiveDistanceRegulator::new(
|
||||
[chain_sphere.clone(), other_sphere]);
|
||||
tangency.set_point.set(
|
||||
SpecifiedValue::try_from(
|
||||
inversive_distance.to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(tangency));
|
||||
}
|
||||
}
|
||||
|
||||
let outer_sun_tangency = InversiveDistanceRegulator::new([outer.clone(), sun]);
|
||||
outer_sun_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
|
||||
let outer_sun_tangency = InversiveDistanceRegulator::new(
|
||||
[outer.clone(), sun]);
|
||||
outer_sun_tangency.set_point.set(
|
||||
SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(outer_sun_tangency));
|
||||
|
||||
let outer_moon_tangency = InversiveDistanceRegulator::new([outer.clone(), moon]);
|
||||
outer_moon_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
|
||||
let outer_moon_tangency = InversiveDistanceRegulator::new(
|
||||
[outer.clone(), moon]);
|
||||
outer_moon_tangency.set_point.set(
|
||||
SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(outer_moon_tangency));
|
||||
}
|
||||
|
||||
|
@ -895,24 +939,25 @@ pub fn TestAssemblyChooser() -> View {
|
|||
console::log_1(
|
||||
&JsValue::from(format!("Showing assembly \"{}\"", name.clone()))
|
||||
);
|
||||
|
||||
|
||||
batch(|| {
|
||||
let state = use_context::<AppState>();
|
||||
let assembly = &state.assembly;
|
||||
|
||||
|
||||
// clear state
|
||||
assembly.regulators.update(|regs| regs.clear());
|
||||
assembly.elements.update(|elts| elts.clear());
|
||||
assembly.elements_by_id.update(|elts_by_id| elts_by_id.clear());
|
||||
assembly.descent_history.set(DescentHistory::new());
|
||||
state.selection.update(|sel| sel.clear());
|
||||
|
||||
|
||||
// load assembly
|
||||
match name.as_str() {
|
||||
"general" => load_general(assembly),
|
||||
"low-curvature" => load_low_curvature(assembly),
|
||||
"pointed" => load_pointed(assembly),
|
||||
"tridiminished-icosahedron" => load_tridiminished_icosahedron(assembly),
|
||||
"tridiminished-icosahedron" =>
|
||||
load_tridiminished_icosahedron(assembly),
|
||||
"dodecahedral-packing" => load_dodecahedral_packing(assembly),
|
||||
"balanced" => load_balanced(assembly),
|
||||
"off-center" => load_off_center(assembly),
|
||||
|
@ -922,14 +967,16 @@ pub fn TestAssemblyChooser() -> View {
|
|||
};
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
// build the chooser
|
||||
view! {
|
||||
select(bind:value = assembly_name) {
|
||||
option(value = "general") { "General" }
|
||||
option(value = "low-curvature") { "Low-curvature" }
|
||||
option(value = "pointed") { "Pointed" }
|
||||
option(value = "tridiminished-icosahedron") { "Tridiminished icosahedron" }
|
||||
option(value = "tridiminished-icosahedron") {
|
||||
"Tridiminished icosahedron"
|
||||
}
|
||||
option(value = "dodecahedral-packing") { "Dodecahedral packing" }
|
||||
option(value = "balanced") { "Balanced" }
|
||||
option(value = "off-center") { "Off-center" }
|
||||
|
@ -938,4 +985,4 @@ pub fn TestAssemblyChooser() -> View {
|
|||
option(value = "empty") { "Empty" }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -9,8 +9,11 @@ pub fn point(x: f64, y: f64, z: f64) -> DVector<f64> {
|
|||
}
|
||||
|
||||
// the sphere with the given center and radius, with inward-pointing normals
|
||||
pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVector<f64> {
|
||||
let center_norm_sq = center_x * center_x + center_y * center_y + center_z * center_z;
|
||||
pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64)
|
||||
-> DVector<f64>
|
||||
{
|
||||
let center_norm_sq =
|
||||
center_x * center_x + center_y * center_y + center_z * center_z;
|
||||
DVector::from_column_slice(&[
|
||||
center_x / radius,
|
||||
center_y / radius,
|
||||
|
@ -23,7 +26,9 @@ pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVect
|
|||
// the sphere of curvature `curv` whose closest point to the origin has position
|
||||
// `off * dir` and normal `dir`, where `dir` is a unit vector. setting the
|
||||
// curvature to zero gives a plane
|
||||
pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f64) -> DVector<f64> {
|
||||
pub fn sphere_with_offset(
|
||||
dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f64) -> DVector<f64>
|
||||
{
|
||||
let norm_sp = 1.0 + off * curv;
|
||||
DVector::from_column_slice(&[
|
||||
norm_sp * dir_x,
|
||||
|
@ -62,19 +67,19 @@ impl PartialMatrix {
|
|||
pub fn new() -> Self {
|
||||
Self(Vec::<MatrixEntry>::new())
|
||||
}
|
||||
|
||||
|
||||
pub fn push(&mut self, row: usize, col: usize, value: f64) {
|
||||
let Self(entries) = self;
|
||||
entries.push(MatrixEntry { index: (row, col), value });
