Declare implementations and dependencies via standard interfaces for operations (#8)
Adds a new subdirectory `interfaces` where standard interfaces are defined. Additional interfaces for a given operation can be added with an `AliasOf` type operator. Provides type operators that give the return type, full function type, and the type of a dependency on, a given operator. Resolves #6. Co-authored-by: Glen Whitney <glen@studioinfinity.org> Co-authored-by: Jos de Jong <wjosdejong@gmail.com> Reviewed-on: #8
This commit is contained in:
parent
3fa216d1f4
commit
cc1e66c054
24 changed files with 397 additions and 72 deletions
|
@ -1,8 +1,6 @@
|
|||
import {ForType} from '../core/Dispatcher.js'
|
||||
import * as Complex from './native.js'
|
||||
import * as complex from './arithmetic.js'
|
||||
|
||||
export { complex }
|
||||
|
||||
export {Complex}
|
||||
|
||||
declare module "../core/Dispatcher" {
|
||||
interface ImplementationTypes extends ForType<'Complex', typeof Complex> {}
|
||||
}
|
||||
|
|
101
src/Complex/arithmetic.ts
Normal file
101
src/Complex/arithmetic.ts
Normal file
|
@ -0,0 +1,101 @@
|
|||
import {Complex} from './type.js'
|
||||
import type {
|
||||
Dependencies, Signature, Returns, RealType, AliasOf
|
||||
} from '../interfaces/type.js'
|
||||
|
||||
declare module "../interfaces/type" {
|
||||
interface Signatures<T> {
|
||||
addReal: AliasOf<'add', (a: T, b: RealType<T>) => T>
|
||||
divideReal: AliasOf<'divide', (a: T, b: RealType<T>) => T>
|
||||
}
|
||||
}
|
||||
|
||||
export const add =
|
||||
<T>(dep: Dependencies<'add' | 'complex', T>): Signature<'add', Complex<T>> =>
|
||||
(w, z) => dep.complex(dep.add(w.re, z.re), dep.add(w.im, z.im))
|
||||
|
||||
export const addReal =
|
||||
<T>(dep: Dependencies<'addReal' | 'complex', T>):
|
||||
Signature<'addReal', Complex<T>> =>
|
||||
(z, r) => dep.complex(dep.addReal(z.re, r), z.im)
|
||||
|
||||
export const unaryMinus =
|
||||
<T>(dep: Dependencies<'unaryMinus' | 'complex', T>):
|
||||
Signature<'unaryMinus', Complex<T>> =>
|
||||
z => dep.complex(dep.unaryMinus(z.re), dep.unaryMinus(z.im))
|
||||
|
||||
export const conj =
|
||||
<T>(dep: Dependencies<'unaryMinus' | 'conj' | 'complex', T>):
|
||||
Signature<'conj', Complex<T>> =>
|
||||
z => dep.complex(dep.conj(z.re), dep.unaryMinus(z.im))
|
||||
|
||||
export const subtract =
|
||||
<T>(dep: Dependencies<'subtract' | 'complex', T>):
|
||||
Signature<'subtract', Complex<T>> =>
|
||||
(w, z) => dep.complex(dep.subtract(w.re, z.re), dep.subtract(w.im, z.im))
|
||||
|
||||
export const multiply =
|
||||
<T>(dep: Dependencies<
|
||||
'add' | 'subtract' | 'multiply' | 'conj' | 'complex', T>):
|
||||
Signature<'multiply', Complex<T>> =>
|
||||
(w, z) => {
|
||||
const mult = dep.multiply
|
||||
const realpart = dep.subtract(
|
||||
mult( w.re, z.re), mult(dep.conj(w.im), z.im))
|
||||
const imagpart = dep.add(
|
||||
mult(dep.conj(w.re), z.im), mult( w.im, z.re))
|
||||
return dep.complex(realpart, imagpart)
|
||||
}
|
||||
|
||||
export const absquare =
|
||||
<T>(dep: Dependencies<'absquare', T>
|
||||
& Dependencies<'add', Returns<'absquare', T>>):
