554 lines
30 KiB
Plaintext
554 lines
30 KiB
Plaintext
|
||
[1X6 [33X[0;0YMethods Based on Permutation Groups[133X[101X
|
||
|
||
[33X[0;0YMost calculations in the [5XLOOPS[105X package are delegated to groups, taking
|
||
advantage of the various permutations and permutation groups associated with
|
||
quasigroups. This chapter explains in detail how the permutations associated
|
||
with a quasigroup are calculated, and it also describes some of the core
|
||
methods of [5XLOOPS[105X based on permutations. Additional core methods can be found
|
||
in Chapter [14X7[114X.[133X
|
||
|
||
|
||
[1X6.1 [33X[0;0YParent of a Quasigroup[133X[101X
|
||
|
||
[33X[0;0YLet [22XQ[122X be a quasigroup and [22XS[122X a subquasigroup of [22XQ[122X. Since the multiplication
|
||
in [22XS[122X coincides with the multiplication in [22XQ[122X, it is reasonable not to store
|
||
the multiplication table of [22XS[122X. However, the quasigroup [22XS[122X then must know that
|
||
it is a subquasigroup of [22XQ[122X.[133X
|
||
|
||
[1X6.1-1 Parent[101X
|
||
|
||
[29X[2XParent[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe parent quasigroup of the quasigroup [3XQ[103X.[133X
|
||
|
||
[33X[0;0YWhen [3XQ[103X is not created as a subquasigroup of another quasigroup, the
|
||
attribute [10XParent([3XQ[103X[10X)[110X is set to [3XQ[103X. When [3XQ[103X is created as a subquasigroup of a
|
||
quasigroup [3XH[103X, we set [10XParent([3XQ[103X[10X)[110X equal to [10XParent([3XH[103X[10X)[110X. Thus, in effect,
|
||
[10XParent([3XQ[103X[10X)[110X is the largest quasigroup from which [3XQ[103X has been created.[133X
|
||
|
||
[1X6.1-2 Position[101X
|
||
|
||
[29X[2XPosition[102X( [3XQ[103X, [3Xx[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe position of [3Xx[103X among the elements of [3XQ[103X.[133X
|
||
|
||
[33X[0;0YLet [3XQ[103X be a quasigroup with parent [3XP[103X, where [3XP[103X is some [22Xn[122X-element quasigroup.
|
||
Let [3Xx[103X be an element of [3XQ[103X. Then [10X[3Xx[103X[10X![1][110X is the position of [3Xx[103X among the elements
|
||
of [3XP[103X, i.e., [10X[3Xx[103X[10X![1] = Position(Elements([3XP[103X[10X),[3Xx[103X[10X)[110X.[133X
|
||
|
||
[33X[0;0YWhile referring to elements of [3XQ[103X by their positions, the user should
|
||
understand whether the positions are meant among the elements of [3XQ[103X, or among
|
||
the elements of the parent [3XP[103X of [3XQ[103X. Since it requires no calculation to
|
||
obtain [10X[3Xx[103X[10X![1][110X, we always use the position of an element in its parent
|
||
quasigroup in [5XLOOPS[105X. In this way, many attributes of a quasigroup, including
|
||
its Cayley table, are permanently tied to its parent.[133X
|
||
|
||
[33X[0;0YIt is now clear why we have not insisted that Cayley tables of quasigroups
|
||
must have entries covering the entire interval [22X1[122X, [22Xdots[122X, [22Xn[122X for some [22Xn[122X.[133X
|
||
|
||
[1X6.1-3 PosInParent[101X
|
||
|
||
[29X[2XPosInParent[102X( [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YWhen [3XS[103X is a list of quasigroup elements (not necessarily from the
|
||
same quasigroup), returns the corresponding list of positions of
|
||
elements of [3XS[103X in the corresponding parent, i.e., [10XPosInParent([3XS[103X[10X)[i]
|
||
= [3XS[103X[10X[i]![1] = Position(Parent([3XS[103X[10X[i]),[3XS[103X[10X[i])[110X.[133X
|
||
|
||
[33X[0;0YQuasigroups with the same parent can be compared as follows. Assume that [22XA[122X,
|
||
[22XB[122X are two quasigroups with common parent [22XQ[122X. Let [22XG_A[122X, [22XG_B[122X be the canonical
|
||
generating sets of [22XA[122X and [22XB[122X, respectively, obtained by the method
|
||
[10XGeneratorsSmallest[110X (see Section [14X5.5[114X). Then we define [22XA<B[122X if and only if
|
||
[22XG_A<G_B[122X lexicographically.[133X
|
||
|
||
|
||
[1X6.2 [33X[0;0YSubquasigroups and Subloops[133X[101X
|
||
|
||
[1X6.2-1 Subquasigroup[101X
|
||
|
||
[29X[2XSubquasigroup[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YWhen [3XS[103X is a subset of elements or indices of a quasigroup (resp.
