Glen Whitney
1444b9828f
This means that the real and imaginary parts of a Complex must now be the same type. This seems like a real benefit: a Complex with a number real part and a bigint imaginary part does not seem sensible. Note that this is now straining typed-function in (at least) the following ways: (1) In this change, it was necessary to remove the logic that the square root of a negative number calls complex square root, which then calls back to the number square root in its algorithm. (This was creating a circular reference in the typed-function which the old implementation of Complex was somehow sidestepping.) (2) typed-function could not follow conversions that would be allowed by uninstantiated templates (e.g. number => Complex<number> if the latter template has not been instantiated) and so the facility for instantiating a template was surfaced (and for example is called explicitly in the demo loader `extendToComplex`. Similarly, this necessitated making the unary signature of the `complex` conversion function explicit, rather than just via implicit conversion to Complex. (3) I find the order of implementations is mattering more in typed-function definitions, implying that typed-function's sorting algorithm is having trouble distinguishing alternatives. But otherwise, the conversion went quite smoothly and I think is a good demo of the power of this approach. And I expect that it will work even more smoothly if some of the underlying facilities (subtypes, template types) are integrated into typed-function. |
||
---|---|---|
src | ||
test | ||
.gitignore | ||
LICENSE | ||
package.json5 | ||
pnpm-lock.yaml | ||
README.md |
pocomath
A little proof-of-concept for organizing mathjs by module inclusion, avoiding factory functions.
Note this project is package-managed by pnpm. I do not expect that a clone can easily be manipulated with npm
.
Defines a class PocomathInstance to embody independent instances of a mathjs-style CAS. Basically, it keeps track of a collection of implementations (in the sense of typed-function) for each of the functions to be used in the CAS, rather than just the finalized typed-functions. It also tracks the dependencies of each implementation (which must form a directed acyclic network). When a method is requested from the instance, it assembles the proper typed-function (and caches it, of course). Whenever an implementation is added to that function name or any of its dependencies, the previously assembled typed-function is discarded, so that a new one will be constructed on its next use.
Multiple different instances can coexist and have different collections of operations. Moreover, only the source files for the operations actually desired are ever visited in the import tree, so minimizing a bundle for a specific subset of operations should be quite straightforward.
Hopefully the test cases, especially test/_pocomath.mjs
and test/custom.js
, will show off these aspects in action.
Note that 'subtract' is implemented as a 'generic' operation, that depends only on the 'add' and 'negate' operations (and so doesn't care what types it is operating on). Although it would not be the computationally fastest in a production instance, for the sake of demonstration 'divide' and 'sign' are also so defined.
Furthermore, note that 'Complex' is implemented in a way that doesn't care about the types of the real and imaginary components, so with the 'bigint' type defined here as well, we obtain Gaussian integers for free.
This core could be extended with many more operations, and more types could be defined, and additional sub-bundles like number/all.mjs
or clever conditional loaders like complex/extendToComplex.mjs
could be defined.
Also see the comments for the public member functions of
core/PocomathInstance.mjs
for further details on the structure and API of this
scheme for organizing a CAS.
Hopefully this shows promise. It is an evolution of the concept first prototyped in picomath. However, picomath depended on typed-function allowing mutable function entities, which turned out not to be performant. Pocomath, on the other hand, uses typed-function v3 as it stands, although it does suggest that it would be helpful to extend typed-function with subtypes, and it could even be reasonable to move the dependency tracking into typed-function itself (given that typed-function already supports self-dependencies, it would not be difficult to extend that to inter-dependencies between different typed-functions).
Note that Pocomath allows one implementation to depend just on a specific signature of another function, for efficiency's sake (if for example 'bar(Matrix)' knows it will only call 'foo(Matrix)', it avoids another type-dispatch). That capability is used in sqrt, for example.
Pocomath also lazily reloads operations that depend on the config when that changes, and if an operation has a signature mentioning an undefined type, that signature is ignored until the type is installed, at which point the function lazily redefines itself to use the additional signature.