|
||||
Signature<'absquare', Complex<T>> =>
|
||||
z => dep.add(dep.absquare(z.re), dep.absquare(z.im))
|
||||
|
||||
export const divideReal =
|
||||
<T>(dep: Dependencies<'divideReal' | 'complex', T>):
|
||||
Signature<'divideReal', Complex<T>> =>
|
||||
(z, r) => dep.complex(dep.divideReal(z.re, r), dep.divideReal(z.im, r))
|
||||
|
||||
export const reciprocal =
|
||||
<T>(dep: Dependencies<'conj' | 'absquare' | 'divideReal', Complex<T>>):
|
||||
Signature<'reciprocal', Complex<T>> =>
|
||||
z => dep.divideReal(dep.conj(z), dep.absquare(z))
|
||||
|
||||
export const divide =
|
||||
<T>(dep: Dependencies<'multiply' | 'reciprocal', Complex<T>>):
|
||||
Signature<'divide', Complex<T>> =>
|
||||
(w, z) => dep.multiply(w, dep.reciprocal(z))
|
||||
|
||||
// The dependencies are slightly tricky here, because there are three types
|
||||
// involved: Complex<T>, T, and RealType<T>, all of which might be different,
|
||||
// and we have to get it straight which operations we need on each type, and
|
||||
// in fact, we need `addReal` on both T and Complex<T>, hence the dependency
|
||||
// with a custom name, not generated via Dependencies<...>
|
||||
export const sqrt =
|
||||
<T>(dep: Dependencies<'equal' | 'conservativeSqrt' | 'unaryMinus', RealType<T>>
|
||||
& Dependencies<'zero' | 'complex', T>
|
||||
& Dependencies<'absquare' | 're' | 'divideReal', Complex<T>>
|
||||
& {
|
||||
addTR: Signature<'addReal', T>,
|
||||
addRR: Signature<'add', RealType<T>>,
|
||||
addCR: Signature<'addReal', Complex<T>>
|
||||
}):
|
||||
Signature<'sqrt', Complex<T>> =>
|
||||
z => {
|
||||
const myabs = dep.conservativeSqrt(dep.absquare(z))
|
||||
const r = dep.re(z)
|
||||
const negr = dep.unaryMinus(r)
|
||||
if (dep.equal(myabs, negr)) {
|
||||
// pure imaginary square root; z.im already zero
|
||||
return dep.complex(
|
||||
dep.zero(z.re), dep.addTR(z.im, dep.conservativeSqrt(negr)))
|
||||
}
|
||||
const num = dep.addCR(z, myabs)
|
||||
const denomsq = dep.addRR(dep.addRR(myabs, myabs), dep.addRR(r, r))
|
||||
const denom = dep.conservativeSqrt(denomsq)
|
||||
return dep.divideReal(num, denom)
|
||||
}
|
||||
|
||||
export const conservativeSqrt = sqrt
|
9
src/Complex/predicate.ts
Normal file
9
src/Complex/predicate.ts
Normal file
|
@ -0,0 +1,9 @@
|
|||
import {Complex} from './type.js'
|
||||
import type {Dependencies, Signature} from '../interfaces/type.js'
|
||||
|
||||
export const isReal =
|
||||
<T>(dep: Dependencies<'add' | 'equal' | 'isReal', T>):
|
||||
Signature<'isReal', Complex<T>> =>
|
||||
z => dep.isReal(z.re) && dep.equal(z.re, dep.add(z.re, z.im))
|
||||
|
||||
export const isSquare: Signature<'isSquare', Complex<any>> = z => true // FIXME: not correct for Complex<bigint> once we get there
|
6
src/Complex/relational.ts
Normal file
6
src/Complex/relational.ts
Normal file
|
@ -0,0 +1,6 @@
|
|||
import {Complex} from './type.js'
|
||||
import {Dependencies, Signature} from '../interfaces/type.js'
|
||||
|
||||
export const equal =
|
||||
<T>(dep: Dependencies<'equal', T>): Signature<'equal', Complex<T>> =>
|
||||
(w, z) => dep.equal(w.re, z.re) && dep.equal(w.im, z.im)