|
||
loop) [3XQ[103X, returns the smallest subquasigroup (resp. subloop) of [3XQ[103X
|
||
containing [3XS[103X.[133X
|
||
|
||
[33X[0;0YWe allow [3XS[103X to be a list of elements of [3XQ[103X, or a list of integers representing
|
||
the positions of the respective elements in the parent quasigroup (resp.
|
||
loop) of [3XQ[103X.[133X
|
||
|
||
[33X[0;0YIf [3XS[103X is empty, [10XSubquasigroup([3XQ[103X[10X,[3XS[103X[10X)[110X returns the empty set if [3XQ[103X is a
|
||
quasigroup, and it returns the one-element subloop of [3XQ[103X if [3XQ[103X is a loop.[133X
|
||
|
||
[33X[0;0Y[12XRemark:[112X The empty set is sometimes considered to be a subquasigroup of [3XQ[103X
|
||
(although not in [5XLOOPS[105X). The above convention is useful for handling certain
|
||
situations, for instance when the user calls [10XCenter([3XQ[103X[10X)[110X for a quasigroup [3XQ[103X
|
||
with empty center.[133X
|
||
|
||
[1X6.2-2 Subloop[101X
|
||
|
||
[29X[2XSubloop[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
|
||
[33X[0;0YThis is an analog of [10XSubquasigroup([3XQ[103X[10X,[3XS[103X[10X)[110X that can be used only when [3XQ[103X is a
|
||
loop. Since there is no difference in the outcome while calling
|
||
[10XSubquasigroup([3XQ[103X[10X,[3XS[103X[10X)[110X or [10XSubloop([3XQ[103X[10X,[3XS[103X[10X)[110X when [3XQ[103X is a loop, it is safe to always
|
||
call [10XSubquasigroup([3XQ[103X[10X,[3XS[103X[10X)[110X, whether [3XQ[103X is a loop or not.[133X
|
||
|
||
|
||
[1X6.2-3 [33X[0;0YIsSubquasigroup and IsSubloop[133X[101X
|
||
|
||
[29X[2XIsSubquasigroup[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[29X[2XIsSubloop[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10Y[10Xtrue[110X if [3XS[103X is a subquasigroup (resp. subloop) of a quasigroup
|
||
(resp. loop) [3XQ[103X, [10Xfalse[110X otherwise. In other words, returns [10Xtrue[110X if [3XS[103X
|
||
and [3XQ[103X are quasigroups (resp. loops) with the same parent and [3XS[103X is
|
||
a subset of [3XQ[103X.[133X
|
||
|
||
[1X6.2-4 AllSubquasigroups[101X
|
||
|
||
[29X[2XAllSubquasigroups[102X( [3XQ[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YA list of all subquasigroups of a loop [3XQ[103X.[133X
|
||
|
||
[1X6.2-5 AllSubloops[101X
|
||
|
||
[29X[2XAllSubloops[102X( [3XQ[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YA list of all subloops of a loop [3XQ[103X.[133X
|
||
|
||
[1X6.2-6 RightCosets[101X
|
||
|
||
[29X[2XRightCosets[102X( [3XQ[103X, [3XS[103X ) [32X function
|
||
[6XReturns:[106X [33X[0;10YIf [3XS[103X is a subloop of [3XQ[103X, returns a list of all right cosets of [3XS[103X in
|
||
[3XQ[103X.[133X
|
||
|
||
[33X[0;0YThe coset [3XS[103X is listed first, and the elements of each coset are ordered in
|
||
the same way as the elements of [3XS[103X, i.e., if [3XS[103X[22X= [s_1,dots,s_m][122X, then
|
||
[3XS[103X[22Xx=[s_1x,dots,s_mx][122X.[133X
|
||
|
||
[1X6.2-7 RightTransversal[101X
|
||
|
||
[29X[2XRightTransversal[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YA right transversal of a subloop [3XS[103X in a loop [3XQ[103X. The transversal
|
||
consists of the list of first elements from the right cosets
|
||
obtained by [10XRightCosets([3XQ[103X[10X,[3XS[103X[10X)[110X.[133X
|
||
|
||
[33X[0;0YWhen [3XS[103X is a subloop of [3XQ[103X, the right transversal of [3XS[103X with respect to [3XQ[103X is a
|
||
subset of [3XQ[103X containing one element from each right coset of [3XS[103X in [3XQ[103X.[133X
|
||
|
||
|
||
[1X6.3 [33X[0;0YTranslations and Sections[133X[101X
|
||
|
||
[33X[0;0YWhen [22Xx[122X is an element of a quasigroup [22XQ[122X, the left translation [22XL_x[122X is a
|
||
