pocomath/test/complex/_all.mjs
Glen Whitney 0dbb95bbbe feat(polynomialRoot) (#57)
Implements a simply polynomial root finder function
polynomialRoot, intended to be used for benchmarking
against mathjs.

For this purpose, adds numerous other functions (e.g.
cbrt, arg, cis), refactors sqrt (so that you can
definitely get the complex square root when you want
it), and makes numerous enhancements to the core so
that a template can match after conversions.

Co-authored-by: Glen Whitney <glen@studioinfinity.org>
Reviewed-on: #57
2022-12-01 17:47:20 +00:00

97 lines
3.4 KiB
JavaScript

import assert from 'assert'
import math from '../../src/pocomath.mjs'
import PocomathInstance from '../../src/core/PocomathInstance.mjs'
import * as complexSqrt from '../../src/complex/sqrt.mjs'
describe('complex', () => {
it('supports division', () => {
assert.deepStrictEqual(
math.divide(math.complex(3,2), math.complex(0,1)),
math.complex(2,-3))
const reciprocal = math.divide(1, math.complex(1,3))
assert.strictEqual(reciprocal.re, 0.1)
assert.ok(Math.abs(reciprocal.im + 0.3) < 1e-13)
})
it('supports sqrt', () => {
assert.deepStrictEqual(math.sqrt(math.complex(1,0)), 1)
assert.deepStrictEqual(
math.sqrt(math.complex(0,1)),
math.complex(math.sqrt(0.5), math.sqrt(0.5)))
assert.deepStrictEqual(
math.sqrt(math.complex(5, 12)),
math.complex(3, 2))
math.config.predictable = true
assert.deepStrictEqual(math.sqrt(math.complex(1,0)), math.complex(1,0))
assert.deepStrictEqual(
math.sqrt(math.complex(0,1)),
math.complex(math.sqrt(0.5), math.sqrt(0.5)))
math.config.predictable = false
})
it('can bundle sqrt', async function () {
const ms = new PocomathInstance('Minimal Sqrt')
ms.install(complexSqrt)
await ms.importDependencies(['number', 'complex'])
assert.deepStrictEqual(
ms.sqrt(math.complex(0, -1)),
math.complex(ms.negate(ms.sqrt(0.5)), ms.sqrt(0.5)))
})
it('checks for equality', () => {
assert.ok(math.equal(math.complex(3, 0), 3))
assert.ok(math.equal(math.complex(3, 2), math.complex(3, 2)))
assert.ok(!(math.equal(math.complex(45n, 3n), math.complex(45n, -3n))))
assert.ok(!(math.equal(math.complex(45n, 3n), 45n)))
})
it('tests for reality', () => {
assert.ok(math.isReal(math.complex(3, 0)))
assert.ok(!(math.isReal(math.complex(3, 2))))
})
it('computes gcd', () => {
assert.deepStrictEqual(
math.gcd(math.complex(53n, 56n), math.complex(47n, -13n)),
math.complex(4n, 5n))
// And now works for NumInt, too!
assert.deepStrictEqual(
math.gcd(math.complex(53,56), math.complex(47, -13)),
math.complex(4, 5))
// But properly fails for general complex
assert.throws(
() => math.gcd(math.complex(5.3,5.6), math.complex(4.7, -1.3)),
TypeError
)
})
it('computes floor', () => {
assert.deepStrictEqual(
math.floor(math.complex(19, 22.7)),
math.complex(19, 22))
const gi = math.complex(-1n, 1n)
assert.strictEqual(math.floor(gi), gi) // literally a no-op
})
it('performs rudimentary quaternion calculations', () => {
const q0 = math.quaternion(1, 0, 1, 0)
const q1 = math.quaternion(1, 0.5, 0.5, 0.75)
assert.deepStrictEqual(
q1,
math.complex(math.complex(1, 0.5), math.complex(0.5, 0.75)))
assert.deepStrictEqual(
math.add(q0,q1),
math.quaternion(2, 0.5, 1.5, 0.75))
assert.deepStrictEqual(
math.multiply(q0, q1),
math.quaternion(0.5, 1.25, 1.5, 0.25))
assert.deepStrictEqual(
math.multiply(q0, math.quaternion(2, 1, 0.1, 0.1)),
math.quaternion(1.9, 1.1, 2.1, -0.9))
math.absquare(math.complex(1.25, 2.5)) //HACK: need absquare(Complex<number>)
assert.strictEqual(math.abs(q0), Math.sqrt(2))
assert.strictEqual(math.abs(q1), Math.sqrt(33)/4)
})
})