loops/gap/elements.gi

295 lines
8.7 KiB
Plaintext

#############################################################################
##
#W elements.gd Elements and basic arithmetic operations [loops]
##
#H @(#)$Id: quasigroups.gd, v 3.0.0 2015/06/12 gap Exp $
##
#Y Copyright (C) 2004, G. P. Nagy (University of Szeged, Hungary),
#Y P. Vojtechovsky (University of Denver, USA)
##
#############################################################################
## DISPLAYING AND COMPARING ELEMENTS
## -------------------------------------------------------------------------
InstallMethod( PrintObj, "for a quasigroup element",
[ IsQuasigroupElement ],
function( obj )
local F;
F := FamilyObj( obj );
Print( F!.elmNamePrefix, obj![ 1 ] );
end );
InstallMethod( PrintObj, "for a loop element",
[ IsLoopElement ],
function( obj )
local F;
F := FamilyObj( obj );
Print( F!.elmNamePrefix, obj![ 1 ] );
end );
InstallMethod( \=, "for two elements of a quasigroup",
IsIdenticalObj,
[ IsQuasigroupElement, IsQuasigroupElement ],
function( x, y )
return FamilyObj( x ) = FamilyObj( y ) and x![ 1 ] = y![ 1 ];
end );
InstallMethod( \<, "for two elements of a quasigroup",
IsIdenticalObj,
[ IsQuasigroupElement, IsQuasigroupElement ],
function( x, y )
return FamilyObj( x ) = FamilyObj( y ) and x![ 1 ] < y![ 1 ];
end );
InstallMethod( \., "for quasigroup and positive integer",
[ IsQuasigroup, IsPosInt ],
function( Q, k )
return GeneratorsOfQuasigroup( Q )[ Int( NameRNam( k ) ) ];
end );
#############################################################################
## MULTIPLICATION
## -------------------------------------------------------------------------
## Multiplication without parentheses is evaluated from left to right,
## i.e., a*b*c=(a*b)*c. Powers use binary decomposition.
InstallMethod( \*, "for two quasigroup elements",
IsIdenticalObj,
[ IsQuasigroupElement, IsQuasigroupElement ],
function( x, y )
local F;
F := FamilyObj( x );
return F!.set[ F!.cayleyTable[ x![ 1 ] ][ y![ 1 ] ] ];
end );
InstallOtherMethod( \*, "for a QuasigroupElement and a list",
[ IsQuasigroupElement , IsList ],
function( x, ly )
return List( ly, y -> x*y );
end );
InstallOtherMethod( \*, "for a list and a QuasigroupElement",
[ IsList, IsQuasigroupElement ],
function( lx, y )
return List( lx, x -> x*y );
end );
#############################################################################
## DIVISION
## -------------------------------------------------------------------------
## z=x/y means zy=x
InstallMethod( RightDivision, "for two quasigroup elements",
IsIdenticalObj,
[ IsQuasigroupElement, IsQuasigroupElement ],
function( x, y )
local F, ycol;
F := FamilyObj( x );
ycol := F!.cayleyTable{ [ 1 .. F!.size ] }[ y![ 1 ] ];
return F!.set[ Position( ycol, x![ 1 ] ) ];
end );
InstallOtherMethod( RightDivision,
"for a list and a quasigroup element",
[ IsList, IsQuasigroupElement ],
0,
function( lx, y )
return List( lx, x -> RightDivision(x, y) );
end );
InstallOtherMethod( RightDivision,
"for a quasigroup element and a list",
[ IsQuasigroupElement, IsList ],
0,
function( x, ly )
return List( ly, y -> RightDivision(x, y) );
end );
InstallOtherMethod( \/,
"for two elements of a quasigroup",
IsIdenticalObj,
[ IsQuasigroupElement, IsQuasigroupElement ],
0,
function( x, y )
return RightDivision( x, y );
end );
InstallOtherMethod( \/,
"for a list and a quasigroup element",
[ IsList, IsQuasigroupElement ],
0,
function( lx, y )
return List( lx, x -> RightDivision(x, y) );
end );
InstallOtherMethod( \/,
"for a quasigroup element and a list",
[ IsQuasigroupElement, IsList ],
0,
function( x, ly )
return List( ly, y -> RightDivision(x, y) );
end );
## z = x\y means xz=y
InstallMethod( LeftDivision, "for two quasigroup elements",
IsIdenticalObj,
[ IsQuasigroupElement, IsQuasigroupElement ],
function( x, y )
local F;
F := FamilyObj( x );
return F!.set[ Position( F!.cayleyTable[ x![ 1 ] ], y![ 1 ] ) ];
end );
InstallOtherMethod( LeftDivision,
"for a list and a quasigroup element",
[ IsList, IsQuasigroupElement ],
0,
function( lx, y )
return List( lx, x -> LeftDivision(x, y) );
end );
InstallOtherMethod( LeftDivision,
"for a quasigroup element and a list",
[ IsQuasigroupElement, IsList ],
0,
function( x, ly )
return List( ly, y -> LeftDivision(x, y) );
end );
#############################################################################
##
#O LeftDivisionCayleyTable( Q )
