use nalgebra::{*, allocator::Allocator}; use std::f64::consts::{PI, E}; /* dynamic matrices */ pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec, Dyn>> { // initialize the random matrix let mut rand_mat = DMatrix::::from_fn(dim, dim, |j, k| { let n = j*dim + k; E*((n*n) as f64) % 2.0 - 1.0 }) * (3.0 / (dim as f64)).sqrt(); // initialize the rotation step let mut rot_step = DMatrix::::identity(dim, dim); let max_freq = 4; for n in (0..dim).step_by(2) { let ang = PI * ((n % max_freq) as f64) / (time_res as f64); let ang_cos = ang.cos(); let ang_sin = ang.sin(); rot_step[(n, n)] = ang_cos; rot_step[(n+1, n)] = ang_sin; rot_step[(n, n+1)] = -ang_sin; rot_step[(n+1, n+1)] = ang_cos; } // find the eigenvalues let mut eigval_series = Vec::, Dyn>>::with_capacity(time_res); eigval_series.push(rand_mat.complex_eigenvalues()); for _ in 1..time_res { rand_mat = &rot_step * rand_mat; eigval_series.push(rand_mat.complex_eigenvalues()); } eigval_series } /* dynamic single float matrices */ /*pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec, Dyn>> { // initialize the random matrix let mut rand_mat = DMatrix::::from_fn(dim, dim, |j, k| { let n = j*dim + k; (E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32 }) * (3.0_f32 / (dim as f32)).sqrt(); // initialize the rotation step let mut rot_step = DMatrix::::identity(dim, dim); let max_freq = 4; for n in (0..dim).step_by(2) { let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32); let ang_cos = ang.cos(); let ang_sin = ang.sin(); rot_step[(n, n)] = ang_cos; rot_step[(n+1, n)] = ang_sin; rot_step[(n, n+1)] = -ang_sin; rot_step[(n+1, n+1)] = ang_cos; } // find the eigenvalues let mut eigval_series = Vec::, Dyn>>::with_capacity(time_res); eigval_series.push(rand_mat.complex_eigenvalues()); for _ in 1..time_res { rand_mat = &rot_step * rand_mat; eigval_series.push(rand_mat.complex_eigenvalues()); } eigval_series }*/ /* static matrices. should only be used when the dimension is really small */ /*pub fn rand_eigval_series(time_res: usize) -> Vec, N>> where N: ToTypenum + DimName + DimSub, DefaultAllocator: Allocator + Allocator + Allocator<>::Output> + Allocator>::Output> { // initialize the random matrix let dim = N::try_to_usize().unwrap(); let mut rand_mat = OMatrix::::from_fn(|j, k| { let n = j*dim + k; E*((n*n) as f64) % 2.0 - 1.0 }) * (3.0 / (dim as f64)).sqrt(); // initialize the rotation step let mut rot_step = OMatrix::::identity(); let max_freq = 4; for n in (0..dim).step_by(2) { let ang = PI * ((n % max_freq) as f64) / (time_res as f64); let ang_cos = ang.cos(); let ang_sin = ang.sin(); rot_step[(n, n)] = ang_cos; rot_step[(n+1, n)] = ang_sin; rot_step[(n, n+1)] = -ang_sin; rot_step[(n+1, n+1)] = ang_cos; } // find the eigenvalues let mut eigval_series = Vec::, N>>::with_capacity(time_res); eigval_series.push(rand_mat.complex_eigenvalues()); for _ in 1..time_res { rand_mat = &rot_step * rand_mat; eigval_series.push(rand_mat.complex_eigenvalues()); } eigval_series }*/