permutation of [22XQ[122X. In [5XLOOPS[105X, all permutations associated with quasigroups and
|
||
their elements are permutations in the sense of [5XGAP[105X, i.e., they are
|
||
bijections of some interval [22X1[122X, [22Xdots[122X, [22Xn[122X. Moreover, following our convention,
|
||
the numerical entries of the permutations point to the positions among
|
||
elements of the parent of [22XQ[122X, not among elements of [22XQ[122X.[133X
|
||
|
||
|
||
[1X6.3-1 [33X[0;0YLeftTranslation and RightTranslation[133X[101X
|
||
|
||
[29X[2XLeftTranslation[102X( [3XQ[103X, [3Xx[103X ) [32X operation
|
||
[29X[2XRightTranslation[102X( [3XQ[103X, [3Xx[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YIf [3Xx[103X is an element of a quasigroup [3XQ[103X, returns the left translation
|
||
(resp. right translation) by [3Xx[103X in [3XQ[103X.[133X
|
||
|
||
|
||
[1X6.3-2 [33X[0;0YLeftSection and RightSection[133X[101X
|
||
|
||
[29X[2XLeftSection[102X( [3XQ[103X ) [32X operation
|
||
[29X[2XRightSection[102X( [3XQ[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe left section (resp. right section) of a quasigroup [3XQ[103X.[133X
|
||
|
||
[33X[0;0YHere is an example illustrating the main features of the subquasigroup
|
||
construction and the relationship between a quasigroup and its parent.[133X
|
||
|
||
[33X[0;0YNote how the Cayley table of a subquasigroup is created only upon explicit
|
||
demand. Also note that changing the names of elements of a subquasigroup
|
||
(subloop) automatically changes the names of the elements of the parent
|
||
subquasigroup (subloop). This is because the elements are shared.[133X
|
||
|
||
[4X[32X Example [32X[104X
|
||
[4X[25Xgap>[125X [27XM := MoufangLoop( 12, 1 );; S := Subloop( M, [ M.5 ] );
|
||
[127X[104X
|
||
[4X[28X<loop of order 3>
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27X[ Parent( S ) = M, Elements( S ), PosInParent( S ) ];
|
||
[127X[104X
|
||
[4X[28X[ true, [ l1, l3, l5], [ 1, 3, 5 ] ]
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XHasCayleyTable( S );
|
||
[127X[104X
|
||
[4X[28Xfalse
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XSetLoopElmName( S, "s" );; Elements( S ); Elements( M );
|
||
[127X[104X
|
||
[4X[28X[ s1, s3, s5 ]
|
||
[128X[104X
|
||
[4X[28X[ s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12 ]
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XCayleyTable( S );
|
||
[127X[104X
|
||
[4X[28X[ [ 1, 3, 5 ], [ 3, 5, 1 ], [ 5, 1, 3 ] ]
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XLeftSection( S );
|
||
[127X[104X
|
||
[4X[28X[ (), (1,3,5), (1,5,3) ]
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27X[ HasCayleyTable( S ), Parent( S ) = M ];
|
||
[127X[104X
|
||
[4X[28X[ true, true ]
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XL := LoopByCayleyTable( CayleyTable( S ) );; Elements( L );
|
||
[127X[104X
|
||
[4X[28X[ l1, l2, l3 ]
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27X[ Parent( L ) = L, IsSubloop( M, S ), IsSubloop( M, L ) ];
|
||
[127X[104X
|
||
[4X[28X[ true, true, false ]
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XLeftSection( L );
|
||
[127X[104X
|
||
[4X[28X[ (), (1,2,3), (1,3,2) ]
|
||
[128X[104X
|
||
[4X[32X[104X
|
||
|
||
|
||
[1X6.4 [33X[0;0YMultiplication Groups[133X[101X
|
||
|
||
|
||
[1X6.4-1 [33X[0;0YLeftMutliplicationGroup, RightMultiplicationGroup and[101X
|
||
[1XMultiplicationGroup[133X[101X
|
||
|
||
[29X[2XLeftMultiplicationGroup[102X( [3XQ[103X ) [32X attribute
|
||
[29X[2XRightMultiplicationGroup[102X( [3XQ[103X ) [32X attribute
|
||
[29X[2XMultiplicationGroup[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe left multiplication group, right multiplication group, resp.