|
||||
}
|
||||
|
||||
|
||||
pub fn push_sym(&mut self, row: usize, col: usize, value: f64) {
|
||||
self.push(row, col, value);
|
||||
if row != col {
|
||||
self.push(col, row, value);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fn freeze(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
|
||||
let mut result = a.clone();
|
||||
for &MatrixEntry { index, value } in self {
|
||||
|
@ -82,7 +87,7 @@ impl PartialMatrix {
|
|||
}
|
||||
result
|
||||
}
|
||||
|
||||
|
||||
fn proj(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
|
||||
let mut result = DMatrix::<f64>::zeros(a.nrows(), a.ncols());
|
||||
for &MatrixEntry { index, .. } in self {
|
||||
|
@ -90,7 +95,7 @@ impl PartialMatrix {
|
|||
}
|
||||
result
|
||||
}
|
||||
|
||||
|
||||
fn sub_proj(&self, rhs: &DMatrix<f64>) -> DMatrix<f64> {
|
||||
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
|
||||
for &MatrixEntry { index, value } in self {
|
||||
|
@ -112,7 +117,7 @@ impl Display for PartialMatrix {
|
|||
impl IntoIterator for PartialMatrix {
|
||||
type Item = MatrixEntry;
|
||||
type IntoIter = std::vec::IntoIter<Self::Item>;
|
||||
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
let Self(entries) = self;
|
||||
entries.into_iter()
|
||||
|
@ -122,7 +127,7 @@ impl IntoIterator for PartialMatrix {
|
|||
impl<'a> IntoIterator for &'a PartialMatrix {
|
||||
type Item = &'a MatrixEntry;
|
||||
type IntoIter = std::slice::Iter<'a, MatrixEntry>;
|
||||
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
let PartialMatrix(entries) = self;
|
||||
entries.into_iter()
|
||||
|
@ -146,7 +151,7 @@ impl ConfigSubspace {
|
|||
basis_std: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// approximate the kernel of a symmetric endomorphism of the configuration
|
||||
// space for `assembly_dim` elements. we consider an eigenvector to be part
|
||||
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
|
||||
|
@ -167,10 +172,10 @@ impl ConfigSubspace {
|
|||
|(λ, v)| (λ.abs() < THRESHOLD).then_some(v)
|
||||
).collect::<Vec<_>>().as_slice()
|
||||
);
|
||||
|
||||
|
||||
// express the basis in the standard coordinates
|
||||
let basis_std = proj_to_std * &basis_proj;
|
||||
|
||||
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
const UNIFORM_DIM: usize = 4;
|
||||
Self {
|
||||
|
@ -187,20 +192,22 @@ impl ConfigSubspace {
|
|||
).collect(),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub fn dim(&self) -> usize {
|
||||
self.basis_std.len()
|
||||
}
|
||||
|
||||
|
||||
pub fn assembly_dim(&self) -> usize {
|
||||
self.assembly_dim
|
||||
}
|
||||
|
||||
|
||||
// find the projection onto this subspace of the motion where the element
|
||||
// with the given column index has velocity `v`. the velocity is given in
|
||||
// projection coordinates, and the projection is done with respect to the
|
||||
// projection inner product
|
||||
pub fn proj(&self, v: &DVectorView<f64>, column_index: usize) -> DMatrix<f64> {
|
||||
pub fn proj(&self, v: &DVectorView<f64>, column_index: usize)
|
||||
-> DMatrix<f64>
|
||||
{
|
||||
if self.dim() == 0 {
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
DMatrix::zeros(ELEMENT_DIM, self.assembly_dim)
|
||||
|
@ -253,7 +260,7 @@ impl ConstraintProblem {
|
|||
guess: DMatrix::<f64>::zeros(ELEMENT_DIM, element_count),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[cfg(feature = "dev")]
|
||||
pub fn from_guess(guess_columns: &[DVector<f64>]) -> Self {
|
||||
Self {
|
||||
|
@ -291,7 +298,9 @@ impl SearchState {
|
|||
}
|
||||
}
|
||||
|
||||
fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f64> {
|
||||
fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize)
|
||||
-> DMatrix<f64>
|
||||
{
|
||||
let mut result = DMatrix::<f64>::zeros(nrows, ncols);
|
||||
result[index] = 1.0;
|
||||
result
|
||||
|
@ -377,10 +386,10 @@ pub fn realize_gram(
|
|||
) -> Realization {
|
||||
// destructure the problem data
|
||||
let ConstraintProblem { gram, guess, frozen } = problem;
|
||||
|
||||
|
||||
// start the descent history
|
||||
let mut history = DescentHistory::new();
|
||||
|
||||
|
||||
// handle the case where the assembly is empty. our general realization
|
||||
// routine can't handle this case because it builds the Hessian using
|
||||
// `DMatrix::from_columns`, which panics when the list of columns is empty
|
||||
|
@ -394,29 +403,30 @@ pub fn realize_gram(
|
|||
);
|
||||
return Realization { result, history };
|
||||
}
|
||||
|
||||
|
||||
// find the dimension of the search space
|
||||
let element_dim = guess.nrows();
|
||||
let total_dim = element_dim * assembly_dim;
