2024-08-09 15:12:44 -07:00
|
|
|
use nalgebra::{*, allocator::Allocator};
|
|
|
|
use std::f64::consts::{PI, E};
|
|
|
|
/*use std::ops::Sub;*/
|
|
|
|
/*use typenum::{B1, UInt, UTerm};*/
|
|
|
|
|
2024-08-09 15:18:13 -07:00
|
|
|
/* dynamic matrices */
|
|
|
|
pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>>
|
2024-08-09 15:12:44 -07:00
|
|
|
where
|
|
|
|
N: ToTypenum + DimName + DimSub<U1>,
|
|
|
|
DefaultAllocator:
|
|
|
|
Allocator<N> +
|
|
|
|
Allocator<N, N> +
|
|
|
|
Allocator<<N as DimSub<U1>>::Output> +
|
|
|
|
Allocator<N, <N as DimSub<U1>>::Output>
|
|
|
|
{
|
|
|
|
// initialize the random matrix
|
|
|
|
let dim = N::try_to_usize().unwrap();
|
2024-08-09 15:18:13 -07:00
|
|
|
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
|
2024-08-09 15:12:44 -07:00
|
|
|
let n = j*dim + k;
|
|
|
|
E*((n*n) as f64) % 2.0 - 1.0
|
|
|
|
}) * (3.0 / (dim as f64)).sqrt();
|
|
|
|
|
|
|
|
// initialize the rotation step
|
2024-08-09 15:18:13 -07:00
|
|
|
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
|
2024-08-09 15:12:44 -07:00
|
|
|
let max_freq = 4;
|
|
|
|
for n in (0..dim).step_by(2) {
|
|
|
|
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
|
|
|
let ang_cos = ang.cos();
|
|
|
|
let ang_sin = ang.sin();
|
|
|
|
rot_step[(n, n)] = ang_cos;
|
|
|
|
rot_step[(n+1, n)] = ang_sin;
|
|
|
|
rot_step[(n, n+1)] = -ang_sin;
|
|
|
|
rot_step[(n+1, n+1)] = ang_cos;
|
|
|
|
}
|
|
|
|
|
|
|
|
// find the eigenvalues
|
2024-08-09 15:18:13 -07:00
|
|
|
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
|
2024-08-09 15:12:44 -07:00
|
|
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
|
|
|
for _ in 1..time_res {
|
|
|
|
rand_mat = &rot_step * rand_mat;
|
|
|
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
|
|
|
}
|
|
|
|
eigval_series
|
2024-08-09 15:18:13 -07:00
|
|
|
}
|
2024-08-09 15:12:44 -07:00
|
|
|
|
2024-08-09 15:18:13 -07:00
|
|
|
/* dynamic single float matrices */
|
|
|
|
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>>
|
2024-08-09 15:12:44 -07:00
|
|
|
where
|
2024-08-09 15:18:13 -07:00
|
|
|
N: ToTypenum + DimName + DimSub<U1>,
|
|
|
|
DefaultAllocator:
|
|
|
|
Allocator<N> +
|
|
|
|
Allocator<N, N> +
|
|
|
|
Allocator<<N as DimSub<U1>>::Output> +
|
|
|
|
Allocator<N, <N as DimSub<U1>>::Output>
|
2024-08-09 15:12:44 -07:00
|
|
|
{
|
|
|
|
// initialize the random matrix
|
2024-08-09 15:18:13 -07:00
|
|
|
let dim = N::try_to_usize().unwrap();
|
|
|
|
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
|
|
|
|
let n = j*dim + k;
|
|
|
|
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
|
|
|
|
}) * (3.0_f32 / (dim as f32)).sqrt();
|
2024-08-09 15:12:44 -07:00
|
|
|
|
|
|
|
// initialize the rotation step
|
2024-08-09 15:18:13 -07:00
|
|
|
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
|
2024-08-09 15:12:44 -07:00
|
|
|
let max_freq = 4;
|
2024-08-09 15:18:13 -07:00
|
|
|
for n in (0..dim).step_by(2) {
|
|
|
|
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
|
2024-08-09 15:12:44 -07:00
|
|
|
let ang_cos = ang.cos();
|
|
|
|
let ang_sin = ang.sin();
|
|
|
|
rot_step[(n, n)] = ang_cos;
|
|
|
|
rot_step[(n+1, n)] = ang_sin;
|
|
|
|
rot_step[(n, n+1)] = -ang_sin;
|
|
|
|
rot_step[(n+1, n+1)] = ang_cos;
|
|
|
|
}
|
|
|
|
|
|
|
|
// find the eigenvalues
|
2024-08-09 15:18:13 -07:00
|
|
|
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
|
|
|
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
|
|
|
for _ in 1..time_res {
|
|
|
|
rand_mat = &rot_step * rand_mat;
|
|
|
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
2024-08-09 15:12:44 -07:00
|
|
|
}
|
2024-08-09 15:18:13 -07:00
|
|
|
eigval_series
|
2024-08-09 15:12:44 -07:00
|
|
|
}*/
|
|
|
|
|
2024-08-09 15:18:13 -07:00