|
||
multiplication group of a quasigroup [3XQ[103X.[133X
|
||
|
||
|
||
[1X6.4-2 [33X[0;0YRelativeLeftMultiplicationGroup, RelativeRightMultiplicationGroup and[101X
|
||
[1XRelativeMultiplicationGroup[133X[101X
|
||
|
||
[29X[2XRelativeLeftMultiplicationGroup[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[29X[2XRelativeRightMultiplicationGroup[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[29X[2XRelativeMultiplicationGroup[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe relative left multiplication group, the relative right
|
||
multiplication group, resp. the relative multiplication group of a
|
||
quasigroup [3XQ[103X with respect to a subquasigroup [3XS[103X of [3XQ[103X.[133X
|
||
|
||
[33X[0;0YLet [22XS[122X be a subquasigroup of a quasigroup [22XQ[122X. Then the [13Xrelative left
|
||
multiplication group[113X of [22XQ[122X with respect to [22XS[122X is the group [22X⟨ L(x)|x∈ S⟩[122X, where
|
||
[22XL(x)[122X is the left translation by [22Xx[122X in [22XQ[122X restricted to [22XS[122X. The [13Xrelative right
|
||
multiplication group[113X and the [13Xrelative multiplication group[113X are defined
|
||
analogously.[133X
|
||
|
||
|
||
[1X6.5 [33X[0;0YInner Mapping Groups[133X[101X
|
||
|
||
[33X[0;0YBy a result of Bruck, the left inner mapping group of a loop is generated by
|
||
all [13Xleft inner mappings[113X [22XL(x,y) = L_yx^-1L_yL_x[122X, and the right inner mapping
|
||
group is generated by all [13Xright inner mappings[113X [22XR(x,y) = R_xy^-1R_yR_x[122X.[133X
|
||
|
||
[33X[0;0YIn analogy with group theory, we define the [13Xconjugations[113X or the [13Xmiddle inner
|
||
mappings[113X as [22XT(x) = L_x^-1R_x[122X. The [13Xmiddle inner mapping grroup[113X is then the
|
||
group generated by all conjugations.[133X
|
||
|
||
|
||
[1X6.5-1 [33X[0;0YLeftInnerMapping, RightInnerMapping, MiddleInnerMapping[133X[101X
|
||
|
||
[29X[2XLeftInnerMapping[102X( [3XQ[103X, [3Xx[103X, [3Xy[103X ) [32X operation
|
||
[29X[2XRightInnerMapping[102X( [3XQ[103X, [3Xx[103X, [3Xy[103X ) [32X operation
|
||
[29X[2XMiddleInnerMapping[102X( [3XQ[103X, [3Xx[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe left inner mapping [22XL([122X[3Xx[103X,[3Xy[103X[22X)[122X, the right inner mapping [22XR([122X[3Xx[103X,[3Xy[103X[22X)[122X,
|
||
resp. the middle inner mapping [22XT([122X[3Xx[103X[22X)[122X of a loop [3XQ[103X.[133X
|
||
|
||
|
||
[1X6.5-2 [33X[0;0YLeftInnerMappingGroup, RightInnerMappingGroup, MiddleInnerMappingGroup[133X[101X
|
||
|
||
[29X[2XLeftInnerMappingGroup[102X( [3XQ[103X ) [32X attribute
|
||
[29X[2XRightInnerMappingGroup[102X( [3XQ[103X ) [32X attribute
|
||
[29X[2XMiddleInnerMappingGroup[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe left inner mapping group, right inner mapping group, resp.
