feat: Points (#82)
All checks were successful
/ test (push) Successful in 2m17s

Replaces the former sole Element entity by two, Sphere and Point, both implementing an Element trait. Adds Point display, uses the former Element display for Sphere. Adds a new "canned" configuration, and the ability to add, select, and nudge Point entities.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: #82
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
This commit is contained in:
Vectornaut 2025-05-01 19:25:13 +00:00 committed by Glen Whitney
parent 360ce12d8b
commit a2478febc1
9 changed files with 815 additions and 330 deletions

View file

@ -4,17 +4,185 @@ use sycamore::{prelude::*, motion::create_raf};
use web_sys::{
console,
window,
Element,
KeyboardEvent,
MouseEvent,
WebGl2RenderingContext,
WebGlBuffer,
WebGlProgram,
WebGlShader,
WebGlUniformLocation,
wasm_bindgen::{JsCast, JsValue}
};
use crate::{AppState, assembly::{ElementKey, ElementMotion}};
use crate::{
AppState,
assembly::{ElementKey, ElementColor, ElementMotion, Point, Sphere}
};
// --- scene data ---
struct SceneSpheres {
representations: Vec<DVector<f64>>,
colors: Vec<ElementColor>,
highlights: Vec<f32>
}
impl SceneSpheres {
fn new() -> SceneSpheres{
SceneSpheres {
representations: Vec::new(),
colors: Vec::new(),
highlights: Vec::new()
}
}
fn len_i32(&self) -> i32 {
self.representations.len().try_into().expect("Number of spheres must fit in a 32-bit integer")
}
fn push(&mut self, representation: DVector<f64>, color: ElementColor, highlight: f32) {
self.representations.push(representation);
self.colors.push(color);
self.highlights.push(highlight);
}
}
struct ScenePoints {
representations: Vec<DVector<f64>>,
colors: Vec<ElementColor>,
highlights: Vec<f32>,
selections: Vec<f32>
}
impl ScenePoints {
fn new() -> ScenePoints {
ScenePoints {
representations: Vec::new(),
colors: Vec::new(),
highlights: Vec::new(),
selections: Vec::new()
}
}
fn push(&mut self, representation: DVector<f64>, color: ElementColor, highlight: f32, selected: bool) {
self.representations.push(representation);
self.colors.push(color);
self.highlights.push(highlight);
self.selections.push(if selected { 1.0 } else { 0.0 });
}
}
pub struct Scene {
spheres: SceneSpheres,
points: ScenePoints
}
impl Scene {
fn new() -> Scene {
Scene {
spheres: SceneSpheres::new(),
points: ScenePoints::new()
}
}
}
pub trait DisplayItem {
fn show(&self, scene: &mut Scene, selected: bool);
// the smallest positive depth, represented as a multiple of `dir`, where
// the line generated by `dir` hits the element. returns `None` if the line
// misses the element
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, pixel_size: f64) -> Option<f64>;
}
impl DisplayItem for Sphere {
fn show(&self, scene: &mut Scene, selected: bool) {
const HIGHLIGHT: f32 = 0.2; /* SCAFFOLDING */
let representation = self.representation.get_clone_untracked();
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
let highlight = if selected { 1.0 } else { HIGHLIGHT };
scene.spheres.push(representation, color, highlight);
}
// this method should be kept synchronized with `sphere_cast` in
// `spheres.frag`, which does essentially the same thing on the GPU side
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, _pixel_size: f64) -> Option<f64> {
// if `a/b` is less than this threshold, we approximate
// `a*u^2 + b*u + c` by the linear function `b*u + c`
const DEG_THRESHOLD: f64 = 1e-9;
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
let a = -rep[3] * dir.norm_squared();
let b = rep.rows_range(..3).dot(&dir);
let c = -rep[4];
let adjust = 4.0*a*c/(b*b);
if adjust < 1.0 {
// as long as `b` is non-zero, the linear approximation of
//
// a*u^2 + b*u + c
//
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of
// the quadratic adjacent to `u_lin` is stored in `lin_root`. if
// both roots have the same sign, `lin_root` will be the one closer
// to `u = 0`