|
||||
|
||||
|
||||
// scale the tolerance
|
||||
let scale_adjustment = (gram.0.len() as f64).sqrt();
|
||||
let tol = scale_adjustment * scaled_tol;
|
||||
|
||||
|
||||
// convert the frozen indices to stacked format
|
||||
let frozen_stacked: Vec<usize> = frozen.into_iter().map(
|
||||
|MatrixEntry { index: (row, col), .. }| col*element_dim + row
|
||||
).collect();
|
||||
|
||||
|
||||
// use a regularized Newton's method with backtracking
|
||||
let mut state = SearchState::from_config(gram, frozen.freeze(guess));
|
||||
let mut hess = DMatrix::zeros(element_dim, assembly_dim);
|
||||
for _ in 0..max_descent_steps {
|
||||
// find the negative gradient of the loss function
|
||||
let neg_grad = 4.0 * &*Q * &state.config * &state.err_proj;
|
||||
let mut neg_grad_stacked = neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
|
||||
let mut neg_grad_stacked =
|
||||
neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
|
||||
history.neg_grad.push(neg_grad.clone());
|
||||
|
||||
|
||||
// find the negative Hessian of the loss function
|
||||
let mut hess_cols = Vec::<DVector<f64>>::with_capacity(total_dim);
|
||||
for col in 0..assembly_dim {
|
||||
|
@ -431,19 +441,21 @@ pub fn realize_gram(
|
|||
-&basis_mat * &state.err_proj
|
||||
+ &state.config * &neg_d_err_proj
|
||||
);
|
||||
hess_cols.push(deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
|
||||
hess_cols.push(
|
||||
deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
|
||||
}
|
||||
}
|
||||
hess = DMatrix::from_columns(hess_cols.as_slice());
|
||||
|
||||
|
||||
// regularize the Hessian
|
||||
let hess_eigvals = hess.symmetric_eigenvalues();
|
||||
let min_eigval = hess_eigvals.min();
|
||||
if min_eigval <= 0.0 {
|
||||
hess -= reg_scale * min_eigval * DMatrix::identity(total_dim, total_dim);
|
||||
hess -= reg_scale * min_eigval
|
||||
* DMatrix::identity(total_dim, total_dim);
|
||||
}
|
||||
history.hess_eigvals.push(hess_eigvals);
|
||||
|
||||
|
||||
// project the negative gradient and negative Hessian onto the
|
||||
// orthogonal complement of the frozen subspace
|
||||
let zero_col = DVector::zeros(total_dim);
|
||||
|
@ -454,12 +466,12 @@ pub fn realize_gram(
|
|||
hess.set_column(k, &zero_col);
|
||||
hess[(k, k)] = 1.0;
|
||||
}
|
||||
|
||||
|
||||
// stop if the loss is tolerably low
|
||||
history.config.push(state.config.clone());
|
||||
history.scaled_loss.push(state.loss / scale_adjustment);
|
||||
if state.loss < tol { break; }
|
||||
|
||||
|
||||
// compute the Newton step
|
||||
/* TO DO */
|
||||
/*
|
||||
|
@ -477,9 +489,10 @@ pub fn realize_gram(
|
|||
},
|
||||
};
|
||||
let base_step_stacked = hess_cholesky.solve(&neg_grad_stacked);
|
||||
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
|
||||
let base_step = base_step_stacked.reshape_generic(
|
||||
Dyn(element_dim), Dyn(assembly_dim));
|
||||
history.base_step.push(base_step.clone());
|
||||
|
||||
|
||||
// use backtracking line search to find a better configuration
|
||||
if let Some((better_state, backoff_steps)) = seek_better_config(
|
||||
gram, &state, &base_step, neg_grad.dot(&base_step),
|
||||
|
@ -505,11 +518,14 @@ pub fn realize_gram(
|
|||
.view_mut(block_start, (element_dim, UNIFORM_DIM))
|
||||
.copy_from(&local_unif_to_std(state.config.column(n)));
|
||||
}
|
||||
|
||||
|
||||
// find the kernel of the Hessian. give it the uniform inner product
|
||||
let tangent = ConfigSubspace::symmetric_kernel(hess, unif_to_std, assembly_dim);
|
||||
|
||||
Ok(ConfigNeighborhood { #[cfg(feature = "dev")] config: state.config, nbhd: tangent })
|
||||
let tangent =
|
||||
ConfigSubspace::symmetric_kernel(hess, unif_to_std, assembly_dim);
|
||||
|
||||
Ok(ConfigNeighborhood {
|
||||
#[cfg(feature = "dev")] config: state.config, nbhd: tangent
|
||||
})
|
||||
} else {
|
||||
Err("Failed to reach target accuracy".to_string())
|
||||
};
|
||||
|
@ -521,9 +537,9 @@ pub fn realize_gram(
|
|||
#[cfg(feature = "dev")]
|
||||
pub mod examples {
|
||||
use std::f64::consts::PI;
|
||||
|
||||
|
||||
use super::*;
|
||||
|
||||
|
||||
// this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article
|
||||
// below includes a nice translation of the problem statement, which was
|
||||
// recorded in Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and
|
||||
|
@ -547,40 +563,40 @@ pub mod examples {
|
|||
)
|
||||
).collect::<Vec<_>>().as_slice()
|
||||
);
|
||||
|
||||
|
||||
for s in 0..9 {
|
||||
// each sphere is represented by a spacelike vector
|
||||
problem.gram.push_sym(s, s, 1.0);
|
||||
|
||||
|
||||