|
||
middle inner mapping group of a loop [3XQ[103X.[133X
|
||
|
||
[1X6.5-3 InnerMappingGroup[101X
|
||
|
||
[29X[2XInnerMappingGroup[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe inner mapping group of a loop [3XQ[103X.[133X
|
||
|
||
[33X[0;0YHere is an example for multiplication groups and inner mapping groups:[133X
|
||
|
||
[4X[32X Example [32X[104X
|
||
[4X[25Xgap>[125X [27XM := MoufangLoop(12,1);
|
||
[127X[104X
|
||
[4X[28X<Moufang loop 12/1>
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XLeftSection(M)[2];
|
||
[127X[104X
|
||
[4X[28X(1,2)(3,4)(5,6)(7,8)(9,12)(10,11)
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XMlt := MultiplicationGroup(M); Inn := InnerMappingGroup(M);
|
||
[127X[104X
|
||
[4X[28X<permutation group of size 2592 with 23 generators>
|
||
[128X[104X
|
||
[4X[28XGroup([ (4,6)(7,11), (7,11)(8,10), (2,6,4)(7,9,11), (3,5)(9,11), (8,12,10) ])
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XSize(Inn);
|
||
[127X[104X
|
||
[4X[28X216
|
||
[128X[104X
|
||
[4X[32X[104X
|
||
|
||
|
||
[1X6.6 [33X[0;0YNuclei, Commutant, Center, and Associator Subloop[133X[101X
|
||
|
||
[33X[0;0YSee Section [14X2.3[114X for the relevant definitions.[133X
|
||
|
||
|
||
[1X6.6-1 [33X[0;0YLeftNucles, MiddleNucleus, and RightNucleus[133X[101X
|
||
|
||
[29X[2XLeftNucleus[102X( [3XQ[103X ) [32X attribute
|
||
[29X[2XMiddleNucleus[102X( [3XQ[103X ) [32X attribute
|
||
[29X[2XRightNucleus[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe left nucleus, middle nucleus, resp. right nucleus of a
|
||
quasigroup [3XQ[103X.[133X
|
||
|
||
|
||
[1X6.6-2 [33X[0;0YNuc, NucleusOfQuasigroup and NucleusOfLoop[133X[101X
|
||
|
||
[29X[2XNuc[102X( [3XQ[103X ) [32X attribute
|
||
[29X[2XNucleusOfQuasigroup[102X( [3XQ[103X ) [32X attribute
|
||
[29X[2XNucleusOfLoop[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThese synonymous attributes return the nucleus of a quasigroup [3XQ[103X.[133X
|
||
|
||
[33X[0;0YSince all nuclei are subquasigroups of [3XQ[103X, they are returned as
|
||
subquasigroups (resp. subloops). When [3XQ[103X is a loop then all nuclei are in
|
||
fact groups, and they are returned as associative loops.[133X
|
||
|
||
[33X[0;0Y[12XRemark:[112X The name [10XNucleus[110X is a global function of [5XGAP[105X with two variables. We
|
||
have therefore used [10XNuc[110X rather than [10XNucleus[110X for the nucleus. This
|
||
abbreviation is sometimes used in the literature, too.[133X
|
||
|
||
[1X6.6-3 Commutant[101X
|
||
|
||
[29X[2XCommutant[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe commutant of a quasigroup [3XQ[103X.[133X
|
||
|
||
[1X6.6-4 Center[101X
|
||
|
||
[29X[2XCenter[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe center of a quasigroup [3XQ[103X.[133X
|
||
|
||
[33X[0;0YIf [3XQ[103X is a loop, the center of [3XQ[103X is a subgroup of [3XQ[103X and it is returned as an
|
||
associative loop.[133X
|
||
|
||
[1X6.6-5 AssociatorSubloop[101X
|
||
|
||
[29X[2XAssociatorSubloop[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe associator subloop of a loop [3XQ[103X.[133X
|
||
|
||
[33X[0;0YWe calculate the associator subloop of [3XQ[103X as the smallest normal subloop of [3XQ[103X
|
||
containing all elements [22Xxbackslashα(x)[122X, where [22Xx[122X is an element of [3XQ[103X and [22Xα[122X is
|
||
a left inner mapping of [3XQ[103X.[133X
|
||
|
||
|
||
[1X6.7 [33X[0;0YNormal Subloops and Simple Loops[133X[101X
|
||
|
||
[1X6.7-1 IsNormal[101X
|
||
|
||
[29X[2XIsNormal[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10Y[10Xtrue[110X if [3XS[103X is a normal subloop of a loop [3XQ[103X.[133X
|
||
|
||
[33X[0;0YA subloop [22XS[122X of a loop [22XQ[122X is [13Xnormal[113X if it is invariant under all inner
|
||
mappings of [22XQ[122X.[133X
|
||
|
||
[1X6.7-2 NormalClosure[101X
|
||
|
||
[29X[2XNormalClosure[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe normal closure of a subset [3XS[103X of a loop [3XQ[103X.[133X
|
||
|
||
[33X[0;0YFor a subset [22XS[122X of a loop [22XQ[122X, the [13Xnormal closure[113X of [22XS[122X in [22XQ[122X is the smallest
|
||
normal subloop of [22XQ[122X containing [22XS[122X.[133X
|
||
|
||
[1X6.7-3 IsSimple[101X
|
||
|
||
[29X[2XIsSimple[102X( [3XQ[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10Y[10Xtrue[110X if [3XQ[103X is a simple loop.[133X
|
||
|
||
[33X[0;0YA loop [22XQ[122X is [13Xsimple[113X if [22X{1}[122X and [22XQ[122X are the only normal subloops of [22XQ[122X.[133X
|
||
|
||
|
||
[1X6.8 [33X[0;0YFactor Loops[133X[101X
|
||
|
||
[1X6.8-1 FactorLoop[101X
|
||
|
||
[29X[2XFactorLoop[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YWhen [3XS[103X is a normal subloop of a loop [3XQ[103X, returns the factor loop
|
||
[3XQ[103X[22X/[122X[3XS[103X.[133X
|
||
|
||
[1X6.8-2 NaturalHomomorphismByNormalSubloop[101X
|
||
|
||
[29X[2XNaturalHomomorphismByNormalSubloop[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YWhen [3XS[103X is a normal subloop of a loop [3XQ[103X, returns the natural
|
||
projection from [3XQ[103X onto [3XQ[103X[22X/[122X[3XS[103X.[133X
|
||
|
||
[4X[32X Example [32X[104X
|
||
[4X[25Xgap>[125X [27XM := MoufangLoop( 12, 1 );; S := Subloop( M, [ M.3 ] );
|
||
[127X[104X
|
||
[4X[28X<loop of order 3>
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XIsNormal( M, S );
|
||
[127X[104X
|
||
[4X[28Xtrue
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XF := FactorLoop( M, S );
|
||
[127X[104X
|
||
[4X[28X<loop of order 4>
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27XNaturalHomomorphismByNormalSubloop( M, S );
|
||
[127X[104X
|
||
[4X[28XMappingByFunction( <loop of order 12>, <loop of order 4>,
|
||
[128X[104X
|
||
[4X[28X function( x ) ... end )
|
||
[128X[104X
|
||
[4X[32X[104X
|
||
|
||
|
||
[1X6.9 [33X[0;0YNilpotency and Central Series[133X[101X
|
||
|
||
[33X[0;0YSee Section [14X2.4[114X for the relevant definitions.[133X
|
||
|
||
[1X6.9-1 IsNilpotent[101X
|
||
|
||
[29X[2XIsNilpotent[102X( [3XQ[103X ) [32X property
|
||
[6XReturns:[106X [33X[0;10Y[10Xtrue[110X if [3XQ[103X is a nilpotent loop.[133X
|
||
|
||
[1X6.9-2 NilpotencyClassOfLoop[101X
|
||
|
||
[29X[2XNilpotencyClassOfLoop[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe nilpotency class of a loop [3XQ[103X if [3XQ[103X is nilpotent, [10Xfail[110X
|
||
otherwise.[133X
|
||
|
||
[1X6.9-3 IsStronglyNilpotent[101X
|
||
|
||
[29X[2XIsStronglyNilpotent[102X( [3XQ[103X ) [32X property
|
||
[6XReturns:[106X [33X[0;10Y[10Xtrue[110X if [3XQ[103X is a strongly nilpotent loop.[133X
|
||
|
||
[33X[0;0YA loop [22XQ[122X is said to be [13Xstrongly nilpotent[113X if its multiplication group is
|
||
nilpotent.[133X
|
||
|
||
[1X6.9-4 UpperCentralSeries[101X
|
||
|
||
[29X[2XUpperCentralSeries[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YWhen [3XQ[103X is a nilpotent loop, returns the upper central series of [3XQ[103X,
|
||
else returns [10Xfail[110X.[133X
|
||
|
||
[1X6.9-5 LowerCentralSeries[101X
|
||
|
||
[29X[2XLowerCentralSeries[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YWhen [3XQ[103X is a nilpotent loop, returns the lower central series of [3XQ[103X,
|
||
else returns [10Xfail[110X.[133X
|
||
|
||
[33X[0;0YThe [13Xlower central series[113X for loops is defined analogously to groups.[133X
|
||
|
||
|
||
[1X6.10 [33X[0;0YSolvability, Derived Series and Frattini Subloop[133X[101X
|
||
|
||
[33X[0;0YSee Section [14X2.4[114X for definitions of solvability an derived subloop.[133X