let square_rect_ratio = 1.0 + (1.0 - adjust).sqrt();
let lin_root = -(2.0*c)/b / square_rect_ratio;
if a.abs() > DEG_THRESHOLD * b.abs() {
if lin_root > 0.0 {
Some(lin_root)
} else {
let other_root = -b/(2.*a) * square_rect_ratio;
(other_root > 0.0).then_some(other_root)
}
} else {
(lin_root > 0.0).then_some(lin_root)
}
} else {
// the line through `dir` misses the sphere completely
None
}
}
}
impl DisplayItem for Point {
fn show(&self, scene: &mut Scene, selected: bool) {
const HIGHLIGHT: f32 = 0.5; /* SCAFFOLDING */
let representation = self.representation.get_clone_untracked();
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
let highlight = if selected { 1.0 } else { HIGHLIGHT };
scene.points.push(representation, color, highlight, selected);
}
/* SCAFFOLDING */
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, pixel_size: f64) -> Option<f64> {
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
if rep[2] < 0.0 {
// this constant should be kept synchronized with `point.frag`
const POINT_RADIUS_PX: f64 = 4.0;
// find the radius of the point in screen projection units
let point_radius_proj = POINT_RADIUS_PX * pixel_size;
// find the squared distance between the screen projections of the
// ray and the point
let dir_proj = -dir.fixed_rows::<2>(0) / dir[2];
let rep_proj = -rep.fixed_rows::<2>(0) / rep[2];
let dist_sq = (dir_proj - rep_proj).norm_squared();
// if the ray hits the point, return its depth
if dist_sq < point_radius_proj * point_radius_proj {
Some(rep[2] / dir[2])
} else {
None
}
} else {
None
}
}
}
// --- WebGL utilities ---
fn compile_shader(
context: &WebGl2RenderingContext,
@ -27,6 +195,45 @@ fn compile_shader(
shader
}
fn set_up_program(
context: &WebGl2RenderingContext,
vertex_shader_source: &str,
fragment_shader_source: &str
) -> WebGlProgram {
// compile the shaders
let vertex_shader = compile_shader(
&context,
WebGl2RenderingContext::VERTEX_SHADER,
vertex_shader_source,
);
let fragment_shader = compile_shader(
&context,
WebGl2RenderingContext::FRAGMENT_SHADER,
fragment_shader_source,
);
// create the program and attach the shaders
let program = context.create_program().unwrap();
context.attach_shader(&program, &vertex_shader);
context.attach_shader(&program, &fragment_shader);
context.link_program(&program);
/* DEBUG */
// report whether linking succeeded
let link_status = context
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
.as_bool()
.unwrap();
let link_msg = if link_status {
"Linked successfully"
} else {
"Linking failed"
};
console::log_1(&JsValue::from(link_msg));
program
}
fn get_uniform_array_locations<const N: usize>(
context: &WebGl2RenderingContext,
program: &WebGlProgram,
@ -42,22 +249,39 @@ fn get_uniform_array_locations<const N: usize>(
})
}
// load the given data into the vertex input of the given name
fn bind_vertex_attrib(
// bind the given vertex buffer object to the given vertex attribute
fn bind_to_attribute(
context: &WebGl2RenderingContext,
index: u32,
size: i32,
data: &[f32]
attr_index: u32,
attr_size: i32,
buffer: &Option<WebGlBuffer>
) {
// create a data buffer and bind it to ARRAY_BUFFER
let buffer = context.create_buffer().unwrap();
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, Some(&buffer));
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
context.vertex_attrib_pointer_with_i32(
attr_index,
attr_size,
WebGl2RenderingContext::FLOAT,
false, // don't normalize
0, // zero stride
0, // zero offset
);
}
// load the given data into a new vertex buffer object
fn load_new_buffer(
context: &WebGl2RenderingContext,
data: &[f32]
) -> Option<WebGlBuffer> {
// create a buffer and bind it to ARRAY_BUFFER
let buffer = context.create_buffer();
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
// load the given data into the buffer. the function `Float32Array::view`
// creates a raw view into our module's `WebAssembly.Memory` buffer.
// allocating more memory will change the buffer, invalidating the view.