// the circumscribing sphere is tangent to all of the other
|
||||
// spheres, with matching orientation
|
||||
if s > 0 {
|
||||
problem.gram.push_sym(0, s, 1.0);
|
||||
}
|
||||
|
||||
|
||||
if s > 2 {
|
||||
// each chain sphere is tangent to the "sun" and "moon"
|
||||
// spheres, with opposing orientation
|
||||
for n in 1..3 {
|
||||
problem.gram.push_sym(s, n, -1.0);
|
||||
}
|
||||
|
||||
|
||||
// each chain sphere is tangent to the next chain sphere,
|
||||
// with opposing orientation
|
||||
let s_next = 3 + (s-2) % 6;
|
||||
problem.gram.push_sym(s, s_next, -1.0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// the frozen entries fix the radii of the circumscribing sphere, the
|
||||
// "sun" and "moon" spheres, and one of the chain spheres
|
||||
for k in 0..4 {
|
||||
problem.frozen.push(3, k, problem.guess[(3, k)]);
|
||||
}
|
||||
|
||||
|
||||
realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110)
|
||||
}
|
||||
|
||||
|
||||
// set up a kaleidocycle, made of points with fixed distances between them,
|
||||
// and find its tangent space
|
||||
pub fn realize_kaleidocycle(scaled_tol: f64) -> Realization {
|
||||
|
@ -601,27 +617,28 @@ pub mod examples {
|
|||
}
|
||||
).collect::<Vec<_>>().as_slice()
|
||||
);
|
||||
|
||||
|
||||
const N_POINTS: usize = 2 * N_HINGES;
|
||||
for block in (0..N_POINTS).step_by(2) {
|
||||
let block_next = (block + 2) % N_POINTS;
|
||||
for j in 0..2 {
|
||||
// diagonal and hinge edges
|
||||
for k in j..2 {
|
||||
problem.gram.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 });
|
||||
problem.gram.push_sym(
|
||||
block + j, block + k, if j == k { 0.0 } else { -0.5 });
|
||||
}
|
||||
|
||||
|
||||
// non-hinge edges
|
||||
for k in 0..2 {
|
||||
problem.gram.push_sym(block + j, block_next + k, -0.625);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for k in 0..N_POINTS {
|
||||
problem.frozen.push(3, k, problem.guess[(3, k)])
|
||||
}
|
||||
|
||||
|
||||
realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110)
|
||||
}
|
||||
}
|
||||
|
@ -630,9 +647,9 @@ pub mod examples {
|
|||
mod tests {
|
||||
use nalgebra::Vector3;
|
||||
use std::{f64::consts::{FRAC_1_SQRT_2, PI}, iter};
|
||||
|
||||
|
||||
use super::{*, examples::*};
|
||||
|
||||
|
||||
#[test]
|
||||
fn freeze_test() {
|
||||
let frozen = PartialMatrix(vec![
|
||||
|
@ -651,7 +668,7 @@ mod tests {
|
|||
]);
|
||||
assert_eq!(frozen.freeze(&config), expected_result);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn sub_proj_test() {
|
||||
let target = PartialMatrix(vec![
|
||||
|
@ -670,7 +687,7 @@ mod tests {
|
|||
]);
|
||||
assert_eq!(target.sub_proj(&attempt), expected_result);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn zero_loss_test() {
|
||||
let mut gram = PartialMatrix::new();
|
||||
|
@ -690,7 +707,7 @@ mod tests {
|
|||
let state = SearchState::from_config(&gram, config);
|
||||
assert!(state.loss.abs() < f64::EPSILON);
|
||||
}
|
||||
|
||||
|
||||
/* TO DO */
|
||||
// at the frozen indices, the optimization steps should have exact zeros,
|
||||
// and the realized configuration should have the desired values
|
||||
|
@ -702,7 +719,8 @@ mod tests {
|
|||
]);
|
||||
for j in 0..2 {
|
||||
for k in j..2 {
|
||||
problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
|
||||
problem.gram.push_sym(
|
||||
j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
|
||||
}
|
||||
}
|
||||
problem.frozen.push(3, 0, problem.guess[(3, 0)]);
|
||||
|
@ -720,21 +738,22 @@ mod tests {
|
|||
assert_eq!(config[index], value);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn irisawa_hexlet_test() {
|
||||
// solve Irisawa's problem
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
let config = realize_irisawa_hexlet(SCALED_TOL).result.unwrap().config;
|
||||
|
||||
|
||||
// check against Irisawa's solution
|
||||
let entry_tol = SCALED_TOL.sqrt();
|
||||
let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0];
|
||||
let solution_diams =
|
||||
[30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0];
|
||||
for (k, diam) in solution_diams.into_iter().enumerate() {
|
||||
assert!((config[(3, k)] - 1.0 / diam).abs() < entry_tol);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn tangent_test_three_spheres() {
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
|
@ -758,7 +777,7 @@ mod tests {
|
|||
let ConfigNeighborhood { config, nbhd: tangent } = result.unwrap();
|
||||
assert_eq!(config, problem.guess);
|
||||
assert_eq!(history.scaled_loss.len(), 1);
|
||||
|
||||
|
||||
// list some motions that should form a basis for the tangent space of
|
||||
// the solution variety
