use nalgebra::{*, allocator::Allocator}; use std::f64::consts::{PI, E}; /*use std::ops::Sub;*/ /*use typenum::{B1, UInt, UTerm};*/ /* dynamic matrices */ pub fn rand_eigval_series(time_res: usize) -> Vec, Dyn>> where N: ToTypenum + DimName + DimSub, DefaultAllocator: Allocator + Allocator + Allocator<>::Output> + Allocator>::Output> { // initialize the random matrix let dim = N::try_to_usize().unwrap(); let mut rand_mat = DMatrix::::from_fn(dim, dim, |j, k| { let n = j*dim + k; E*((n*n) as f64) % 2.0 - 1.0 }) * (3.0 / (dim as f64)).sqrt(); // initialize the rotation step let mut rot_step = DMatrix::::identity(dim, dim); let max_freq = 4; for n in (0..dim).step_by(2) { let ang = PI * ((n % max_freq) as f64) / (time_res as f64); let ang_cos = ang.cos(); let ang_sin = ang.sin(); rot_step[(n, n)] = ang_cos; rot_step[(n+1, n)] = ang_sin; rot_step[(n, n+1)] = -ang_sin; rot_step[(n+1, n+1)] = ang_cos; } // find the eigenvalues let mut eigval_series = Vec::, Dyn>>::with_capacity(time_res); eigval_series.push(rand_mat.complex_eigenvalues()); for _ in 1..time_res { rand_mat = &rot_step * rand_mat; eigval_series.push(rand_mat.complex_eigenvalues()); } eigval_series } /* dynamic single float matrices */ /*pub fn rand_eigval_series(time_res: usize) -> Vec, Dyn>> where N: ToTypenum + DimName + DimSub, DefaultAllocator: Allocator + Allocator + Allocator<>::Output> + Allocator>::Output> { // initialize the random matrix let dim = N::try_to_usize().unwrap(); let mut rand_mat = DMatrix::::from_fn(dim, dim, |j, k| { let n = j*dim + k; (E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32 }) * (3.0_f32 / (dim as f32)).sqrt(); // initialize the rotation step let mut rot_step = DMatrix::::identity(dim, dim); let max_freq = 4; for n in (0..dim).step_by(2) { let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32); let ang_cos = ang.cos(); let ang_sin = ang.sin(); rot_step[(n, n)] = ang_cos; rot_step[(n+1, n)] = ang_sin; rot_step[(n, n+1)] = -ang_sin; rot_step[(n+1, n+1)] = ang_cos; } // find the eigenvalues let mut eigval_series = Vec::, Dyn>>::with_capacity(time_res); eigval_series.push(rand_mat.complex_eigenvalues()); for _ in 1..time_res { rand_mat = &rot_step * rand_mat; eigval_series.push(rand_mat.complex_eigenvalues()); } eigval_series }*/ /* static matrices. should only be used when the dimension is really small */ /*pub fn rand_eigval_series(time_res: usize) -> Vec, N>> where N: ToTypenum + DimName + DimSub, DefaultAllocator: Allocator + Allocator + Allocator<>::Output> + Allocator>::Output> { // initialize the random matrix let dim = N::try_to_usize().unwrap(); let mut rand_mat = OMatrix::::from_fn(|j, k| { let n = j*dim + k; E*((n*n) as f64) % 2.0 - 1.0 }) * (3.0 / (dim as f64)).sqrt(); /*let mut rand_mat = OMatrix::::identity();*/ // initialize the rotation step let mut rot_step = OMatrix::::identity(); let max_freq = 4; for n in (0..dim).step_by(2) { let ang = PI * ((n % max_freq) as f64) / (time_res as f64); let ang_cos = ang.cos(); let ang_sin = ang.sin(); rot_step[(n, n)] = ang_cos; rot_step[(n+1, n)] = ang_sin; rot_step[(n, n+1)] = -ang_sin; rot_step[(n+1, n+1)] = ang_cos; } // find the eigenvalues let mut eigval_series = Vec::, N>>::with_capacity(time_res); eigval_series.push(rand_mat.complex_eigenvalues()); for _ in 1..time_res { rand_mat = &rot_step * rand_mat; eigval_series.push(rand_mat.complex_eigenvalues()); } eigval_series }*/ /* another attempt at static matrices. i couldn't get the types to work out */ /*pub fn random_eigval_series(time_res: usize) -> Vec, Const>> where Const: ToTypenum, as ToTypenum>::Typenum: Sub>, < as ToTypenum>::Typenum as Sub>>::Output: ToConst { // initialize the random matrix /*let mut rand_mat = SMatrix::::zeros(); for n in 0..N*N { rand_mat[n] = E*((n*n) as f64) % 2.0 - 1.0; }*/ let rand_mat = OMatrix::, Const>::from_fn(|j, k| { let n = j*N + k; E*((n*n) as f64) % 2.0 - 1.0 }); // initialize the rotation step let mut rot_step = OMatrix::, Const>::identity(); let max_freq = 4; for n in (0..N).step_by(2) { let ang = PI * ((n % max_freq) as f64) / (time_res as f64); let ang_cos = ang.cos(); let ang_sin = ang.sin(); rot_step[(n, n)] = ang_cos; rot_step[(n+1, n)] = ang_sin; rot_step[(n, n+1)] = -ang_sin; rot_step[(n+1, n+1)] = ang_cos; } // find the eigenvalues let mut eigvals = Vec::, Const>>::with_capacity(time_res); unsafe { eigvals.set_len(time_res); } for t in 0..time_res { eigvals[t] = rand_mat.complex_eigenvalues(); } eigvals }*/