// that means we have to make sure we don't allocate any memory until the
// view is dropped
// load the given data into the buffer. this block is unsafe because
// `Float32Array::view` creates a raw view into our module's
// `WebAssembly.Memory` buffer. allocating more memory will change the
// buffer, invalidating the view, so we have to make sure we don't allocate
// any memory until the view is dropped. we're okay here because the view is
// used as soon as it's created
unsafe {
context.buffer_data_with_array_buffer_view(
WebGl2RenderingContext::ARRAY_BUFFER,
@ -66,42 +290,43 @@ fn bind_vertex_attrib(
);
}
// allow the target attribute to be used
context.enable_vertex_attrib_array(index);
// take whatever's bound to ARRAY_BUFFER---here, the data buffer created
// above---and bind it to the target attribute
//
// https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/vertexAttribPointer
//
context.vertex_attrib_pointer_with_i32(
index,
size,
WebGl2RenderingContext::FLOAT,
false, // don't normalize
0, // zero stride
0, // zero offset
);
buffer
}
fn bind_new_buffer_to_attribute(
context: &WebGl2RenderingContext,
attr_index: u32,
attr_size: i32,
data: &[f32]
) {
let buffer = load_new_buffer(context, data);
bind_to_attribute(context, attr_index, attr_size, &buffer);
}
// the direction in camera space that a mouse event is pointing along
fn event_dir(event: &MouseEvent) -> Vector3<f64> {
let target: Element = event.target().unwrap().unchecked_into();
fn event_dir(event: &MouseEvent) -> (Vector3<f64>, f64) {
let target: web_sys::Element = event.target().unwrap().unchecked_into();
let rect = target.get_bounding_client_rect();
let width = rect.width();
let height = rect.height();
let shortdim = width.min(height);
// this constant should be kept synchronized with `inversive.frag`
// this constant should be kept synchronized with `spheres.frag` and
// `point.vert`
const FOCAL_SLOPE: f64 = 0.3;
Vector3::new(
FOCAL_SLOPE * (2.0*(f64::from(event.client_x()) - rect.left()) - width) / shortdim,
FOCAL_SLOPE * (2.0*(rect.bottom() - f64::from(event.client_y())) - height) / shortdim,
-1.0
(
Vector3::new(
FOCAL_SLOPE * (2.0*(f64::from(event.client_x()) - rect.left()) - width) / shortdim,
FOCAL_SLOPE * (2.0*(rect.bottom() - f64::from(event.client_y())) - height) / shortdim,
-1.0
),
FOCAL_SLOPE * 2.0 / shortdim
)
}
// --- display component ---
#[component]
pub fn Display() -> View {
let state = use_context::<AppState>();
@ -138,7 +363,7 @@ pub fn Display() -> View {
create_effect(move || {
state.assembly.elements.with(|elts| {
for (_, elt) in elts {
elt.representation.track();
elt.representation().track();
}
});
state.selection.track();
@ -170,7 +395,6 @@ pub fn Display() -> View {
// display parameters
const OPACITY: f32 = 0.5; /* SCAFFOLDING */
const HIGHLIGHT: f32 = 0.2; /* SCAFFOLDING */
const LAYER_THRESHOLD: i32 = 0; /* DEBUG */
const DEBUG_MODE: i32 = 0; /* DEBUG */
@ -186,32 +410,26 @@ pub fn Display() -> View {
.dyn_into::<WebGl2RenderingContext>()
.unwrap();
// compile and attach the vertex and fragment shaders
let vertex_shader = compile_shader(
// disable depth testing
ctx.disable(WebGl2RenderingContext::DEPTH_TEST);
// set blend mode
ctx.enable(WebGl2RenderingContext::BLEND);
ctx.blend_func(WebGl2RenderingContext::SRC_ALPHA, WebGl2RenderingContext::ONE_MINUS_SRC_ALPHA);
// set up the sphere rendering program
let sphere_program = set_up_program(
&ctx,
WebGl2RenderingContext::VERTEX_SHADER,
include_str!("identity.vert"),
include_str!("spheres.frag")
);
let fragment_shader = compile_shader(
// set up the point rendering program
let point_program = set_up_program(
&ctx,
WebGl2RenderingContext::FRAGMENT_SHADER,
include_str!("inversive.frag"),
include_str!("point.vert"),
include_str!("point.frag")
);
let program = ctx.create_program().unwrap();
ctx.attach_shader(&program, &vertex_shader);
ctx.attach_shader(&program, &fragment_shader);
ctx.link_program(&program);
let link_status = ctx
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
.as_bool()
.unwrap();
let link_msg = if link_status {
"Linked successfully"
} else {
"Linking failed"
};
console::log_1(&JsValue::from(link_msg));
ctx.use_program(Some(&program));
/* DEBUG */
// print the maximum number of vectors that can be passed as
@ -230,35 +448,33 @@ pub fn Display() -> View {
&JsValue::from("uniform vectors available")
);
// find indices of vertex attributes and uniforms
// find the sphere program's vertex attribute
let viewport_position_attr = ctx.get_attrib_location(&sphere_program, "position") as u32;
// find the sphere program's uniforms
const SPHERE_MAX: usize = 200;
let position_index = ctx.get_attrib_location(&program, "position") as u32;
let sphere_cnt_loc = ctx.get_uniform_location(&program, "sphere_cnt");
let sphere_cnt_loc = ctx.get_uniform_location(&sphere_program, "sphere_cnt");
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "sphere_list", Some("sp")
&ctx, &sphere_program, "sphere_list", Some("sp")
);
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "sphere_list", Some("lt")
&ctx, &sphere_program, "sphere_list", Some("lt")
);
let color_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "color_list", None
let sphere_color_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "color_list", None
);
let highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "highlight_list", None
let sphere_highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "highlight_list", None
);
let resolution_loc = ctx.get_uniform_location(&program, "resolution");
let shortdim_loc = ctx.get_uniform_location(&program, "shortdim");
let opacity_loc = ctx.get_uniform_location(&program, "opacity");
let layer_threshold_loc = ctx.get_uniform_location(&program, "layer_threshold");
let debug_mode_loc = ctx.get_uniform_location(&program, "debug_mode");
let resolution_loc = ctx.get_uniform_location(&sphere_program, "resolution");
let shortdim_loc = ctx.get_uniform_location(&sphere_program, "shortdim");
let opacity_loc = ctx.get_uniform_location(&sphere_program, "opacity");
let layer_threshold_loc = ctx.get_uniform_location(&sphere_program, "layer_threshold");
let debug_mode_loc = ctx.get_uniform_location(&sphere_program, "debug_mode");
// create a vertex array and bind it to the graphics context
let vertex_array = ctx.create_vertex_array().unwrap();
ctx.bind_vertex_array(Some(&vertex_array));
// set the vertex positions
// load the viewport vertex positions into a new vertex buffer object
const VERTEX_CNT: usize = 6;
let positions: [f32; 3*VERTEX_CNT] = [
let viewport_positions: [f32; 3*VERTEX_CNT] = [
// northwest triangle
-1.0, -1.0, 0.0,
-1.0, 1.0, 0.0,
@ -268,7 +484,13 @@ pub fn Display() -> View {
1.0, 1.0, 0.0,
1.0, -1.0, 0.0
];
bind_vertex_attrib(&ctx, position_index, 3, &positions);
let viewport_position_buffer = load_new_buffer(&ctx, &viewport_positions);
// find the point program's vertex attributes
let point_position_attr = ctx.get_attrib_location(&point_program, "position") as u32;
let point_color_attr = ctx.get_attrib_location(&point_program, "color") as u32;
let point_highlight_attr = ctx.get_attrib_location(&point_program, "highlight") as u32;
let point_selection_attr = ctx.get_attrib_location(&point_program, "selected") as u32;
// set up a repainting routine
let (_, start_animation_loop, _) = create_raf(move || {
@ -362,6 +584,9 @@ pub fn Display() -> View {
}
if scene_changed.get() {
const SPACE_DIM: usize = 3;
const COLOR_SIZE: usize = 3;
/* INSTRUMENTS */
// measure mean frame interval
frames_since_last_sample += 1;
@ -371,6 +596,10 @@ pub fn Display() -> View {
frames_since_last_sample = 0;
}
// --- get the assembly ---
let mut scene = Scene::new();
// find the map from assembly space to world space
let location = {
let u = -location_z;
@ -384,41 +613,27 @@ pub fn Display() -> View {
};
let asm_to_world = &location * &orientation;
// get the assembly
let (
elt_cnt,
reps_world,
colors,
highlights
) = state.assembly.elements.with(|elts| {
(
// number of elements
elts.len() as i32,
// representation vectors in world coordinates
elts.iter().map(
|(_, elt)| elt.representation.with(|rep| &asm_to_world * rep)
).collect::<Vec<_>>(),
// colors
elts.iter().map(|(key, elt)| {
if state.selection.with(|sel| sel.contains(&key)) {
elt.color.map(|ch| 0.2 + 0.8*ch)
} else {
elt.color
}
}).collect::<Vec<_>>(),
// highlight levels
elts.iter().map(|(key, _)| {
if state.selection.with(|sel| sel.contains(&key)) {
1.0_f32
} else {
HIGHLIGHT
}
}).collect::<Vec<_>>()
)
});
// set up the scene
state.assembly.elements.with_untracked(
|elts| for (key, elt) in elts {
let selected = state.selection.with(|sel| sel.contains(&key));