|
||||
const UNIFORM_DIM: usize = 4;
|
||||
|
@ -786,30 +805,37 @@ mod tests {
|
|||
0.0, 0.0, -1.0, 0.25, 1.0,
|
||||
]),
|
||||
];
|
||||
|
||||
|
||||
// confirm that the dimension of the tangent space is no greater than
|
||||
// expected
|
||||
assert_eq!(tangent.basis_std.len(), tangent_motions_std.len());
|
||||
|
||||
|
||||
// confirm that the tangent space contains all the motions we expect it
|
||||
// to. since we've already bounded the dimension of the tangent space,
|
||||
// this confirms that the tangent space is what we expect it to be
|
||||
let tol_sq = ((element_dim * assembly_dim) as f64) * SCALED_TOL * SCALED_TOL;
|
||||
for (motion_unif, motion_std) in tangent_motions_unif.into_iter().zip(tangent_motions_std) {
|
||||
let motion_proj: DMatrix<_> = motion_unif.column_iter().enumerate().map(
|
||||
|(k, v)| tangent.proj(&v, k)
|
||||
).sum();
|
||||
let tol_sq = ((element_dim * assembly_dim) as f64)
|
||||
* SCALED_TOL * SCALED_TOL;
|
||||
for (motion_unif, motion_std)
|
||||
in tangent_motions_unif.into_iter().zip(tangent_motions_std) {
|
||||
let motion_proj: DMatrix<_> =
|
||||
motion_unif.column_iter().enumerate().map(
|
||||
|(k, v)| tangent.proj(&v, k)
|
||||
).sum();
|
||||
assert!((motion_std - motion_proj).norm_squared() < tol_sq);
|
||||
}
|
||||
}
|
||||
|
||||
fn translation_motion_unif(vel: &Vector3<f64>, assembly_dim: usize) -> Vec<DVector<f64>> {
|
||||
|
||||
fn translation_motion_unif(vel: &Vector3<f64>, assembly_dim: usize)
|
||||
-> Vec<DVector<f64>>
|
||||
{
|
||||
let mut elt_motion = DVector::zeros(4);
|
||||
elt_motion.fixed_rows_mut::<3>(0).copy_from(vel);
|
||||
iter::repeat(elt_motion).take(assembly_dim).collect()
|
||||
}
|
||||
|
||||
fn rotation_motion_unif(ang_vel: &Vector3<f64>, points: Vec<DVectorView<f64>>) -> Vec<DVector<f64>> {
|
||||
|
||||
fn rotation_motion_unif(
|
||||
ang_vel: &Vector3<f64>, points: Vec<DVectorView<f64>>
|
||||
) -> Vec<DVector<f64>> {
|
||||
points.into_iter().map(
|
||||
|pt| {
|
||||
let vel = ang_vel.cross(&pt.fixed_rows::<3>(0));
|
||||
|
@ -819,7 +845,7 @@ mod tests {
|
|||
}
|
||||
).collect()
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn tangent_test_kaleidocycle() {
|
||||
// set up a kaleidocycle and find its tangent space
|
||||
|
@ -827,7 +853,7 @@ mod tests {
|
|||
let Realization { result, history } = realize_kaleidocycle(SCALED_TOL);
|
||||
let ConfigNeighborhood { config, nbhd: tangent } = result.unwrap();
|
||||
assert_eq!(history.scaled_loss.len(), 1);
|
||||
|
||||
|
||||
// list some motions that should form a basis for the tangent space of
|
||||
// the solution variety
|
||||
const N_HINGES: usize = 6;
|
||||
|
@ -838,12 +864,15 @@ mod tests {
|
|||
translation_motion_unif(&Vector3::new(1.0, 0.0, 0.0), assembly_dim),
|
||||
translation_motion_unif(&Vector3::new(0.0, 1.0, 0.0), assembly_dim),
|
||||
translation_motion_unif(&Vector3::new(0.0, 0.0, 1.0), assembly_dim),
|
||||
|
||||
|
||||
// the rotations about the coordinate axes
|
||||
rotation_motion_unif(&Vector3::new(1.0, 0.0, 0.0), config.column_iter().collect()),
|
||||
rotation_motion_unif(&Vector3::new(0.0, 1.0, 0.0), config.column_iter().collect()),
|
||||
rotation_motion_unif(&Vector3::new(0.0, 0.0, 1.0), config.column_iter().collect()),
|
||||
|
||||
rotation_motion_unif(
|
||||
&Vector3::new(1.0, 0.0, 0.0), config.column_iter().collect()),
|
||||
rotation_motion_unif(
|
||||
&Vector3::new(0.0, 1.0, 0.0), config.column_iter().collect()),
|
||||
rotation_motion_unif(
|
||||
&Vector3::new(0.0, 0.0, 1.0), config.column_iter().collect()),
|
||||
|
||||
// the twist motion. more precisely: a motion that keeps the center
|
||||
// of mass stationary and preserves the distances between the
|
||||
// vertices to first order. this has to be the twist as long as:
|
||||
|
@ -859,8 +888,10 @@ mod tests {
|
|||
[
|
||||
DVector::from_column_slice(&[0.0, 0.0, 5.0, 0.0]),
|
||||
DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]),
|
||||
DVector::from_column_slice(&[-vel_vert_x, -vel_vert_y, -3.0, 0.0]),
|
||||
DVector::from_column_slice(&[vel_vert_x, vel_vert_y, -3.0, 0.0]),
|
||||
DVector::from_column_slice(
|
||||
&[-vel_vert_x, -vel_vert_y, -3.0, 0.0]),
|
||||
DVector::from_column_slice(
|
||||
&[vel_vert_x, vel_vert_y, -3.0, 0.0]),
|
||||
]
|
||||
}
|
||||
).collect::<Vec<_>>(),
|
||||
|
@ -872,23 +903,26 @@ mod tests {
|
|||
).collect::<Vec<_>>()
|
||||
)
|
||||
).collect::<Vec<_>>();
|
||||
|
||||
|
||||
// confirm that the dimension of the tangent space is no greater than
|
||||
// expected
|
||||
assert_eq!(tangent.basis_std.len(), tangent_motions_unif.len());
