pocomath/src/complex
Glen Whitney 0dbb95bbbe feat(polynomialRoot) (#57)
Implements a simply polynomial root finder function
polynomialRoot, intended to be used for benchmarking
against mathjs.

For this purpose, adds numerous other functions (e.g.
cbrt, arg, cis), refactors sqrt (so that you can
definitely get the complex square root when you want
it), and makes numerous enhancements to the core so
that a template can match after conversions.

Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Reviewed-on: #57
2022-12-01 17:47:20 +00:00
..
Types feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
abs.mjs feat(polynomialRoot) (#57) 2022-12-01 17:47:20 +00:00
absquare.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
add.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
all.mjs feat(floor): Provide example of op-centric organization 2022-08-01 08:28:21 -07:00
arg.mjs feat(polynomialRoot) (#57) 2022-12-01 17:47:20 +00:00
associate.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
cbrtc.mjs feat(polynomialRoot) (#57) 2022-12-01 17:47:20 +00:00
cis.mjs feat(polynomialRoot) (#57) 2022-12-01 17:47:20 +00:00
complex.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
conjugate.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
equalTT.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
extendToComplex.mjs refactor(Complex): Now a template type! 2022-08-06 08:27:44 -07:00
gcd.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
invert.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
isReal.mjs feat(polynomialRoot) (#57) 2022-12-01 17:47:20 +00:00
isZero.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
multiply.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
native.mjs feat(polynomialRoot) (#57) 2022-12-01 17:47:20 +00:00
negate.mjs feat: Implement subtypes 2022-07-30 04:59:04 -07:00
polynomialRoot.mjs feat(polynomialRoot) (#57) 2022-12-01 17:47:20 +00:00
quaternion.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
quotient.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
roundquotient.mjs feat: Return type annotations (#53) 2022-08-30 19:36:44 +00:00
sqrt.mjs feat(polynomialRoot) (#57) 2022-12-01 17:47:20 +00:00
sqrtc.mjs feat(polynomialRoot) (#57) 2022-12-01 17:47:20 +00:00
zero.mjs feat: Implement subtypes 2022-07-30 04:59:04 -07:00