elt.show(&mut scene, selected);
}
);
let sphere_cnt = scene.spheres.len_i32();
// --- draw the spheres ---
// use the sphere rendering program
ctx.use_program(Some(&sphere_program));
// enable the sphere program's vertex attribute
ctx.enable_vertex_attrib_array(viewport_position_attr);
// write the spheres in world coordinates
let sphere_reps_world: Vec<_> = scene.spheres.representations.into_iter().map(
|rep| (&asm_to_world * rep).cast::<f32>()
).collect();
// set the resolution
let width = canvas.width() as f32;
@ -426,25 +641,25 @@ pub fn Display() -> View {
ctx.uniform2f(resolution_loc.as_ref(), width, height);
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// pass the assembly
ctx.uniform1i(sphere_cnt_loc.as_ref(), elt_cnt);
for n in 0..reps_world.len() {
let v = &reps_world[n];
ctx.uniform3f(
// pass the scene data
ctx.uniform1i(sphere_cnt_loc.as_ref(), sphere_cnt);
for n in 0..sphere_reps_world.len() {
let v = &sphere_reps_world[n];
ctx.uniform3fv_with_f32_array(
sphere_sp_locs[n].as_ref(),
v[0] as f32, v[1] as f32, v[2] as f32
v.rows(0, 3).as_slice()
);
ctx.uniform2f(
ctx.uniform2fv_with_f32_array(
sphere_lt_locs[n].as_ref(),
v[3] as f32, v[4] as f32
v.rows(3, 2).as_slice()
);
ctx.uniform3fv_with_f32_array(
color_locs[n].as_ref(),
&colors[n]
sphere_color_locs[n].as_ref(),
&scene.spheres.colors[n]
);
ctx.uniform1f(
highlight_locs[n].as_ref(),
highlights[n]
sphere_highlight_locs[n].as_ref(),
scene.spheres.highlights[n]
);
}
@ -453,9 +668,56 @@ pub fn Display() -> View {
ctx.uniform1i(layer_threshold_loc.as_ref(), LAYER_THRESHOLD);
ctx.uniform1i(debug_mode_loc.as_ref(), DEBUG_MODE);
// bind the viewport vertex position buffer to the position
// attribute in the vertex shader
bind_to_attribute(&ctx, viewport_position_attr, SPACE_DIM as i32, &viewport_position_buffer);
// draw the scene
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
// disable the sphere program's vertex attribute
ctx.disable_vertex_attrib_array(viewport_position_attr);
// --- draw the points ---
if !scene.points.representations.is_empty() {
// use the point rendering program
ctx.use_program(Some(&point_program));
// enable the point program's vertex attributes
ctx.enable_vertex_attrib_array(point_position_attr);
ctx.enable_vertex_attrib_array(point_color_attr);
ctx.enable_vertex_attrib_array(point_highlight_attr);
ctx.enable_vertex_attrib_array(point_selection_attr);
// write the points in world coordinates
let asm_to_world_sp = asm_to_world.rows(0, SPACE_DIM);
let point_positions = DMatrix::from_columns(
&scene.points.representations.into_iter().map(
|rep| &asm_to_world_sp * rep
).collect::<Vec<_>>().as_slice()
).cast::<f32>();
// load the point positions and colors into new buffers and
// bind them to the corresponding attributes in the vertex
// shader
bind_new_buffer_to_attribute(&ctx, point_position_attr, SPACE_DIM as i32, point_positions.as_slice());
bind_new_buffer_to_attribute(&ctx, point_color_attr, COLOR_SIZE as i32, scene.points.colors.concat().as_slice());
bind_new_buffer_to_attribute(&ctx, point_highlight_attr, 1 as i32, scene.points.highlights.as_slice());
bind_new_buffer_to_attribute(&ctx, point_selection_attr, 1 as i32, scene.points.selections.as_slice());
// draw the scene
ctx.draw_arrays(WebGl2RenderingContext::POINTS, 0, point_positions.ncols() as i32);
// disable the point program's vertex attributes
ctx.disable_vertex_attrib_array(point_position_attr);
ctx.disable_vertex_attrib_array(point_color_attr);
ctx.disable_vertex_attrib_array(point_highlight_attr);
ctx.disable_vertex_attrib_array(point_selection_attr);
}
// --- update the display state ---
// update the viewpoint
assembly_to_world.set(asm_to_world);
@ -585,11 +847,11 @@ pub fn Display() -> View {
},
on:click=move |event: MouseEvent| {
// find the nearest element along the pointer direction
let dir = event_dir(&event);
let (dir, pixel_size) = event_dir(&event);
console::log_1(&JsValue::from(dir.to_string()));
let mut clicked: Option<(ElementKey, f64)> = None;
for (key, elt) in state.assembly.elements.get_clone_untracked() {
match assembly_to_world.with(|asm_to_world| elt.cast(dir, asm_to_world)) {
match assembly_to_world.with(|asm_to_world| elt.cast(dir, asm_to_world, pixel_size)) {
Some(depth) => match clicked {
Some((_, best_depth)) => {
if depth < best_depth {