|
||
|
||
[1X6.10-1 IsSolvable[101X
|
||
|
||
[29X[2XIsSolvable[102X( [3XQ[103X ) [32X property
|
||
[6XReturns:[106X [33X[0;10Y[10Xtrue[110X if [3XQ[103X is a solvable loop.[133X
|
||
|
||
[1X6.10-2 DerivedSubloop[101X
|
||
|
||
[29X[2XDerivedSubloop[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe derived subloop of a loop [3XQ[103X.[133X
|
||
|
||
[1X6.10-3 DerivedLength[101X
|
||
|
||
[29X[2XDerivedLength[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YIf [3XQ[103X is solvable, returns the derived length of [3XQ[103X, else returns
|
||
[10Xfail[110X.[133X
|
||
|
||
|
||
[1X6.10-4 [33X[0;0YFrattiniSubloop and FrattinifactorSize[133X[101X
|
||
|
||
[29X[2XFrattiniSubloop[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe Frattini subloop of [3XQ[103X. The method is implemented only for
|
||
strongly nilpotent loops.[133X
|
||
|
||
[33X[0;0Y[13XFrattini subloop[113X of a loop [22XQ[122X is the intersection of maximal subloops of [22XQ[122X.[133X
|
||
|
||
[1X6.10-5 FrattinifactorSize[101X
|
||
|
||
[29X[2XFrattinifactorSize[102X( [3XQ[103X ) [32X attribute
|
||
|
||
[1X6.11 [33X[0;0YIsomorphisms and Automorphisms[133X[101X
|
||
|
||
[1X6.11-1 IsomorphismQuasigroups[101X
|
||
|
||
[29X[2XIsomorphismQuasigroups[102X( [3XQ[103X, [3XL[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YAn isomorphism from a quasigroup [3XQ[103X to a quasigroup [3XL[103X if the
|
||
quasigroups are isomorphic, [10Xfail[110X otherwise.[133X
|
||
|
||
[33X[0;0YIf an isomorphism exists, it is returned as a permutation [22Xf[122X of [22X1,dots,|[122X[3XQ[103X[22X|[122X,
|
||
where [22Xi^f=j[122X means that the [22Xi[122Xth element of [3XQ[103X is mapped onto the [22Xj[122Xth element
|
||
of [3XL[103X. Note that this convention is used even if the underlying sets of [3XQ[103X, [3XL[103X
|
||
are not indexed by consecutive integers.[133X
|
||
|
||
[1X6.11-2 IsomorphismLoops[101X
|
||
|
||
[29X[2XIsomorphismLoops[102X( [3XQ[103X, [3XL[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YAn isomorphism from a loop [3XQ[103X to a loop [3XL[103X if the loops are
|
||
isomorphic, [10Xfail[110X otherwise, with the same convention as in
|
||
[10XIsomorphismQuasigroups[110X.[133X
|
||
|
||
[1X6.11-3 QuasigroupsUpToIsomorphism[101X
|
||
|
||
[29X[2XQuasigroupsUpToIsomorphism[102X( [3Xls[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YGiven a list [3Xls[103X of quasigroups, returns a sublist of [3Xls[103X consisting
|
||
of representatives of isomorphism classes of quasigroups from [3Xls[103X.[133X
|
||
|
||
[1X6.11-4 LoopsUpToIsomorphism[101X
|
||
|
||
[29X[2XLoopsUpToIsomorphism[102X( [3Xls[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YGiven a list [3Xls[103X of loops, returns a sublist of [3Xls[103X consisting of
|
||
representatives of isomorphism classes of loops from [3Xls[103X.[133X
|
||
|
||
[1X6.11-5 AutomorphismGroup[101X
|
||
|
||
[29X[2XAutomorphismGroup[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe automorphism group of a loop or quasigroups [3XQ[103X, with the same
|
||
convention on permutations as in [10XIsomorphismQuasigroups[110X.[133X
|
||
|
||
[33X[0;0Y[12XRemark:[112X Since two isomorphisms differ by an automorphism, all isomorphisms
|
||
from [3XQ[103X to [3XL[103X can be obtained by a combination of [10XIsomorphismLoops([3XQ[103X[10X,[3XL[103X[10X)[110X (or
|
||
[10XIsomorphismQuasigroups([3XQ[103X[10X,[3XL[103X[10X)[110X) and [10XAutomorphismGroup([3XL[103X[10X)[110X.[133X
|
||
|
||
[33X[0;0YWhile dealing with Cayley tables, it is often useful to rename or reorder
|
||
the elements of the underlying quasigroup without changing the isomorphism
|
||
type of the quasigroups. [5XLOOPS[105X contains several functions for this purpose.[133X
|
||
|
||
[1X6.11-6 IsomorphicCopyByPerm[101X
|
||
|
||
[29X[2XIsomorphicCopyByPerm[102X( [3XQ[103X, [3Xf[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YWhen [3XQ[103X is a quasigroup and [3Xf[103X is a permutation of [22X1,dots,|[122X[3XQ[103X[22X|[122X,
|
||
returns a quasigroup defined on the same set as [3XQ[103X with
|
||
multiplication [22X*[122X defined by [22Xx*y =[122X[3Xf[103X[22X([122X[3Xf[103X[22X^-1(x)[122X[3Xf[103X[22X^-1(y))[122X. When [3XQ[103X is a
|
||
declared loop, a loop is returned. Consequently, when [3XQ[103X is a
|
||
declared loop and [3Xf[103X[22X(1) = kne 1[122X, then [3Xf[103X is first replaced with [3Xf[103X[22X∘
|
||
(1,k)[122X, to make sure that the resulting Cayley table is normalized.[133X
|
||
|
||
[1X6.11-7 IsomorphicCopyByNormalSubloop[101X
|
||
|
||
[29X[2XIsomorphicCopyByNormalSubloop[102X( [3XQ[103X, [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YWhen [3XS[103X is a normal subloop of a loop [3XQ[103X, returns an isomorphic copy
|
||
of [3XQ[103X in which the elements are ordered according to the right
|
||
cosets of [3XS[103X. In particular, the Cayley table of [3XS[103X will appear in
|
||
the top left corner of the Cayley table of the resulting loop.[133X
|
||
|
||
[33X[0;0YIn order to speed up the search for isomorphisms and automorphisms, we first
|
||
calculate some loop invariants preserved under isomorphisms, and then we use
|
||
these invariants to partition the loop into blocks of elements preserved
|
||
under isomorphisms. The following two operations are used in the search.[133X
|
||
|
||
[1X6.11-8 Discriminator[101X
|
||
|
||
[29X[2XDiscriminator[102X( [3XQ[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YA data structure with isomorphism invariants of a loop [3XQ[103X.[133X
|
||
|
||
[33X[0;0YSee [Voj06] or the file [11Xiso.gi[111X for more details. The format of the
|
||
discriminator has been changed from version 3.2.0 up to accommodate
|
||
isomorphism searches for quasigroups.[133X
|
||
|
||
[33X[0;0YIf two loops have different discriminators, they are not isomorphic. If they
|
||
have identical discriminators, they may or may not be isomorphic.[133X
|
||
|
||
[1X6.11-9 AreEqualDiscriminators[101X
|
||
|
||
[29X[2XAreEqualDiscriminators[102X( [3XD1[103X, [3XD2[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10Y[10Xtrue[110X if [3XD1[103X, [3XD2[103X are equal discriminators for the purposes of
|
||
isomorphism searches.[133X
|
||
|
||
|
||
[1X6.12 [33X[0;0YIsotopisms[133X[101X
|
||
|
||
[33X[0;0YAt the moment, [5XLOOPS[105X contains only slow methods for testing if two loops are
|
||
isotopic. The method works as follows: It is well known that if a loop [22XK[122X is
|
||
isotopic to a loop [22XL[122X then there exist a principal loop isotope [22XP[122X of [22XK[122X such
|
||
that [22XP[122X is isomorphic to [22XL[122X. The algorithm first finds all principal isotopes
|
||
of [22XK[122X, then filters them up to isomorphism, and then checks if any of them is
|
||
isomorphic to [22XL[122X. This is rather slow already for small orders.[133X
|
||
|
||
[1X6.12-1 IsotopismLoops[101X
|
||
|
||
[29X[2XIsotopismLoops[102X( [3XK[103X, [3XL[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10Y[10Xfail[110X if [3XK[103X, [3XL[103X are not isotopic loops, else it returns an isotopism
|
||
as a triple of bijections on [22X1,dots,|[122X[3XK[103X[22X|[122X.[133X
|
||
|
||
[1X6.12-2 LoopsUpToIsotopism[101X
|
||
|
||
[29X[2XLoopsUpToIsotopism[102X( [3Xls[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YGiven a list [3Xls[103X of loops, returns a sublist of [3Xls[103X consisting of
|
||
representatives of isotopism classes of loops from [3Xls[103X.[133X
|
||
|