feat: Return type annotations #53

Merged
glen merged 15 commits from return_types into main 2022-08-30 19:36:44 +00:00
80 changed files with 1502 additions and 606 deletions

View File

@ -1,6 +1,7 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
/* Absolute value squared */
export const absquare = {
bigint: ({'square(bigint)': sqb}) => b => sqb(b)
bigint: ({'square(bigint)': sqb}) => Returns('bigint', b => sqb(b))
}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
export const add = {'bigint,bigint': () => (a,b) => a+b}
export const add = {'bigint,bigint': () => Returns('bigint', (a,b) => a+b)}

View File

@ -1,5 +1,7 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
export const compare = {
'bigint,bigint': () => (a,b) => a === b ? 0n : (a > b ? 1n : -1n)
'bigint,bigint': () => Returns(
'boolean', (a,b) => a === b ? 0n : (a > b ? 1n : -1n))
}

View File

@ -1,12 +1,13 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
export const divide = {
'bigint,bigint': ({config, 'quotient(bigint,bigint)': quot}) => {
if (config.predictable) return quot
return (n, d) => {
if (config.predictable) return Returns('bigint', (n,d) => quot(n,d))
return Returns('bigint|undefined', (n, d) => {
const q = n/d
if (q * d == n) return q
return undefined
}
})
}
}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
export const isZero = {bigint: () => b => b === 0n}
export const isZero = {bigint: () => Returns('boolean', b => b === 0n)}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
export const multiply = {'bigint,bigint': () => (a,b) => a*b}
export const multiply = {'bigint,bigint': () => Returns('bigint', (a,b) => a*b)}

View File

@ -1,12 +1,12 @@
import gcdType from '../generic/gcdType.mjs'
import {identity} from '../generic/identity.mjs'
import {identityType} from '../generic/identity.mjs'
export * from './Types/bigint.mjs'
export {absquare} from './absquare.mjs'
export {add} from './add.mjs'
export {compare} from './compare.mjs'
export const conjugate = {bigint: () => identity}
export const conjugate = {bigint: identityType('bigint')}
export {divide} from './divide.mjs'
export const gcd = gcdType('bigint')
export {isZero} from './isZero.mjs'

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
export const negate = {bigint: () => b => -b}
export const negate = {bigint: () => Returns('bigint', b => -b)}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
export const one = {bigint: () => () => 1n}
export const one = {bigint: () => Returns('bigint', () => 1n)}

View File

@ -1,13 +1,14 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
/* Returns the best integer approximation to n/d */
/* Returns the floor integer approximation to n/d */
export const quotient = {
'bigint,bigint': ({'sign(bigint)': sgn}) => (n, d) => {
'bigint,bigint': ({'sign(bigint)': sgn}) => Returns('bigint', (n, d) => {
const dSgn = sgn(d)
if (dSgn === 0n) return 0n
if (sgn(n) === dSgn) return n/d
const quot = n/d
if (quot * d == n) return quot
return quot - 1n
}
})
}

View File

@ -1,8 +1,9 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
/* Returns the closest integer approximation to n/d */
export const roundquotient = {
'bigint,bigint': ({'sign(bigint)': sgn}) => (n, d) => {
'bigint,bigint': ({'sign(bigint)': sgn}) => Returns('bigint', (n, d) => {
const dSgn = sgn(d)
if (dSgn === 0n) return 0n
const candidate = n/d
@ -11,5 +12,5 @@ export const roundquotient = {
if (2n * rem > absd) return candidate + dSgn
if (-2n * rem >= absd) return candidate - dSgn
return candidate
}
})
}

View File

@ -1,9 +1,10 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
export const sign = {
bigint: () => b => {
bigint: () => Returns('bigint', b => {
if (b === 0n) return 0n
if (b > 0n) return 1n
return -1n
}
})
}

View File

@ -1,5 +1,6 @@
export * from './Types/bigint.mjs'
import Returns from '../core/Returns.mjs'
import isqrt from 'bigint-isqrt'
export * from './Types/bigint.mjs'
export const sqrt = {
bigint: ({
@ -11,18 +12,18 @@ export const sqrt = {
// Don't just return the constant isqrt here because the object
// gets decorated with info that might need to be different
// for different PocomathInstancss
return b => isqrt(b)
return Returns('bigint', b => isqrt(b))
}
if (!cplx) {
return b => {
return Returns('bigint|undefined', b => {
if (b >= 0n) {
const trial = isqrt(b)
if (trial * trial === b) return trial
}
return undefined
})
}
}
return b => {
return Returns('bigint|Complex<bigint>|undefined', b => {
if (b === undefined) return undefined
let real = true
if (b < 0n) {
@ -33,6 +34,6 @@ export const sqrt = {
if (trial * trial !== b) return undefined
if (real) return trial
return cplx(0n, trial)
}
})
}
}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/bigint.mjs'
export const zero = {bigint: () => () => 0n}
export const zero = {bigint: () => Returns('bigint', () => 0n)}

View File

@ -1,15 +1,14 @@
import {Returns, returnTypeOf} from '../../core/Returns.mjs'
import PocomathInstance from '../../core/PocomathInstance.mjs'
const Complex = new PocomathInstance('Complex')
// Base type that should generally not be used directly
Complex.installType('Complex', {
test: z => z && typeof z === 'object' && 're' in z && 'im' in z
})
// Now the template type: Complex numbers are actually always homeogeneous
// in their component types.
// Now the template type: Complex numbers are actually always homogeneous
// in their component types. For an explanation of the meanings of the
// properties, see ../../tuple/Types/Tuple.mjs
Complex.installType('Complex<T>', {
infer: ({typeOf, joinTypes}) => z => joinTypes([typeOf(z.re), typeOf(z.im)]),
base: z => z && typeof z === 'object' && 're' in z && 'im' in z,
test: testT => z => testT(z.re) && testT(z.im),
infer: ({typeOf, joinTypes}) => z => joinTypes([typeOf(z.re), typeOf(z.im)]),
from: {
T: t => ({re: t, im: t-t}), // hack: maybe need a way to call zero(T)
U: convert => u => {
@ -21,7 +20,12 @@ Complex.installType('Complex<T>', {
})
Complex.promoteUnary = {
'Complex<T>': ({'self(T)': me, complex}) => z => complex(me(z.re), me(z.im))
'Complex<T>': ({
T,
'self(T)': me,
complex
}) => Returns(
`Complex<${returnTypeOf(me)}>`, z => complex(me(z.re), me(z.im)))
}
export {Complex}

View File

@ -1,10 +1,21 @@
import {Returns, returnTypeOf} from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const abs = {
'Complex<T>': ({
sqrt, // Calculation of the type needed in the square root (the
// underlying numeric type of T, whatever T is, is beyond Pocomath's
// (current) template abilities, so punt and just do full resolution
T,
sqrt, // Unfortunately no notation yet for the needed signature
'absquare(T)': baseabsq,
'absquare(Complex<T>)': absq
}) => z => sqrt(absq(z))
}) => {
const midType = returnTypeOf(baseabsq)
const sqrtImp = sqrt.fromInstance.resolve('sqrt', midType, sqrt)
let retType = returnTypeOf(sqrtImp)
if (retType.includes('|')) {
// This is a bit of a hack, as it relies on all implementations of
// sqrt returning the "typical" return type as the first option
retType = retType.split('|',1)[0]
}
return Returns(retType, z => sqrtImp(absq(z)))
}
}

View File

@ -1,9 +1,27 @@
import {Returns, returnTypeOf} from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const absquare = {
'Complex<T>': ({
add, // Calculation of exact type needed in add (underlying numeric of T)
// is (currently) too involved for Pocomath
add, // no easy way to write the needed signature; if T is number
// it is number,number; but if T is Complex<bigint>, it is just
// bigint,bigint. So unfortunately we depend on all of add, and
// we extract the needed implementation below.
'self(T)': absq
}) => z => add(absq(z.re), absq(z.im))
}) => {
const midType = returnTypeOf(absq)
const addImp = add.fromInstance.resolve(
'add', `${midType},${midType}`, add)
return Returns(
returnTypeOf(addImp), z => addImp(absq(z.re), absq(z.im)))
}
}
/* We could imagine notations that Pocomath could support that would simplify
* the above, maybe something like
* 'Complex<T>': ({
* 'self(T): U': absq,
* 'add(U,U):V': plus,
* V
* }) => Returns(V, z => plus(absq(z.re), absq(z.im)))
*/

View File

@ -1,8 +1,10 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const add = {
'Complex<T>,Complex<T>': ({
T,
'self(T,T)': me,
'complex(T,T)': cplx
}) => (w,z) => cplx(me(w.re, z.re), me(w.im, z.im))
}) => Returns(`Complex<${T}>`, (w,z) => cplx(me(w.re, z.re), me(w.im, z.im)))
}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
/* Returns true if w is z multiplied by a complex unit */
@ -9,9 +10,9 @@ export const associate = {
'one(T)': uno,
'complex(T,T)': cplx,
'negate(Complex<T>)': neg
}) => (w,z) => {
}) => Returns('boolean', (w,z) => {
if (eq(w,z) || eq(w,neg(z))) return true
const ti = times(z, cplx(zr(z.re), uno(z.im)))
return eq(w,ti) || eq(w,neg(ti))
}
})
}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export * from '../generic/Types/generic.mjs'
@ -6,15 +7,16 @@ export const complex = {
* have a numeric/scalar type, e.g. by implementing subtypes in
* typed-function
*/
'undefined': () => u => u,
'undefined,any': () => (u, y) => u,
'any,undefined': () => (x, u) => u,
'undefined,undefined': () => (u, v) => u,
'T,T': () => (x, y) => ({re: x, im: y}),
'undefined': () => Returns('undefined', u => u),
'undefined,any': () => Returns('undefined', (u, y) => u),
'any,undefined': () => Returns('undefined', (x, u) => u),
'undefined,undefined': () => Returns('undefined', (u, v) => u),
'T,T': ({T}) => Returns(`Complex<${T}>`, (x, y) => ({re: x, im: y})),
/* Take advantage of conversions in typed-function */
// 'Complex<T>': () => z => z
/* But help out because without templates built in to typed-function,
* type inference turns out to be too hard
*/
'T': ({'zero(T)': zr}) => x => ({re: x, im: zr(x)})
'T': ({T, 'zero(T)': zr}) => Returns(
`Complex<${T}>`, x => ({re: x, im: zr(x)}))
}

View File

@ -1,9 +1,11 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const conjugate = {
'Complex<T>': ({
T,
'negate(T)': neg,
'complex(T,T)': cplx
}) => z => cplx(z.re, neg(z.im))
}) => Returns(`Complex<${T}>`, z => cplx(z.re, neg(z.im)))
}

View File

@ -1,9 +1,11 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const equalTT = {
'Complex<T>,Complex<T>': ({
T,
'self(T,T)': me
}) => (w,z) => me(w.re, z.re) && me(w.im, z.im),
}) => Returns('boolean', (w, z) => me(w.re, z.re) && me(w.im, z.im)),
// NOTE: Although I do not understand exactly why, with typed-function@3.0's
// matching algorithm, the above template must come first to ensure the
// most specific match to a template call. I.e, if one of the below
@ -11,16 +13,16 @@ export const equalTT = {
// with (Complex<Complex<number>>, Complex<number>) (!, hopefully in some
// future iteration typed-function will be smart enough to prefer
// Complex<T>, Complex<T>. Possibly the problem is in Pocomath's bolted-on
// type resolution and the difficulty will go away when features are moved into
// typed-function.
// type resolution and the difficulty will go away when features are moved
// into typed-function.
'Complex<T>,T': ({
'isZero(T)': isZ,
'self(T,T)': eqReal
}) => (z, x) => eqReal(z.re, x) && isZ(z.im),
}) => Returns('boolean', (z, x) => eqReal(z.re, x) && isZ(z.im)),
'T,Complex<T>': ({
'isZero(T)': isZ,
'self(T,T)': eqReal
}) => (b, z) => eqReal(z.re, b) && isZ(z.im),
}) => Returns('boolean', (b, z) => eqReal(z.re, b) && isZ(z.im)),
}

View File

@ -1,4 +1,5 @@
import PocomathInstance from '../core/PocomathInstance.mjs'
import Returns from '../core/Returns.mjs'
import * as Complex from './Types/Complex.mjs'
import gcdType from '../generic/gcdType.mjs'
@ -9,15 +10,16 @@ const imps = {
gcdComplexRaw,
gcd: { // Only return gcds with positive real part
'Complex<T>,Complex<T>': ({
T,
'gcdComplexRaw(Complex<T>,Complex<T>)': gcdRaw,
'sign(T)': sgn,
'one(T)': uno,
'negate(Complex<T>)': neg
}) => (z,m) => {
}) => Returns(`Complex<${T}>`, (z,m) => {
const raw = gcdRaw(z, m)
if (sgn(raw.re) === uno(raw.re)) return raw
return neg(raw)
}
})
}
}

View File

@ -1,14 +1,16 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const invert = {
'Complex<T>': ({
T,
'conjugate(Complex<T>)': conj,
'absquare(Complex<T>)': asq,
'complex(T,T)': cplx,
'divide(T,T)': div
}) => z => {
}) => Returns(`Complex<${T}>`, z => {
const c = conj(z)
const d = asq(z)
return cplx(div(c.re, d), div(c.im, d))
}
})
}

View File

@ -1,5 +1,7 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const isZero = {
'Complex<T>': ({'self(T)': me}) => z => me(z.re) && me(z.im)
'Complex<T>': ({'self(T)': me}) => Returns(
'boolean', z => me(z.re) && me(z.im))
}

View File

@ -1,15 +1,20 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const multiply = {
'Complex<T>,Complex<T>': ({
T,
'complex(T,T)': cplx,
'add(T,T)': plus,
'subtract(T,T)': sub,
'subtract(T,T)': subt,
'self(T,T)': me,
'conjugate(T)': conj // makes quaternion multiplication work
}) => (w,z) => {
return cplx(
sub(me(w.re, z.re), me(conj(w.im), z.im)),
plus(me(conj(w.re), z.im), me(w.im, z.re)))
}) => Returns(
`Complex<${T}>`,
(w,z) => {
const realpart = subt(me( w.re, z.re), me(conj(w.im), z.im))
const imagpart = plus(me(conj(w.re), z.im), me( w.im, z.re))
return cplx(realpart, imagpart)
}
)
}

View File

@ -1,5 +1,14 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
// Might be nice to have type aliases!
export const quaternion = {
'T,T,T,T': ({complex}) => (r,i,j,k) => complex(complex(r,j), complex(i,k))
'T,T,T,T': ({
T,
'complex(T,T)': cplxT,
'complex(Complex<T>,Complex<T>)': quat
}) => Returns(
`Complex<Complex<${T}>>`,
(r,i,j,k) => quat(cplxT(r,j), cplxT(i,k))
)
}

View File

@ -1,7 +1,9 @@
import Returns from '../core/Returns.mjs'
export * from './roundquotient.mjs'
export const quotient = {
'Complex<T>,Complex<T>': ({
T,
'roundquotient(Complex<T>,Complex<T>)': rq
}) => (w,z) => rq(w,z)
}) => Returns(`Complex<${T}>`, (w,z) => rq(w,z))
}

View File

@ -1,17 +1,19 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const roundquotient = {
'Complex<T>,Complex<T>': ({
T,
'isZero(Complex<T>)': isZ,
'conjugate(Complex<T>)': conj,
'multiply(Complex<T>,Complex<T>)': mult,
'absquare(Complex<T>)': asq,
'self(T,T)': me,
'complex(T,T)': cplx
}) => (n,d) => {
}) => Returns(`Complex<${T}>`, (n,d) => {
if (isZ(d)) return d
const cnum = mult(n, conj(d))
const dreal = asq(d)
return cplx(me(cnum.re, dreal), me(cnum.im, dreal))
}
})
}

View File

@ -1,3 +1,4 @@
import {Returns, returnTypeOf} from '../core/Returns.mjs'
export * from './Types/Complex.mjs'
export const sqrt = {
@ -12,29 +13,41 @@ export const sqrt = {
'multiply(T,T)': mult,
'self(T)': me,
'divide(T,T)': div,
'abs(Complex<T>)': absC,
'absquare(Complex<T>)': absqC,
'subtract(T,T)': sub
}) => {
let baseReturns = returnTypeOf(me)
if (baseReturns.includes('|')) {
// Bit of a hack, because it is relying on other implementations
// to list the "typical" value of sqrt first
baseReturns = baseReturns.split('|', 1)[0]
}
if (config.predictable) {
return z => {
return Returns(`Complex<${baseReturns}>`, z => {
const reOne = uno(z.re)
if (isZ(z.im) && sgn(z.re) === reOne) return cplxU(me(z.re))
const reTwo = plus(reOne, reOne)
const myabs = me(absqC(z))
return cplxB(
mult(sgn(z.im), me(div(plus(absC(z),z.re), reTwo))),
me(div(sub(absC(z),z.re), reTwo))
mult(sgn(z.im), me(div(plus(myabs, z.re), reTwo))),
me(div(sub(myabs, z.re), reTwo))
)
})
}
}
return z => {
return Returns(
`Complex<${baseReturns}>|${baseReturns}|undefined`,
z => {
const reOne = uno(z.re)
if (isZ(z.im) && sgn(z.re) === reOne) return me(z.re)
const reTwo = plus(reOne, reOne)
const reSqrt = me(div(plus(absC(z),z.re), reTwo))
const imSqrt = me(div(sub(absC(z),z.re), reTwo))
const myabs = me(absqC(z))
const reSqrt = me(div(plus(myabs, z.re), reTwo))
const imSqrt = me(div(sub(myabs, z.re), reTwo))
if (reSqrt === undefined || imSqrt === undefined) return undefined
return cplxB(mult(sgn(z.im), reSqrt), imSqrt)
}
)
}
}

File diff suppressed because it is too large Load Diff

34
src/core/Returns.mjs Normal file
View File

@ -0,0 +1,34 @@
/* Annotate a function with its return type */
/* Unfortunately JavaScript is missing a way to cleanly clone a function
* object, see https://stackoverflow.com/questions/1833588
*/
const clonedFrom = Symbol('the original function this one was cloned from')
function cloneFunction(fn) {
const behavior = fn[clonedFrom] || fn // don't nest clones
const theClone = function () { return behavior.apply(this, arguments) }
Object.assign(theClone, fn)
theClone[clonedFrom] = body
Object.defineProperty(
theClone, 'name', {value: fn.name, configurable: true })
return theClone
}
export function Returns(type, fn) {
if ('returns' in fn) fn = cloneFunction(fn)
fn.returns = type
return fn
}
export function returnTypeOf(fn, signature, pmInstance) {
const typeOfReturns = typeof fn.returns
if (typeOfReturns === 'undefined') return 'any'
if (typeOfReturns === 'string') return fn.returns
// not sure if we will need a function to determine the return type,
// but allow it for now:
return fn.returns(signature, pmInstance)
}
export default Returns

View File

@ -8,6 +8,8 @@ export function subsetOfKeys(set, obj) {
/* Returns a list of the types mentioned in a typed-function signature */
export function typeListOfSignature(signature) {
signature = signature.trim()
if (!signature) return []
return signature.split(',').map(s => s.trim())
}

View File

@ -1,4 +1,6 @@
import PocomathInstance from '../../core/PocomathInstance.mjs'
import Returns from '../../core/Returns.mjs'
/* creates a PocomathInstance incorporating a new numeric type encapsulated
* as a class. (This instance can the be `install()ed` in another to add the
* type so created.)
@ -22,15 +24,15 @@ export default function adapted(name, Thing, overrides) {
// first a creator function, with name depending on the name of the thing:
const creatorName = overrides.creatorName || name.toLowerCase()
const creator = overrides[creatorName]
? overrides[creatorName]('')
? overrides[creatorName]['']
: Thing[creatorName]
? (Thing[creatorName])
: ((...args) => new Thing(...args))
const defaultCreatorImps = {
'': () => () => creator(),
'...any': () => args => creator(...args)
'': () => Returns(name, () => creator()),
'...any': () => Returns(name, args => creator(...args))
}
defaultCreatorImps[name] = () => x => x // x.clone(x)?
defaultCreatorImps[name] = () => Returns(name, x => x) // x.clone(x)?
operations[creatorName] = overrides[creatorName] || defaultCreatorImps
// We make the default instance, just as a place to check for methods
@ -47,34 +49,35 @@ export default function adapted(name, Thing, overrides) {
negate: 'neg'
}
const binaryOps = {
add: 'add',
compare: 'compare',
divide: 'div',
equalTT: 'equals',
gcd: 'gcd',
lcm: 'lcm',
mod: 'mod',
multiply: 'mul',
subtract: 'sub'
add: ['add', name],
compare: ['compare', name],
divide: ['div', name],
equalTT: ['equals', 'boolean'],
gcd: ['gcd', name],
lcm: ['lcm', name],
mod: ['mod', name],
multiply: ['mul', name],
subtract: ['sub', name]
}
for (const [mathname, standardname] of Object.entries(unaryOps)) {
if (standardname in instance) {
operations[mathname] = {}
operations[mathname][name] = () => t => t[standardname]()
operations[mathname][name] = () => Returns(name, t => t[standardname]())
}
}
operations.zero = {}
operations.zero[name] = () => t => creator()
operations.zero[name] = () => Returns(name, t => creator())
operations.one = {}
operations.one[name] = () => t => creator(1)
operations.one[name] = () => Returns(name, t => creator(1))
operations.conjugate = {}
operations.conjugate[name] = () => t => t // or t.clone() ??
operations.conjugate[name] = () => Returns(name, t => t) // or t.clone() ??
const binarySignature = `${name},${name}`
for (const [mathname, standardname] of Object.entries(binaryOps)) {
if (standardname in instance) {
for (const [mathname, spec] of Object.entries(binaryOps)) {
if (spec[0] in instance) {
operations[mathname] = {}
operations[mathname][binarySignature] = () => (t,u) => t[standardname](u)
operations[mathname][binarySignature] = () => Returns(
spec[1], (t,u) => t[spec[0]](u))
}
}
if ('operations' in overrides) {

View File

@ -1,7 +1,9 @@
import Returns from '../core/Returns.mjs'
export const abs = {
T: ({
T,
'smaller(T,T)': lt,
'negate(T)': neg,
'zero(T)': zr
}) => t => (smaller(t, zr(t)) ? neg(t) : t)
}) => Returns(T, t => (smaller(t, zr(t)) ? neg(t) : t))
}

View File

@ -1,6 +1,9 @@
import Returns from '../core/Returns.mjs'
export const absquare = {
T: ({
T,
'square(T)': sq,
'abs(T)': abval
}) => t => sq(abval(t))
}) => Returns(T, t => sq(abval(t)))
}

View File

@ -1,5 +1,6 @@
import {adapted} from './Types/adapted.mjs'
import Fraction from 'fraction.js/bigfraction.js'
import Returns from '../core/Returns.mjs'
export * from './arithmetic.mjs'
export * from './relational.mjs'
@ -8,15 +9,18 @@ export const fraction = adapted('Fraction', Fraction, {
before: ['Complex'],
from: {number: n => new Fraction(n)},
operations: {
compare: {'Fraction,Fraction': () => (f,g) => new Fraction(f.compare(g))},
compare: {
'Fraction,Fraction': () => Returns(
'Fraction', (f,g) => new Fraction(f.compare(g)))
},
mod: {
'Fraction,Fraction': () => (n,d) => {
'Fraction,Fraction': () => Returns('Fraction', (n,d) => {
// patch for "mathematician's modulus"
// OK to use full public API of Fraction here
const fmod = n.mod(d)
if (fmod.s === -1n) return fmod.add(d.abs())
return fmod
}
})
}
}
})

View File

@ -1,7 +1,10 @@
import Returns from '../core/Returns.mjs'
export const divide = {
'T,T': ({
T,
'multiply(T,T)': multT,
'invert(T)': invT
}) => (x, y) => multT(x, invT(y))
}) => Returns(T, (x, y) => multT(x, invT(y)))
}

View File

@ -1,3 +1,5 @@
import Returns from '../core/Returns.mjs'
/* Note we do not use a template here so that we can explicitly control
* which types this is instantiated for, namely the "integer" types, and
* not simply allow Pocomath to generate instances for any type it encounters.
@ -7,14 +9,14 @@ export default function(type) {
const producer = refs => {
const modder = refs[`mod(${type},${type})`]
const zeroTester = refs[`isZero(${type})`]
return (a,b) => {
return Returns(type, (a,b) => {
while (!zeroTester(b)) {
const r = modder(a,b)
a = b
b = r
}
return a
}
})
}
const retval = {}
retval[`${type},${type}`] = producer

View File

@ -1,3 +1,11 @@
export function identity(x) {
return x
import Returns from '../core/Returns.mjs'
export function identityType(type) {
return () => Returns(type, x => x)
}
export function identitySubTypes(type) {
return ({T}) => Returns(T, x => x)
}
export const identity = {T: ({T}) => Returns(T, x => x)}

View File

@ -1,10 +1,12 @@
import Returns from '../core/Returns.mjs'
import {reducingOperation} from './reducingOperation.mjs'
export const lcm = {
'T,T': ({
T,
'multiply(T,T)': multT,
'quotient(T,T)': quotT,
'gcd(T,T)': gcdT
}) => (a,b) => multT(quotT(a, gcdT(a,b)), b)
}) => Returns(T, (a,b) => multT(quotT(a, gcdT(a,b)), b))
}
Object.assign(lcm, reducingOperation)

View File

@ -1,3 +1,8 @@
import Returns from '../core/Returns.mjs'
export const mean = {
'...any': ({add, divide}) => args => divide(add(...args), args.length)
'...T': ({
T,
add,
'divide(T,NumInt)': div
}) => Returns(T, args => div(add(...args), args.length))
}

View File

@ -1,7 +1,10 @@
import Returns from '../core/Returns.mjs'
export const mod = {
'T,T': ({
T,
'subtract(T,T)': subT,
'multiply(T,T)': multT,
'quotient(T,T)': quotT
}) => (a,m) => subT(a, multT(m, quotT(a,m)))
}) => Returns(T, (a,m) => subT(a, multT(m, quotT(a,m))))
}

View File

@ -1,3 +1,9 @@
import Returns from '../core/Returns.mjs'
export const quotient = {
'T,T': ({'floor(T)': flr, 'divide(T,T)':div}) => (n,d) => flr(div(n,d))
'T,T': ({
T,
'floor(T)': flr,
'divide(T,T)': div
}) => Returns(T, (n,d) => flr(div(n,d)))
}

View File

@ -1,13 +1,16 @@
import Returns from '../core/Returns.mjs'
export * from './Types/generic.mjs'
export const reducingOperation = {
'undefined': () => u => u,
'undefined,...any': () => (u, rest) => u,
'any,undefined': () => (x, u) => u,
'undefined,undefined': () => (u,v) => u,
any: () => x => x,
'undefined': () => Returns('undefined', u => u),
'undefined,...any': () => Returns('undefined', (u, rest) => u),
'any,undefined': () => Returns('undefined', (x, u) => u),
'undefined,undefined': () => Returns('undefined', (u,v) => u),
T: ({T}) => Returns(T, x => x),
// Unfortunately the type language of Pocomath is not (yet?) expressive
// enough to properly type the full reduction signature here:
'any,any,...any': ({
self
}) => (a,b,rest) => [b, ...rest].reduce((x,y) => self(x,y), a)
}) => Returns('any', (a,b,rest) => [b, ...rest].reduce((x,y) => self(x,y), a))
}

View File

@ -1,34 +1,45 @@
import Returns from '../core/Returns.mjs'
export const compare = {
'undefined,undefined': () => () => 0
'undefined,undefined': () => Returns('NumInt', () => 0)
}
export const isZero = {
'undefined': () => u => u === 0,
T: ({'equal(T,T)': eq, 'zero(T)': zr}) => t => eq(t, zr(t))
'undefined': () => Returns('boolean', u => u === 0),
T: ({
T,
'equal(T,T)': eq,
'zero(T)': zr
}) => Returns('boolean', t => eq(t, zr(t)))
}
export const equal = {
'any,any': ({equalTT, joinTypes, Templates, typeOf}) => (x,y) => {
'any,any': ({
equalTT,
joinTypes,
Templates,
typeOf
}) => Returns('boolean', (x,y) => {
const resultant = joinTypes([typeOf(x), typeOf(y)], 'convert')
if (resultant === 'any' || resultant in Templates) {
return false
}
return equalTT(x,y)
}
})
}
export const equalTT = {
'T,T': ({
'compare(T,T)': cmp,
'isZero(T)': isZ
}) => (x,y) => isZ(cmp(x,y)),
}) => Returns('boolean', (x,y) => isZ(cmp(x,y)))
// If templates were native to typed-function, we should be able to
// do something like:
// 'any,any': () => () => false // should only be hit for different types
}
export const unequal = {
'any,any': ({equal}) => (x,y) => !(equal(x,y))
'any,any': ({equal}) => Returns('boolean', (x,y) => !(equal(x,y)))
}
export const larger = {
@ -36,7 +47,7 @@ export const larger = {
'compare(T,T)': cmp,
'one(T)' : uno,
'equalTT(T,T)' : eq
}) => (x,y) => eq(cmp(x,y), uno(y))
}) => Returns('boolean', (x,y) => eq(cmp(x,y), uno(y)))
}
export const largerEq = {
@ -45,10 +56,10 @@ export const largerEq = {
'one(T)' : uno,
'isZero(T)' : isZ,
'equalTT(T,T)': eq
}) => (x,y) => {
}) => Returns('boolean', (x,y) => {
const c = cmp(x,y)
return isZ(c) || eq(c, uno(y))
}
})
}
export const smaller = {
@ -57,10 +68,10 @@ export const smaller = {
'one(T)' : uno,
'isZero(T)' : isZ,
unequal
}) => (x,y) => {
}) => Returns('boolean', (x,y) => {
const c = cmp(x,y)
return !isZ(c) && unequal(c, uno(y))
}
})
}
export const smallerEq = {
@ -68,5 +79,5 @@ export const smallerEq = {
'compare(T,T)': cmp,
'one(T)' : uno,
unequal
}) => (x,y) => unequal(cmp(x,y), uno(y))
}) => Returns('boolean', (x,y) => unequal(cmp(x,y), uno(y)))
}

View File

@ -1,3 +1,9 @@
import Returns from '../core/Returns.mjs'
export const roundquotient = {
'T,T': ({'round(T)': rnd, 'divide(T,T)':div}) => (n,d) => rnd(div(n,d))
'T,T': ({
T,
'round(T)': rnd,
'divide(T,T)':div
}) => Returns(T, (n,d) => rnd(div(n,d)))
}

View File

@ -1,3 +1,9 @@
import Returns from '../core/Returns.mjs'
export const sign = {
T: ({'compare(T,T)': cmp, 'zero(T)': Z}) => x => cmp(x, Z(x))
T: ({
T,
'compare(T,T)': cmp,
'zero(T)': Z
}) => Returns(T, x => cmp(x, Z(x)))
}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/generic.mjs'
export const sqrt = {undefined: () => () => undefined}
export const sqrt = {undefined: () => Returns('undefined', () => undefined)}

View File

@ -1,3 +1,6 @@
import {Returns, returnTypeOf} from '../core/Returns.mjs'
export const square = {
T: ({'multiply(T,T)': multT}) => x => multT(x,x)
T: ({'multiply(T,T)': multT}) => Returns(
returnTypeOf(multT), x => multT(x,x))
}

View File

@ -1,3 +1,9 @@
import Returns from '../core/Returns.mjs'
export const subtract = {
'T,T': ({'add(T,T)': addT, 'negate(T)': negT}) => (x,y) => addT(x, negT(y))
'T,T': ({
T,
'add(T,T)': addT,
'negate(T)': negT
}) => Returns(T, (x,y) => addT(x, negT(y)))
}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
export const abs = {number: () => n => Math.abs(n)}
export const abs = {'T:number': ({T}) => Returns(T, n => Math.abs(n))}

View File

@ -1,6 +1,7 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
/* Absolute value squared */
export const absquare = {
number: ({'square(number)': sqn}) => n => sqn(n)
'T:number': ({T, 'square(T)': sqn}) => Returns(T, n => sqn(n))
}

View File

@ -1,3 +1,8 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
export const add = {'number,number': () => (m,n) => m+n}
export const add = {
// Note the below assumes that all subtypes of number that will be defined
// are closed under addition!
'T:number, T': ({T}) => Returns(T, (m,n) => m+n)
}

View File

@ -1,3 +1,5 @@
import Returns from '../core/Returns.mjs'
/* Lifted from mathjs/src/utils/number.js */
/**
* Minimum number added to one that makes the result different than one
@ -48,5 +50,6 @@ function nearlyEqual (x, y, epsilon) {
export const compare = {
'number,number': ({
config
}) => (x,y) => nearlyEqual(x, y, config.epsilon) ? 0 : (x > y ? 1 : -1)
}) => Returns(
'NumInt', (x,y) => nearlyEqual(x, y, config.epsilon) ? 0 : (x > y ? 1 : -1))
}

View File

@ -1,3 +1,5 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
export const invert = {number: () => n => 1/n}
export const invert = {number: () => Returns('number', n => 1/n)}

View File

@ -1,6 +1,6 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
export const isZero = {
number: () => n => n === 0,
NumInt: () => n => n === 0 // necessary because of generic template
'T:number': () => Returns('boolean', n => n === 0)
}

View File

@ -1,3 +1,5 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
export const multiply = {'number,number': () => (m,n) => m*n}
export const multiply = {'T:number,T': ({T}) => Returns(T, (m,n) => m*n)}

View File

@ -1,5 +1,5 @@
import gcdType from '../generic/gcdType.mjs'
import {identity} from '../generic/identity.mjs'
import {identitySubTypes} from '../generic/identity.mjs'
export * from './Types/number.mjs'
@ -7,7 +7,7 @@ export {abs} from './abs.mjs'
export {absquare} from './absquare.mjs'
export {add} from './add.mjs'
export {compare} from './compare.mjs'
export const conjugate = {number: () => identity}
export const conjugate = {'T:number': identitySubTypes('number')}
export const gcd = gcdType('NumInt')
export {invert} from './invert.mjs'
export {isZero} from './isZero.mjs'

View File

@ -1,3 +1,6 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
export const negate = {number: () => n => -n}
export const negate = {
'T:number': ({T}) => Returns(T, n => -n)
}

View File

@ -1,3 +1,5 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
export const one = {number: () => () => 1}
export const one = {number: () => Returns('NumInt', () => 1)}

View File

@ -1,15 +1,10 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
const intquotient = () => (n,d) => {
export const quotient = {
'T:number,T': () => Returns('NumInt', (n,d) => {
if (d === 0) return d
return Math.floor(n/d)
}
export const quotient = {
// Hmmm, seem to need all of these because of the generic template version
// Should be a way around that
'NumInt,NumInt': intquotient,
'NumInt,number': intquotient,
'number,NumInt': intquotient,
'number,number': intquotient
})
}

View File

@ -1,8 +1,10 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
export const roundquotient = {
'number,number': () => (n,d) => {
'number,number': () => Returns('NumInt', (n,d) => {
if (d === 0) return d
return Math.round(n/d)
}
})
}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
export const sqrt = {
@ -6,12 +7,12 @@ export const sqrt = {
'complex(number,number)': cplx,
'negate(number)': neg}) => {
if (config.predictable || !cplx) {
return n => isNaN(n) ? NaN : Math.sqrt(n)
return Returns('number', n => isNaN(n) ? NaN : Math.sqrt(n))
}
return n => {
return Returns('number|Complex<number>', n => {
if (isNaN(n)) return NaN
if (n >= 0) return Math.sqrt(n)
return cplx(0, Math.sqrt(neg(n)))
}
})
}
}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export * from './Types/number.mjs'
export const zero = {number: () => () => 0}
export const zero = {number: () => Returns('NumInt', () => 0)}

View File

@ -1,11 +1,13 @@
/* Note this is not a good algorithm for computing binomial coefficients,
import Returns from '../core/Returns.mjs'
/* Note this is _not_ a good algorithm for computing binomial coefficients,
* it's just for demonstration purposes
*/
export const choose = {
'NumInt,NumInt': ({factorial}) => (n,k) => Number(
factorial(n) / (factorial(k)*factorial(n-k))),
'NumInt,NumInt': ({factorial}) => Returns(
'NumInt', (n,k) => Number(factorial(n) / (factorial(k)*factorial(n-k)))),
'bigint,bigint': ({
factorial
}) => (n,k) => factorial(n) / (factorial(k)*factorial(n-k))
}) => Returns('bigint', (n,k) => factorial(n) / (factorial(k)*factorial(n-k)))
}

View File

@ -1,8 +1,15 @@
export function factorial(n) {
import Returns from '../core/Returns.mjs'
/* Plain functions are OK, too, and they can be decorated with a return type
* just like an implementation.
*/
const factorial = Returns('bigint', function factorial(n) {
n = BigInt(n)
let prod = 1n
for (let i = n; i > 1n; --i) {
prod *= i
}
return prod
}
})
export {factorial}

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
import {Complex} from '../complex/Types/Complex.mjs'
/* Note we don't **export** any types here, so that only the options
@ -5,26 +6,28 @@ import {Complex} from '../complex/Types/Complex.mjs'
*/
export const floor = {
bigint: () => x => x,
NumInt: () => x => x, // Because Pocomath isn't part of typed-function, or
'Complex<bigint>': () => x => x, // at least have access to the real
// typed-function parse, we unfortunately can't coalesce these into one
// entry with type `bigint|NumInt|GaussianInteger` because they couldn't
// be separately activated then
/* Because Pocomath isn't part of typed-function, nor does it have access
* to the real typed-function parse, we unfortunately can't coalesce the
* first several implementations into one entry with type
* `bigint|NumInt|GaussianInteger` because then they couldn't
* be separately activated
*/
bigint: () => Returns('bigint', x => x),
NumInt: () => Returns('NumInt', x => x),
'Complex<bigint>': () => Returns('Complex<bigint>', x => x),
number: ({'equalTT(number,number)': eq}) => n => {
number: ({'equalTT(number,number)': eq}) => Returns('NumInt', n => {
if (eq(n, Math.round(n))) return Math.round(n)
return Math.floor(n)
},
}),
'Complex<T>': Complex.promoteUnary['Complex<T>'],
// OK to include a type totally not in Pocomath yet, it'll never be
// activated.
// Fraction: ({quotient}) => f => quotient(f.n, f.d), // oops have that now
BigNumber: ({
'round(BigNumber)': rnd,
'equal(BigNumber,BigNumber)': eq
}) => x => eq(x,round(x)) ? round(x) : x.floor()
}) => Returns('BigNumber', x => eq(x,round(x)) ? round(x) : x.floor())
}

View File

@ -1,25 +1,24 @@
/* A template type representing a homeogeneous tuple of elements */
import PocomathInstance from '../../core/PocomathInstance.mjs'
import {Returns, returnTypeOf} from '../../core/Returns.mjs'
const Tuple = new PocomathInstance('Tuple')
// First a base type that will generally not be used directly
Tuple.installType('Tuple', {
test: t => t && typeof t === 'object' && 'elts' in t && Array.isArray(t.elts)
})
// Now the template type that is the primary use of this
Tuple.installType('Tuple<T>', {
// We are assuming that any 'Type<T>' refines 'Type', so this is
// not necessary:
// refines: 'Tuple',
// But we need there to be a way to determine the type of a tuple:
infer: ({typeOf, joinTypes}) => t => joinTypes(t.elts.map(typeOf)),
// For the test, we can assume that t is already a base tuple,
// and we get the test for T as an input and we have to return
// the test for Tuple<T>
// A test that "defines" the "base type", which is not really a type
// (only fully instantiated types are added to the universe)
base: t => t && typeof t === 'object' && 'elts' in t && Array.isArray(t.elts),
// The template portion of the test; it takes the test for T as
// input and returns the test for an entity _that already passes
// the base test_ to be a Tuple<T>:
test: testT => t => t.elts.every(testT),
// These are only invoked for types U such that there is already
// a conversion from U to T, and that conversion is passed as an input
// and we have to return the conversion to Tuple<T>:
// And we need there to be a way to determine the (instantiation)
// type of an tuple (that has already passed the base test):
infer: ({typeOf, joinTypes}) => t => joinTypes(t.elts.map(typeOf)),
// Conversions. Parametrized conversions are only invoked for types
// U such that there is already a conversion from U to T, and that
// conversion is passed as an input, and we have to return the conversion
// function from the indicated template in terms of U to Tuple<T>:
from: {
'Tuple<U>': convert => tu => ({elts: tu.elts.map(convert)}),
// Here since there is no U it's a straight conversion:
@ -35,13 +34,20 @@ Tuple.promoteUnary = {
'Tuple<T>': ({
'self(T)': me,
tuple
}) => t => tuple(...(t.elts.map(x => me(x)))) // NOTE: this must use
// the inner arrow function to drop additional arguments that Array.map
// supplies, as otherwise the wrong signature of `me` might be used.
}) => {
const compType = me.fromInstance.joinTypes(
returnTypeOf(me).split('|'), 'convert')
return Returns(
`Tuple<${compType}>`, t => tuple(...(t.elts.map(x => me(x)))))
}
}
Tuple.promoteBinaryUnary = {
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, 'self(T)': meU, tuple}) => (s,t) => {
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, 'self(T)': meU, tuple}) => {
const compTypes = returnTypeOf(meB).split('|').concat(
returnTypeOf(meU).split('|'))
const compType = meU.fromInstance.joinTypes(compTypes, 'convert')
return Returns(`Tuple<${compType}>`, (s,t) => {
let i = -1
let result = []
while (true) {
@ -55,22 +61,30 @@ Tuple.promoteBinaryUnary = {
else break
}
return tuple(...result)
})
}
}
Tuple.promoteBinary = {
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, tuple}) => (s,t) => {
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, tuple}) => {
const compType = meB.fromInstance.joinTypes(
returnTypeOf(meB).split('|'))
return Returns(`Tuple<${compType}>`, (s,t) => {
const lim = Math.max(s.elts.length, t.elts.length)
const result = []
for (let i = 0; i < lim; ++i) {
result.push(meB(s.elts[i], t.elts[i]))
}
return tuple(...result)
})
}
}
Tuple.promoteBinaryStrict = {
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, tuple}) => (s,t) => {
'Tuple<T>,Tuple<T>': ({'self(T,T)': meB, tuple}) => {
const compType = meB.fromInstance.joinTypes(
returnTypeOf(meB).split('|'))
return Returns(`Tuple<${compType}>`, (s,t) => {
if (s.elts.length !== t.elts.length) {
throw new RangeError('Tuple length mismatch') // get name of self ??
}
@ -79,6 +93,7 @@ Tuple.promoteBinaryStrict = {
result.push(meB(s.elts[i], t.elts[i]))
}
return tuple(...result)
})
}
}

View File

@ -1,11 +1,16 @@
import Returns from '../core/Returns.mjs'
export * from './Types/Tuple.mjs'
export const equalTT = {
'Tuple<T>,Tuple<T>': ({'self(T,T)': me, 'length(Tuple)': len}) => (s,t) => {
'Tuple<T>,Tuple<T>': ({
'self(T,T)': me,
'length(Tuple)': len
}) => Returns('boolean', (s,t) => {
if (len(s) !== len(t)) return false
for (let i = 0; i < len(s); ++i) {
if (!me(s.elts[i], t.elts[i])) return false
}
return true
}
})
}

View File

@ -1,7 +1,10 @@
import Returns from '../core/Returns.mjs'
export {Tuple} from './Types/Tuple.mjs'
export const isZero = {
'Tuple<T>': ({'self(T)': me}) => t => t.elts.every(e => me(e))
'Tuple<T>': ({'self(T)': me}) => Returns(
'boolean', t => t.elts.every(e => me(e)))
// Note we can't just say `every(me)` above since every invokes its
// callback with more arguments, which then violates typed-function's
// signature for `me`

View File

@ -1,3 +1,4 @@
import Returns from '../core/Returns.mjs'
export {Tuple} from './Types/Tuple.mjs'
export const length = {Tuple: () => t => t.elts.length}
export const length = {'Tuple<T>': () => Returns('NumInt', t => t.elts.length)}

View File

@ -1,6 +1,10 @@
import Returns from '../core/Returns.mjs'
export {Tuple} from './Types/Tuple.mjs'
/* The purpose of the template argument is to ensure that all of the args
* are convertible to the same type.
*/
export const tuple = {'...T': () => args => ({elts: args})}
export const tuple = {
'...T': ({T}) => Returns(`Tuple<${T}>`, args => ({elts: args}))
}

View File

@ -20,9 +20,56 @@ describe('The default full pocomath instance "math"', () => {
assert.strictEqual(math.typeOf({re: 6.28, im: 2.72}), 'Complex<number>')
})
it('can determine the return types of operations', () => {
assert.strictEqual(math.returnTypeOf('negate', 'number'), 'number')
assert.strictEqual(math.returnTypeOf('negate', 'NumInt'), 'NumInt')
math.negate(math.complex(1.2, 2.8)) // TODO: make this call unnecessary
assert.strictEqual(
math.returnTypeOf('negate', 'Complex<number>'), 'Complex<number>')
assert.strictEqual(math.returnTypeOf('add', 'number,number'), 'number')
assert.strictEqual(math.returnTypeOf('add', 'NumInt,NumInt'), 'NumInt')
assert.strictEqual(math.returnTypeOf('add', 'NumInt,number'), 'number')
assert.strictEqual(math.returnTypeOf('add', 'number,NumInt'), 'number')
assert.deepStrictEqual( // TODO: ditto
math.add(3, math.complex(2.5, 1)), math.complex(5.5, 1))
assert.strictEqual(
math.returnTypeOf('add', 'Complex<number>,NumInt'), 'Complex<number>')
// The following is not actually what we want, but the Pocomath type
// language isn't powerful enough at this point to capture the true
// return type:
assert.strictEqual(
math.returnTypeOf('add', 'number,NumInt,Complex<number>'), 'any')
assert.strictEqual(
math.returnTypeOf('chain', 'bigint'), 'Chain<bigint>')
assert.strictEqual(
math.returnTypeOf('returnTypeOf', 'string,string'), 'string')
assert.strictEqual(
math.returnTypeOf('conjugate', 'bigint'), 'bigint')
assert.strictEqual(
math.returnTypeOf('gcd', 'bigint,bigint'), 'bigint')
math.identity(math.fraction(3,5)) // TODO: ditto
assert.strictEqual(math.returnTypeOf('identity', 'Fraction'), 'Fraction')
assert.strictEqual(
math.returnTypeOf('quotient', 'bigint,bigint'), 'bigint')
math.abs(math.complex(2,1)) //TODO: ditto
assert.strictEqual(
math.returnTypeOf('abs','Complex<NumInt>'), 'number')
math.multiply(math.quaternion(1,1,1,1), math.quaternion(1,-1,1,-1)) // dit
const quatType = math.returnTypeOf(
'quaternion', 'NumInt,NumInt,NumInt,NumInt')
assert.strictEqual(quatType, 'Complex<Complex<NumInt>>')
assert.strictEqual(
math.returnTypeOf('multiply', quatType + ',' + quatType), quatType)
assert.strictEqual(math.returnTypeOf('isZero', 'NumInt'), 'boolean')
assert.strictEqual(
math.returnTypeOf('roundquotient', 'NumInt,number'), 'NumInt')
assert.strictEqual(
math.returnTypeOf('factorial', 'NumInt'), 'bigint')
})
it('can subtract numbers', () => {
assert.strictEqual(math.subtract(12, 5), 7)
//assert.strictEqual(math.subtract(3n, 1.5), 1.5)
assert.throws(() => math.subtract(3n, 1.5), 'TypeError')
})
it('can add numbers', () => {

View File

@ -83,6 +83,7 @@ describe('complex', () => {
assert.deepStrictEqual(
math.multiply(q0, math.quaternion(2, 1, 0.1, 0.1)),
math.quaternion(1.9, 1.1, 2.1, -0.9))
math.absquare(math.complex(1.25, 2.5)) //HACK: need absquare(Complex<number>)
assert.strictEqual(math.abs(q0), Math.sqrt(2))
assert.strictEqual(math.abs(q1), Math.sqrt(33)/4)
})

8
test/core/_utils.mjs Normal file
View File

@ -0,0 +1,8 @@
import assert from 'assert'
import * as utils from '../../src/core/utils.mjs'
describe('typeListOfSignature', () => {
it('returns an empty list for the empty signature', () => {
assert.deepStrictEqual(utils.typeListOfSignature(''), [])
})
})

View File

@ -135,13 +135,8 @@ describe('A custom instance', () => {
assert.strictEqual(
inst.typeMerge(3, inst.complex(4.5,2.1)),
'Merge to Complex<number>')
// The following is the current behavior, since 3 converts to 3+0i
// which is technically the same Complex type as 3n+0ni.
// This should clear up when Complex is templatized
assert.strictEqual(inst.typeMerge(3, inst.complex(3n)), 'Merge to Complex')
// But types that truly cannot be merged should throw a TypeError
// Should add a variation of this with a more usual type once there is
// one not interconvertible with others...
assert.throws(
() => inst.typeMerge(3, inst.complex(3n)), TypeError)
inst.install(genericSubtract)
assert.throws(() => inst.typeMerge(3, undefined), TypeError)
})

20
test/generic/_all.mjs Normal file
View File

@ -0,0 +1,20 @@
import assert from 'assert'
import math from '../../src/pocomath.mjs'
describe('generic', () => {
it('calculates mean', () => {
assert.strictEqual(math.mean(1,2.5,3.25,4.75), 2.875)
assert.strictEqual(
math.returnTypeOf('mean', 'number,number,number,number'),
'number'
)
})
it('compares things', () => {
assert.strictEqual(math.larger(7n, 3n), true)
assert.strictEqual(
math.returnTypeOf('larger', 'bigint,bigint'), 'boolean')
assert.strictEqual(math.smallerEq(7.2, 3), false)
assert.strictEqual(
math.returnTypeOf('smallerEq', 'number,NumInt'), 'boolean')
})
})

View File

@ -92,4 +92,10 @@ describe('fraction', () => {
assert.deepStrictEqual(math.square(tf), math.fraction(9/16))
})
it('knows the types of its operations', () => {
assert.deepStrictEqual(
math.returnTypeOf('ceiling', 'Fraction'), 'Fraction')
assert.deepStrictEqual(
math.returnTypeOf('multiply', 'Fraction,Fraction'), 'Fraction')
})
})

View File

@ -8,14 +8,12 @@ describe('tuple', () => {
it('does not allow unification by converting consecutive arguments', () => {
assert.throws(() => math.tuple(3, 5.2, 2n), /TypeError.*unif/)
// Hence, the order matters in a slightly unfortunate way,
// but I think being a little ragged in these edge cases is OK:
assert.throws(
() => math.tuple(3, 2n, math.complex(5.2)),
/TypeError.*unif/)
assert.deepStrictEqual(
math.tuple(3, math.complex(2n), 5.2),
{elts: [math.complex(3), math.complex(2n), math.complex(5.2)]})
assert.throws(
() => math.tuple(3, math.complex(2n), 5.2),
/TypeError.*unif/)
})
it('can be tested for zero and equality', () => {
@ -56,6 +54,9 @@ describe('tuple', () => {
assert.deepStrictEqual(
math.subtract(math.tuple(3n,4n,5n), math.tuple(2n,1n,0n)),
math.tuple(1n,3n,5n))
assert.deepStrictEqual(
math.returnTypeOf('subtract', 'Tuple<bigint>,Tuple<bigint>'),
'Tuple<bigint>')
assert.throws(
() => math.subtract(math.tuple(5,6), math.tuple(7)),
/RangeError/)
@ -106,9 +107,16 @@ describe('tuple', () => {
})
it('supports sqrt', () => {
const mixedTuple = math.tuple(2, math.complex(0,2), 1.5)
assert.deepStrictEqual(
math.sqrt(math.tuple(4,-4,2.25)),
math.tuple(2, math.complex(0,2), 1.5))
mixedTuple,
math.tuple(math.complex(2), math.complex(0,2), math.complex(1.5)))
assert.strictEqual(
math.returnTypeOf('tuple', 'NumInt, Complex<NumInt>, number'),
'Tuple<Complex<number>>')
assert.deepStrictEqual(math.sqrt(math.tuple(4,-4,2.25)), mixedTuple)
assert.strictEqual(
math.returnTypeOf('sqrt', 'Tuple<NumInt>'), 'Tuple<Complex<number>>')
})
})