dyna3/lang-trials/rust-benchmark/src/engine.rs

104 lines
3.7 KiB
Rust
Raw Normal View History

2024-08-09 15:12:44 -07:00
use nalgebra::{*, allocator::Allocator};
use std::f64::consts::{PI, E};
2024-08-09 15:18:13 -07:00
/* dynamic matrices */
pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>> {
2024-08-09 15:12:44 -07:00
// initialize the random matrix
2024-08-09 15:18:13 -07:00
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
2024-08-09 15:12:44 -07:00
let n = j*dim + k;
E*((n*n) as f64) % 2.0 - 1.0
}) * (3.0 / (dim as f64)).sqrt();
// initialize the rotation step
2024-08-09 15:18:13 -07:00
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
2024-08-09 15:12:44 -07:00
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
2024-08-09 15:18:13 -07:00
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
2024-08-09 15:12:44 -07:00
eigval_series.push(rand_mat.complex_eigenvalues());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
2024-08-09 15:18:13 -07:00
}
2024-08-09 15:12:44 -07:00
2024-08-09 15:18:13 -07:00
/* dynamic single float matrices */
/*pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>> {
2024-08-09 15:12:44 -07:00
// initialize the random matrix
2024-08-09 15:18:13 -07:00
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
let n = j*dim + k;
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
}) * (3.0_f32 / (dim as f32)).sqrt();
2024-08-09 15:12:44 -07:00
// initialize the rotation step
2024-08-09 15:18:13 -07:00
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
2024-08-09 15:12:44 -07:00
let max_freq = 4;
2024-08-09 15:18:13 -07:00
for n in (0..dim).step_by(2) {
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
2024-08-09 15:12:44 -07:00
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
2024-08-09 15:18:13 -07:00
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
eigval_series.push(rand_mat.complex_eigenvalues());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
2024-08-09 15:12:44 -07:00
}
2024-08-09 15:18:13 -07:00
eigval_series
2024-08-09 15:12:44 -07:00
}*/
2024-08-09 15:18:13 -07:00
/* static matrices. should only be used when the dimension is really small */
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
2024-08-09 15:12:44 -07:00
where
N: ToTypenum + DimName + DimSub<U1>,
DefaultAllocator:
Allocator<N> +
Allocator<N, N> +
Allocator<<N as DimSub<U1>>::Output> +
Allocator<N, <N as DimSub<U1>>::Output>
{
// initialize the random matrix
let dim = N::try_to_usize().unwrap();
2024-08-09 15:18:13 -07:00
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
2024-08-09 15:12:44 -07:00
let n = j*dim + k;
E*((n*n) as f64) % 2.0 - 1.0
}) * (3.0 / (dim as f64)).sqrt();
// initialize the rotation step
2024-08-09 15:18:13 -07:00
let mut rot_step = OMatrix::<f64, N, N>::identity();
2024-08-09 15:12:44 -07:00
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
2024-08-09 15:18:13 -07:00
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
2024-08-09 15:12:44 -07:00
eigval_series.push(rand_mat.complex_eigenvalues());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
}*/