|
|
@ -1,22 +1,63 @@
|
|||
import {joinTypes, typeOfDependency, Dependency} from '../core/Dispatcher.js'
|
||||
import {joinTypes, typeOfDependency} from '../core/Dispatcher.js'
|
||||
import type {
|
||||
ZeroType, OneType, NaNType, Dependencies, Signature, Returns
|
||||
} from '../interfaces/type.js'
|
||||
|
||||
export type Complex<T> = {re: T; im: T;}
|
||||
export type Complex<T> = { re: T; im: T; }
|
||||
|
||||
export const Complex_type = {
|
||||
test: <T>(dep: {testT: (z: unknown) => z is T}) =>
|
||||
test: <T>(dep: { testT: (z: unknown) => z is T }) =>
|
||||
(z: unknown): z is Complex<T> =>
|
||||
typeof z === 'object' && 're' in z && 'im' in z
|
||||
&& dep.testT(z.re) && dep.testT(z.im),
|
||||
typeof z === 'object' && z != null && 're' in z && 'im' in z
|
||||
&& dep.testT(z['re']) && dep.testT(z['im']),
|
||||
infer: (dep: typeOfDependency) =>
|
||||
(z: Complex<unknown>) => joinTypes(dep.typeOf(z.re), dep.typeOf(z.im)),
|
||||
from: {
|
||||
T: <T>(dep: Dependency<'zero', [T]>) => (t: T) =>
|
||||
({re: t, im: dep.zero(t)}),
|
||||
Complex: <U,T>(dep: {convert: (from: U) => T}) =>
|
||||
(z: Complex<U>) => ({re: dep.convert(z.re), im: dep.convert(z.im)})
|
||||
T: <T>(dep: Dependencies<'zero', T>) => (t: T) =>
|
||||
({ re: t, im: dep.zero(t) }),
|
||||
Complex: <U, T>(dep: { convert: (from: U) => T }) =>
|
||||
(z: Complex<U>) => ({ re: dep.convert(z.re), im: dep.convert(z.im) })
|
||||
}
|
||||
}
|
||||
|
||||
export const complex_unary = <T>(dep: Dependency<'zero', [T]>) =>
|
||||
(t: T) => ({re: t, im: dep.zero(t)})
|
||||
export const complex_binary = <T>(t: T, u: T) => ({re: t, im: u})
|
||||
declare module "../interfaces/type" {
|
||||
interface AssociatedTypes<T> {
|
||||
Complex: T extends Complex<infer R> ? {
|
||||
type: Complex<R>
|
||||
zero: Complex<ZeroType<R>>
|
||||
one: Complex<OneType<R> | ZeroType<R>>
|
||||
nan: Complex<NaNType<R>>
|
||||
real: RealType<R>
|
||||
} : never
|
||||
}
|
||||
|
||||
interface Signatures<T> {
|
||||
complex: ((re: T) => Complex<T>) | ((re: T, im: T) => Complex<T>)
|
||||
}
|
||||
}
|
||||
|
||||
export const complex =
|
||||
<T>(dep: Dependencies<'zero', T>): Signature<'complex', T> =>
|
||||
(a, b) => ({re: a, im: b || dep.zero(a)})
|
||||
|
||||
export const zero =
|
||||
<T>(dep: Dependencies<'zero', T>
|
||||
& Dependencies<'complex', Returns<'zero', T>>):
|
||||
Signature<'zero', Complex<T>> =>
|
||||
z => dep.complex(dep.zero(z.re), dep.zero(z.im))
|
||||
|
||||
export const one =
|
||||
<T>(dep: Dependencies<'one' | 'zero', T>
|
||||
& Dependencies<'complex', Returns<'one' | 'zero', T>>):
|
||||
Signature<'one', Complex<T>> =>
|
||||
z => dep.complex(dep.one(z.re), dep.zero(z.im))
|
||||
|
||||
export const nan =
|
||||
<T>(dep: Dependencies<'nan', T>
|
||||
& Dependencies<'complex', Returns<'nan', T>>):
|
||||
Signature<'nan', Complex<T>> =>
|
||||
z => dep.complex(dep.nan(z.re), dep.nan(z.im))
|
||||
|
||||
export const re =
|
||||
<T>(dep: Dependencies<'re', T>): Signature<'re', Complex<T>> =>
|
||||
z => dep.re(z.re)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue