174 lines
8.7 KiB
Plaintext
174 lines
8.7 KiB
Plaintext
|
||
[1X5 [33X[0;0YBasic Methods And Attributes[133X[101X
|
||
|
||
[33X[0;0YIn this chapter we describe the basic core methods and attributes of the
|
||
[5XLOOPS[105X package.[133X
|
||
|
||
|
||
[1X5.1 [33X[0;0YBasic Attributes[133X[101X
|
||
|
||
[33X[0;0YWe associate many attributes with quasigroups in order to speed up
|
||
computation. This section lists some basic attributes of quasigroups and
|
||
loops.[133X
|
||
|
||
[1X5.1-1 Elements[101X
|
||
|
||
[29X[2XElements[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe list of elements of a quasigroup [3XQ[103X.[133X
|
||
|
||
[33X[0;0YSee Section [14X3.4[114X for more information about element labels.[133X
|
||
|
||
[1X5.1-2 CayleyTable[101X
|
||
|
||
[29X[2XCayleyTable[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe Cayley table of a quasigroup [3XQ[103X.[133X
|
||
|
||
[33X[0;0YSee Section [14X4.1[114X for more information about quasigroup Cayley tables.[133X
|
||
|
||
[1X5.1-3 One[101X
|
||
|
||
[29X[2XOne[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe identity element of a loop [3XQ[103X.[133X
|
||
|
||
[33X[0;0Y[12XRemark:[112XIf you want to know if a quasigroup [3XQ[103X has a neutral element, you can
|
||
find out with the standard function for magmas
|
||
[10XMultiplicativeNeutralElement([3XQ[103X[10X)[110X.[133X
|
||
|
||
[1X5.1-4 Size[101X
|
||
|
||
[29X[2XSize[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe size of a quasigroup [3XQ[103X.[133X
|
||
|
||
[1X5.1-5 Exponent[101X
|
||
|
||
[29X[2XExponent[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YThe exponent of a power associative loop [3XQ[103X. (The method does not
|
||
test if [3XQ[103X is power associative.)[133X
|
||
|
||
[33X[0;0YWhen [3XQ[103X is a [13Xpower associative loop[113X, that is, the powers of elements are
|
||
well-defined in [3XQ[103X, then the [13Xexponent[113X of [3XQ[103X is the smallest positive integer
|
||
divisible by the orders of all elements of [3XQ[103X.[133X
|
||
|
||
|
||
[1X5.2 [33X[0;0YBasic Arithmetic Operations[133X[101X
|
||
|
||
[33X[0;0YEach quasigroup element in [5XGAP[105X knows to which quasigroup it belongs. It is
|
||
therefore possible to perform arithmetic operations with quasigroup elements
|
||
without referring to the quasigroup. All elements involved in the
|
||
calculation must belong to the same quasigroup.[133X
|
||
|
||
[33X[0;0YTwo elements [22Xx[122X, [22Xy[122X of the same quasigroup are multiplied by [22Xx*y[122X in [5XGAP[105X. Since
|
||
multiplication of at least three elements is ambiguous in the nonassociative
|
||
case, we parenthesize elements by default from left to right, i.e., [22Xx*y*z[122X
|
||
means [22X((x*y)*z)[122X. Of course, one can specify the order of multiplications by
|
||
providing parentheses.[133X
|
||
|
||
|
||
[1X5.2-1 [33X[0;0YLeftDivision and RightDivision[133X[101X
|
||
|
||
[29X[2XLeftDivision[102X( [3Xx[103X, [3Xy[103X ) [32X operation
|
||
[29X[2XRightDivision[102X( [3Xx[103X, [3Xy[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe left division [3Xx[103X[22Xbackslash[122X[3Xy[103X (resp. the right division [3Xx[103X[22X/[122X[3Xy[103X) of
|
||
two elements [3Xx[103X, [3Xy[103X of the same quasigroup.[133X
|
||
|
||
[29X[2XLeftDivision[102X( [3XS[103X, [3Xx[103X ) [32X operation
|
||
[29X[2XLeftDivision[102X( [3Xx[103X, [3XS[103X ) [32X operation
|
||
[29X[2XRightDivision[102X( [3XS[103X, [3Xx[103X ) [32X operation
|
||
[29X[2XRightDivision[102X( [3Xx[103X, [3XS[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe list of elements obtained by performing the specified
|
||
arithmetical operation elementwise using a list [3XS[103X of elements and
|
||
an element [3Xx[103X.[133X
|
||
|
||
[33X[0;0Y[12XRemark:[112X We support [22X/[122X in place of [10XRightDivision[110X. But we do not support
|
||
[22Xbackslash[122X in place of [10XLeftDivision[110X.[133X
|
||
|
||
|
||
[1X5.2-2 [33X[0;0YLeftDivisionCayleyTable and RightDivisionCayleyTable[133X[101X
|
||
|
||
[29X[2XLeftDivisionCayleyTable[102X( [3XQ[103X ) [32X operation
|
||
[29X[2XRightDivisionCayleyTable[102X( [3XQ[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe Cayley table of the respective arithmetic operation of a
|
||
quasigroup [3XQ[103X.[133X
|
||
|
||
|
||
[1X5.3 [33X[0;0YPowers and Inverses[133X[101X
|
||
|
||
[33X[0;0YPowers of elements are generally not well-defined in quasigroups. For magmas
|
||
and a positive integral exponent, [5XGAP[105X calculates powers in the following
|
||
way: [22Xx^1=x[122X, [22Xx^2k=(x^k)⋅(x^k)[122X and [22Xx^2k+1=(x^2k)⋅ x[122X. One can easily see that
|
||
this returns [22Xx^k[122X in about [22Xlog_2(k)[122X steps. For [5XLOOPS[105X, we have decided to keep
|
||
this method, but the user should be aware that the method is sound only in
|
||
power associative quasigroups.[133X
|
||
|
||
[33X[0;0YLet [22Xx[122X be an element of a loop [22XQ[122X with neutral element [22X1[122X. Then the [13Xleft
|
||
inverse[113X [22Xx^λ[122X of [22Xx[122X is the unique element of [22XQ[122X satisfying [22Xx^λ x=1[122X. Similarly,
|
||
the [13Xright inverse[113X [22Xx^ρ[122X satisfies [22Xxx^ρ=1[122X. If [22Xx^λ=x^ρ[122X, we call [22Xx^-1=x^λ=x^ρ[122X the
|
||
[13Xinverse[113X of [22Xx[122X.[133X
|
||
|
||
|
||
[1X5.3-1 [33X[0;0YLeftInverse, RightInverse and Inverse[133X[101X
|
||
|
||
[29X[2XLeftInverse[102X( [3Xx[103X ) [32X operation
|
||
[29X[2XRightInverse[102X( [3Xx[103X ) [32X operation
|
||
[29X[2XInverse[102X( [3Xx[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe left inverse, right inverse and inverse, respectively, of the
|
||
quasigroup element [3Xx[103X.[133X
|
||
|
||
[4X[32X Example [32X[104X
|
||
[4X[25Xgap>[125X [27XCayleyTable( Q );
|
||
[127X[104X
|
||
[4X[28X[ [ 1, 2, 3, 4, 5 ],
|
||
[128X[104X
|
||
[4X[28X [ 2, 1, 4, 5, 3 ],
|
||
[128X[104X
|
||
[4X[28X [ 3, 4, 5, 1, 2 ],
|
||
[128X[104X
|
||
[4X[28X [ 4, 5, 2, 3, 1 ],
|
||
[128X[104X
|
||
[4X[28X [ 5, 3, 1, 2, 4 ] ]
|
||
[128X[104X
|
||
[4X[25Xgap>[125X [27Xelms := Elements( Q );
|
||
[127X[104X
|
||
[4X[25Xgap>[125X [27X[ l1, l2, l3, l4, l5 ];
|
||
[127X[104X
|
||
[4X[25Xgap>[125X [27X[ LeftInverse( elms[3] ), RightInverse( elms[3] ), Inverse( elms[3] ) ];
|
||
[127X[104X
|
||
[4X[28X[ l5, l4, fail ]
|
||
[128X[104X
|
||
[4X[32X[104X
|
||
|
||
|
||
[1X5.4 [33X[0;0YAssociators and Commutators[133X[101X
|
||
|
||
[33X[0;0YSee Section [14X2.5[114X for definitions of associators and commutators.[133X
|
||
|
||
[1X5.4-1 Associator[101X
|
||
|
||
[29X[2XAssociator[102X( [3Xx[103X, [3Xy[103X, [3Xz[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe associator of the elements [3Xx[103X, [3Xy[103X, [3Xz[103X of the same quasigroup.[133X
|
||
|
||
[1X5.4-2 Commutator[101X
|
||
|
||
[29X[2XCommutator[102X( [3Xx[103X, [3Xy[103X ) [32X operation
|
||
[6XReturns:[106X [33X[0;10YThe commutator of the elements [3Xx[103X, [3Xy[103X of the same quasigroup.[133X
|
||
|
||
|
||
[1X5.5 [33X[0;0YGenerators[133X[101X
|
||
|
||
|
||
[1X5.5-1 [33X[0;0YGeneratorsOfQuasigroup and GeneratorsOfLoop[133X[101X
|
||
|
||
[29X[2XGeneratorsOfQuasigroup[102X( [3XQ[103X ) [32X attribute
|
||
[29X[2XGeneratorsOfLoop[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YA set of generators of a quasigroup (resp. loop) [3XQ[103X. (Both methods
|
||
are synonyms of [10XGeneratorsOfMagma[110X.)[133X
|
||
|
||
[33X[0;0YAs usual in [5XGAP[105X, one can refer to the [10Xi[110Xth generator of a quasigroup [10XQ[110X by
|
||
[10XQ.i[110X. Note that while it is often the case that [10X Q.i = Elements(Q)[i][110X, it is
|
||
not necessarily so.[133X
|
||
|
||
[1X5.5-2 GeneratorsSmallest[101X
|
||
|
||
[29X[2XGeneratorsSmallest[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YA generating set [22X{q_0[122X, [22Xdots[122X, [22Xq_m}[122X of [3XQ[103X such that [22XQ_0=∅[122X, [22XQ_m=[122X[3XQ[103X,
|
||
[22XQ_i=⟨ q_1[122X, [22Xdots[122X, [22Xq_i ⟩[122X, and [22Xq_i+1[122X is the least element of [3XQ[103X[22X∖ Q_i[122X.[133X
|
||
|
||
[1X5.5-3 SmallGeneratingSet[101X
|
||
|
||
[29X[2XSmallGeneratingSet[102X( [3XQ[103X ) [32X attribute
|
||
[6XReturns:[106X [33X[0;10YA small generating set [22X{q_0[122X, [22Xdots[122X, [22Xq_m}[122X of [3XQ[103X obtained as follows:
|
||
[22Xq_0[122X is the least element for which [22X⟨ q_0⟩[122X is largest possible,
|
||
[22Xq_1[122X$ is the least element for which [22X⟨ q_0,q_1[122X is largest possible,
|
||
and so on.[133X
|
||
|