|
||||
|
||||
|
||||
// confirm that the tangent space contains all the motions we expect it
|
||||
// to. since we've already bounded the dimension of the tangent space,
|
||||
// this confirms that the tangent space is what we expect it to be
|
||||
let tol_sq = ((element_dim * assembly_dim) as f64) * SCALED_TOL * SCALED_TOL;
|
||||
for (motion_unif, motion_std) in tangent_motions_unif.into_iter().zip(tangent_motions_std) {
|
||||
let motion_proj: DMatrix<_> = motion_unif.into_iter().enumerate().map(
|
||||
|(k, v)| tangent.proj(&v.as_view(), k)
|
||||
).sum();
|
||||
let tol_sq = ((element_dim * assembly_dim) as f64)
|
||||
* SCALED_TOL * SCALED_TOL;
|
||||
for (motion_unif, motion_std)
|
||||
in tangent_motions_unif.into_iter().zip(tangent_motions_std) {
|
||||
let motion_proj: DMatrix<_> =
|
||||
motion_unif.into_iter().enumerate().map(
|
||||
|(k, v)| tangent.proj(&v.as_view(), k)
|
||||
).sum();
|
||||
assert!((motion_std - motion_proj).norm_squared() < tol_sq);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fn translation(dis: Vector3<f64>) -> DMatrix<f64> {
|
||||
const ELEMENT_DIM: usize = 5;
|
||||
DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
|
||||
|
@ -899,7 +933,7 @@ mod tests {
|
|||
0.0, 0.0, 0.0, 0.0, 1.0,
|
||||
])
|
||||
}
|
||||
|
||||
|
||||
// confirm that projection onto a configuration subspace is equivariant with
|
||||
// respect to Euclidean motions
|
||||
#[test]
|
||||
|
@ -913,13 +947,13 @@ mod tests {
|
|||
problem_orig.gram.push_sym(0, 0, 1.0);
|
||||
problem_orig.gram.push_sym(1, 1, 1.0);
|
||||
problem_orig.gram.push_sym(0, 1, 0.5);
|
||||
let Realization { result: result_orig, history: history_orig } = realize_gram(
|
||||
&problem_orig, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
let ConfigNeighborhood { config: config_orig, nbhd: tangent_orig } = result_orig.unwrap();
|
||||
let Realization { result: result_orig, history: history_orig } =
|
||||
realize_gram(&problem_orig, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110);
|
||||
let ConfigNeighborhood { config: config_orig, nbhd: tangent_orig } =
|
||||
result_orig.unwrap();
|
||||
assert_eq!(config_orig, problem_orig.guess);
|
||||
assert_eq!(history_orig.scaled_loss.len(), 1);
|
||||
|
||||
|
||||
// find another pair of spheres that meet at 120°. we'll think of this
|
||||
// solution as a transformed version of the original one
|
||||
let guess_tfm = {
|
||||
|
@ -934,23 +968,24 @@ mod tests {
|
|||
frozen: problem_orig.frozen,
|
||||
guess: guess_tfm,
|
||||
};
|
||||
let Realization { result: result_tfm, history: history_tfm } = realize_gram(
|
||||
&problem_tfm, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
let ConfigNeighborhood { config: config_tfm, nbhd: tangent_tfm } = result_tfm.unwrap();
|
||||
let Realization { result: result_tfm, history: history_tfm } =
|
||||
realize_gram(&problem_tfm, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110);
|
||||
let ConfigNeighborhood { config: config_tfm, nbhd: tangent_tfm } =
|
||||
result_tfm.unwrap();
|
||||
assert_eq!(config_tfm, problem_tfm.guess);
|
||||
assert_eq!(history_tfm.scaled_loss.len(), 1);
|
||||
|
||||
|
||||
// project a nudge to the tangent space of the solution variety at the
|
||||
// original solution
|
||||
let motion_orig = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
|
||||
let motion_orig_proj = tangent_orig.proj(&motion_orig.as_view(), 0);
|
||||
|
||||
|
||||
// project the equivalent nudge to the tangent space of the solution
|
||||
// variety at the transformed solution
|
||||
let motion_tfm = DVector::from_column_slice(&[FRAC_1_SQRT_2, 0.0, FRAC_1_SQRT_2, 0.0]);
|
||||
let motion_tfm = DVector::from_column_slice(
|
||||
&[FRAC_1_SQRT_2, 0.0, FRAC_1_SQRT_2, 0.0]);
|
||||
let motion_tfm_proj = tangent_tfm.proj(&motion_tfm.as_view(), 0);
|
||||
|
||||
|
||||
// take the transformation that sends the original solution to the
|
||||
// transformed solution and apply it to the motion that the original
|
||||
// solution makes in response to the nudge
|
||||
|
@ -964,12 +999,14 @@ mod tests {
|
|||
]);
|
||||
let transl = translation(Vector3::new(0.0, 0.0, 7.0));
|
||||
let motion_proj_tfm = transl * rot * motion_orig_proj;
|
||||
|
||||
|
||||
// confirm that the projection of the nudge is equivariant. we loosen
|
||||
// the comparison tolerance because the transformation seems to
|
||||
// introduce some numerical error
|
||||
const SCALED_TOL_TFM: f64 = 1.0e-9;
|
||||
let tol_sq = ((problem_orig.guess.nrows() * problem_orig.guess.ncols()) as f64) * SCALED_TOL_TFM * SCALED_TOL_TFM;
|