|
|
|
/* static matrices. should only be used when the dimension is really small */
|
|
|
|
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
|
2024-08-09 15:12:44 -07:00
|
|
|
where
|
|
|
|
N: ToTypenum + DimName + DimSub<U1>,
|
|
|
|
DefaultAllocator:
|
|
|
|
Allocator<N> +
|
|
|
|
Allocator<N, N> +
|
|
|
|
Allocator<<N as DimSub<U1>>::Output> +
|
|
|
|
Allocator<N, <N as DimSub<U1>>::Output>
|
|
|
|
{
|
|
|
|
// initialize the random matrix
|
|
|
|
let dim = N::try_to_usize().unwrap();
|
2024-08-09 15:18:13 -07:00
|
|
|
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
|
2024-08-09 15:12:44 -07:00
|
|
|
let n = j*dim + k;
|
|
|
|
E*((n*n) as f64) % 2.0 - 1.0
|
|
|
|
}) * (3.0 / (dim as f64)).sqrt();
|
2024-08-09 15:18:13 -07:00
|
|
|
/*let mut rand_mat = OMatrix::<f64, N, N>::identity();*/
|
2024-08-09 15:12:44 -07:00
|
|
|
|
|
|
|
// initialize the rotation step
|
2024-08-09 15:18:13 -07:00
|
|
|
let mut rot_step = OMatrix::<f64, N, N>::identity();
|
2024-08-09 15:12:44 -07:00
|
|
|
let max_freq = 4;
|
|
|
|
for n in (0..dim).step_by(2) {
|
|
|
|
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
|
|
|
let ang_cos = ang.cos();
|
|
|
|
let ang_sin = ang.sin();
|
|
|
|
rot_step[(n, n)] = ang_cos;
|
|
|
|
rot_step[(n+1, n)] = ang_sin;
|
|
|
|
rot_step[(n, n+1)] = -ang_sin;
|
|
|
|
rot_step[(n+1, n+1)] = ang_cos;
|
|
|
|
}
|
|
|
|
|
|
|
|
// find the eigenvalues
|
2024-08-09 15:18:13 -07:00
|
|
|
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
|
2024-08-09 15:12:44 -07:00
|
|
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
|
|
|
for _ in 1..time_res {
|
|
|
|
rand_mat = &rot_step * rand_mat;
|
|
|
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
|
|
|
}
|
|
|
|
eigval_series
|
2024-08-09 15:18:13 -07:00
|
|
|
}*/
|
2024-08-09 15:12:44 -07:00
|
|
|
|
2024-08-09 15:18:13 -07:00
|
|
|
/* another attempt at static matrices. i couldn't get the types to work out */
|
|
|
|
/*pub fn random_eigval_series<const N: usize>(time_res: usize) -> Vec<OVector<Complex<f64>, Const<N>>>
|
2024-08-09 15:12:44 -07:00
|
|
|
where
|
2024-08-09 15:18:13 -07:00
|
|
|
Const<N>: ToTypenum,
|
|
|
|
<Const<N> as ToTypenum>::Typenum: Sub<UInt<UTerm, B1>>,
|
|
|
|
<<Const<N> as ToTypenum>::Typenum as Sub<UInt<UTerm, B1>>>::Output: ToConst
|
2024-08-09 15:12:44 -07:00
|
|
|
{
|
|
|
|
// initialize the random matrix
|
2024-08-09 15:18:13 -07:00
|
|
|
/*let mut rand_mat = SMatrix::<f64, N, N>::zeros();
|
|
|
|
for n in 0..N*N {
|
|
|
|
rand_mat[n] = E*((n*n) as f64) % 2.0 - 1.0;
|
|
|
|
}*/
|
|
|
|
let rand_mat = OMatrix::<f64, Const<N>, Const<N>>::from_fn(|j, k| {
|
|
|
|
let n = j*N + k;
|
|
|
|
E*((n*n) as f64) % 2.0 - 1.0
|
|
|
|
});
|
2024-08-09 15:12:44 -07:00
|
|
|
|
|
|
|
// initialize the rotation step
|
2024-08-09 15:18:13 -07:00
|
|
|
let mut rot_step = OMatrix::<f64, Const<N>, Const<N>>::identity();
|
2024-08-09 15:12:44 -07:00
|
|
|
let max_freq = 4;
|
2024-08-09 15:18:13 -07:00
|
|
|
for n in (0..N).step_by(2) {
|
|
|
|
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
2024-08-09 15:12:44 -07:00
|
|
|
let ang_cos = ang.cos();
|
|
|
|
let ang_sin = ang.sin();
|
|
|
|
rot_step[(n, n)] = ang_cos;
|
|
|
|
rot_step[(n+1, n)] = ang_sin;
|
|
|
|
rot_step[(n, n+1)] = -ang_sin;
|
|
|
|
rot_step[(n+1, n+1)] = ang_cos;
|
|
|
|
}
|
|
|
|
|
|
|
|
// find the eigenvalues
|
2024-08-09 15:18:13 -07:00
|
|
|
let mut eigvals = Vec::<OVector<Complex<f64>, Const<N>>>::with_capacity(time_res);
|
|
|
|
unsafe { eigvals.set_len(time_res); }
|
|
|
|
for t in 0..time_res {
|
|
|
|
eigvals[t] = rand_mat.complex_eigenvalues();
|
2024-08-09 15:12:44 -07:00
|
|
|
}
|
2024-08-09 15:18:13 -07:00
|
|
|
eigvals
|
2024-08-09 15:12:44 -07:00
|
|
|
}*/
|