##
## Returns the Cayley table for the operation x\y of the quasigroup <Q>.
InstallMethod( LeftDivisionCayleyTable, "for quasigroup",
[ IsQuasigroup ],
function( Q )
# This would be slow using LeftDivision.
# Must take care of the fact that entries in ct are not necessarily 1..n
local n, ct, pos_in_Q, pos_in_parent, i, t, j;
n := Size( Q );
ct := CayleyTable( Q );
pos_in_Q := 0*[ 1..Size( Parent( Q ) ) ];
pos_in_parent := PosInParent( Q );
for i in pos_in_parent do
pos_in_Q[ i ] := Position( pos_in_parent, i );
od;
t := List( [1..n], i -> 0*[1..n] );
for i in [1..n] do for j in [1..n] do
t[ i ][ pos_in_Q[ ct[ i ][ j ] ] ] := pos_in_parent[ j ];
od; od;
return t;
end );
#############################################################################
##
#O RightDivisionCayleyTable( Q )
##
## Returns the Cayley table for the operation x/y of the quasigroup <Q>.
InstallMethod( RightDivisionCayleyTable, "for quasigroup",
[ IsQuasigroup ],
function( Q )
# This would be slow using RightDivision.
# Must take care of the fact that entries in ct are not necessarily 1..n
local n, ct, pos_in_Q, pos_in_parent, i, t, j;
n := Size( Q );
ct := CayleyTable( Q );
pos_in_Q := 0*[ 1..Size( Parent( Q ) ) ];
pos_in_parent := PosInParent( Q );
for i in pos_in_parent do
pos_in_Q[ i ] := Position( pos_in_parent, i );
od;
t := List( [1..n], i -> 0*[1..n] );
for i in [1..n] do for j in [1..n] do
t[ pos_in_Q[ ct[ i ][ j ] ] ][ j ] := pos_in_parent[ i ];
od; od;
return t;
end );
#############################################################################
## POWERS AND INVERSES
## -------------------------------------------------------------------------
InstallMethod( \^, "for a quasigroup element and a permutation",
[ IsQuasigroupElement, IsPerm ],
function( x, p )
local F;
F := FamilyObj( x );
return F!.set[ ( x![ 1 ] )^p ];
end );
InstallMethod( OneOp, "for loop elements",
[ IsLoopElement ],
function( x )
local F;
F := FamilyObj( x );
return F!.set[ 1 ];
end );
#############################################################################
##
#A LeftInverse( <x> )
##
## If <x> is a loop element, returns the left inverse of <x>
InstallMethod( LeftInverse, "for loop elements",
[ IsLoopElement ],
x -> RightDivision( One( x ), x )
);
#############################################################################
##
#A RightInverse( <x> )
##
## If <x> is a loop element, returns the left inverse of <x>
InstallMethod( RightInverse, "for loop elements",
[ IsLoopElement ],
x -> LeftDivision( x, One( x ) )
);
InstallMethod( InverseOp, "for loop elements",
[ IsLoopElement ],
function( x )
local y;
y := RightInverse( x );
if y = LeftInverse( x ) then return y; fi;
return fail;
end );
#############################################################################
## ASSOCIATORS AND COMMUTATORS
## -------------------------------------------------------------------------
#############################################################################
##
#O Associator( x, y , z )
##
## When <x>, <y>, <z> are elements of a quasigroup Q, returns the
## associator of <x>, <y>, <z>, i.e., the unique element u satisfying
## (xy)z = (x(yz))u.
InstallMethod( Associator, "for three quasigroup elements",
[ IsQuasigroupElement, IsQuasigroupElement, IsQuasigroupElement ],
function( x, y, z )
return LeftDivision( x*(y*z), (x*y)*z );
end);
#############################################################################
##
#O Commutator( x, y )
##
## When <x>, <y> are elements of a quasigroup Q, returns the
## commutator of <x>, <y>, i.e., the unique element u satisfying
## (xy) = (yx)u.
InstallMethod( Commutator, "for two quasigroup elements",
[ IsQuasigroupElement, IsQuasigroupElement ],
function( x, y )
return LeftDivision( y*x, x*y );
end);