||||
let tol_sq = ((problem_orig.guess.nrows()
|
||||
* problem_orig.guess.ncols()) as f64)
|
||||
* SCALED_TOL_TFM * SCALED_TOL_TFM;
|
||||
assert!((motion_proj_tfm - motion_tfm_proj).norm_squared() < tol_sq);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -30,7 +30,7 @@ impl AppState {
|
|||
selection: create_signal(BTreeSet::default()),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// in single-selection mode, select the given element. in multiple-selection
|
||||
// mode, toggle whether the given element is selected
|
||||
fn select(&self, element: &Rc<dyn Element>, multi: bool) {
|
||||
|
@ -53,10 +53,10 @@ fn main() {
|
|||
// set the console error panic hook
|
||||
#[cfg(feature = "console_error_panic_hook")]
|
||||
console_error_panic_hook::set_once();
|
||||
|
||||
|
||||
sycamore::render(|| {
|
||||
provide_context(AppState::new());
|
||||
|
||||
|
||||
view! {
|
||||
div(id = "sidebar") {
|
||||
AddRemove {}
|
||||
|
@ -66,4 +66,4 @@ fn main() {
|
|||
Display {}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
|
@ -20,7 +20,7 @@ impl SpecifiedValue {
|
|||
pub fn from_empty_spec() -> Self {
|
||||
Self { spec: String::new(), value: None }
|
||||
}
|
||||
|
||||
|
||||
pub fn is_present(&self) -> bool {
|
||||
matches!(self.value, Some(_))
|
||||
}
|
||||
|
@ -42,7 +42,7 @@ impl From<Option<f64>> for SpecifiedValue {
|
|||
// if the specification is properly formatted, and `Error` if not
|
||||
impl TryFrom<String> for SpecifiedValue {
|
||||
type Error = ParseFloatError;
|
||||
|
||||
|
||||
fn try_from(spec: String) -> Result<Self, Self::Error> {
|
||||
if spec.is_empty() {
|
||||
Ok(Self::from_empty_spec())
|
||||
|
@ -52,4 +52,4 @@ impl TryFrom<String> for SpecifiedValue {
|
|||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -33,7 +33,7 @@ The unification of spheres/planes is indeed attractive for a project like Dyna3.
|
|||
Discussed coordinates with Alex Kontorovich. He was suggesting "inversive coordinates" -- for a sphere, that's 1/coradius, 1/radius, center/radius (where coradius is radius of sphere inverted in the unit sphere.) The advantage is tangent to and perpendicular to are linear in these coordinates (in the sense that if one is known, the condition of being tangent to or perpendicular to that one are linear). Planes have 1/radius = 0, and in fact, you can take the coordinates to be (2s, 0, x, y, z) where s is the distance to the origin and x,y,z are the normal direction. (Note the normal direction is only determined up to a scalar multiple. So could always scale so that the first non-zero coordinate is 1, or if you like only allow x, y to vary and let z be determined as sqrt(1-x^2^-y^2^). ) Points can be given by (r^2,1,x,y,z) where x,y,z are the coordinates and r is the distance to the origin. Quadratic form that tells you if something is a sphere/plane, or in the boundary, or up in the hyperbolic plane above. There are some details, but not quite explicit for modeling R^3, at http://sites.math.rutgers.edu/~alexk/files/LetterToDuke.pdf -- all this emphasize need to be agnostic with respect to geometric model so that we can experiment. Not really sure exactly how this relates or not to conformal geometric algebra, and whether it can be combined with geometric algebra. As formulated, there are clear-ish reps for planes/spheres and for points, but not as clear for lines. Have to see how to compute distance and/or specify a given distance. To combine inversive coordinates and geometric algebra, maybe think dually; there should be a lift from a normal vector and distance from origin to the five-vector; bivectors would rep circles/lines; trivectors would rep point pairs/points. What is the signature of this algebra, i.e. how many coordinates square to +1, -1, or 0? But it doesn't seem worth it for three dimensions, because there is a natural representation of points, as follows:
|
||||
|
||||
The signature of Q will be (1,4), and in fact Q(I1,I2) = 1/2(ab+ba) - E1\dot E2, where a is the "first" or "coradius" coordinate, "b" is the "second" or "radius" coordinate, and E is the Euclidean part (x,y,z). Then the inversive coordinates of a sphere with center (x,y,z) and radius r will be I = (1/\hat{r},1/r,x/r,y/r,z/r) where \hat{r} = r/(|E|^2 -r^2). These coordinates satisfy Q(I,I) = -1. For this to make sense, of course r > 0, but we get planes by letting the radius of a tangent sphere to the plane go to infinity, and we get I = (2s, 0, x0, y0, z0) where (x0,y0,z0) is the unit normal to the plane and s is the perpendicular distance from the plane to the origin. Still Q(I,I) = -1.
|
||||
Since r>0, we can't represent individual points this way. Instead we will use some coordinates J for which Q(J,J) = 0. In particular, if you take for the Euclidean point E = (u,v,w) the coordinates J = (`|E|`^2,1,u,v,w) then Q(J,J) = 0 and moreover it comes out that Q(I,J) = 0
|
||||
Since r>0, we can't represent individual points this way. Instead we will use some coordinates J for which Q(J,J) = 0. In particular, if you take for the Euclidean point E = (u,v,w) the coordinates J = (`|E|`^2,1,u,v,w) then Q(J,J) = 0 and moreover it comes out that Q(I,J) = 0
|
||||
whenever E lies on the sphere or plane described by some I with Q(I,I) = -1.
|
||||
The condition that two spheres I1 and I2 are tangent seems to be that Q(I1,I2) = 1. So given a fixed sphere, the condition that another sphere be tangent to it is linear in the coordinates of that other sphere.
|
||||
This system does seem promising for encoding points, spheres, and planes, and doing basic computations with them. I guess I would just encode a circle as the intersection of the concentric sphere and the containing plane, and a line as either a pair of points or a pair of planes (modulo some equivalence relation, since I can't see any canonical choice of either two planes or two points). Or actually as described below, there is a more canonical choice.
|
||||
|
@ -62,4 +62,4 @@ In the engine's coordinate conventions, a sphere with radius $r > 0$ centered on
|
|||
$$I'_s = \left(\frac{P_x}{r}, \frac{P_y}{r}, \frac{P_z}{r}, \frac1{2r}, \frac{\|P\|^2 - r^2}{2r}\right),$$
|
||||
which has the normalization $Q'(I'_s, I'_s) = 1$. The point $P$ is represented by the vector
|
||||
$$I'_P = \left(P_x, P_y, P_z, \frac{1}{2}, \frac{\|P\|^2}{2}\right).$$
|
||||
In the `engine` module, these formulas are encoded in the `sphere` and `point` functions.
|
||||
In the `engine` module, these formulas are encoded in the `sphere` and `point` functions.
|
||||
|
|
|
@ -22,9 +22,10 @@ Jürgen also emphasized the need for an intuitive user interface. Notes on that
|
|||
His final mathematical advice was reasonably encouraging, however:
|
||||
|
||||
"But still I would consider it all more or less doable. One should very precisely think about a doable scope.
|
||||
I think three things are essential for the math no matter what you exactly plan.
|
||||
I think three things are essential for the math no matter what you exactly
|
||||
plan.
|
||||
|
||||
1. Think projectively,
|
||||
1. Think projectively.
|
||||
Use Projective Geometry, Homogeneous Coordinates (or to a certain extent Quaternions, and Clifford Algebras, which are more or less an elegant way to merge Complex numbers with projective concepts.)
|
||||
2. Consider ambient complex spaces.
|
||||
The true nature of the objects can only be understood if embedded into a complex ambient space.
|
||||
|
@ -37,10 +38,8 @@ I think three things are essential for the math no matter what you exactly plan.
|
|||
|
||||
It would be nice to see how Jürgen handled some of these issues in a 2D system that he designed. Unfortunately, Cinderella was and remains closed-source; it was distributed for profit for some stretch of time. However, (a part of?) it was reimplemented in JavaScript as CindyJS, which is open source. I took a relatively quick look at that source code at one point, and these were my observations:
|
||||
|
||||
CindyJS uses very concrete basic objects: 2D points are represented via projective geometry as a list of three floating-point numbers, and everything is done numerically. There are no symbolic representations or exact algebraic numbers. (Not sure how a point on a circle or line is handled, that would take further investigation.)
|
||||
CindyJS uses very concrete basic objects: 2D points are represented via projective geometry as a list of three floating-point numbers, and everything is done numerically. There are no symbolic representations or exact algebraic numbers. (Not sure how a point on a circle or line is handled, that would take further investigation.)
|
||||
|
||||
Lines are given by explicit coordinates as well (not sure of the internal details/exact coordinatization, or of how a "LineThrough" is represented).
|
||||
|
||||
Was unclear to me how the complex parametrization for preserving continuity was handled in the code, even though Jürgen harps on complex ambient spaces; where are the complex numbers? Perhaps that part of Cinderella was never re-implemented?
|
||||
|
||||
|
||||
|
|
|
@ -7,5 +7,3 @@
|
|||
<body><script type="module" src="dyna3.js"></script>
|
||||
</body>
|
||||
</html>
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue