loops/doc/chapBib.txt
2017-10-16 21:43:09 +02:00

104 lines
5.9 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

References
[Art15] Artic, K., On conjugacy closed loops and conjugacy closed loop
folders, Ph.D. thesis, RWTH Aachen University (2015).
[Art59] Artzy, R., On automorphic-inverse properties in loops, Proc. Amer.
Math. Soc., 10 (1959), 588591.
[Bru58] Bruck, R. H., A survey of binary systems, Springer Verlag,
Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 20.
Reihe: Gruppentheorie, Berlin (1958), viii+185 pages.
[BP56] Bruck, R. H. and Paige, L. J., Loops whose inner mappings are
automorphisms, Ann. of Math. (2), 63 (1956), 308323.
[CR99] Colbourn, C. J. and Rosa, A., Triple systems, The Clarendon Press
Oxford University Press, Oxford Mathematical Monographs, New York (1999),
xvi+560 pages.
[CD05] Csörgő, P. and Drápal, A., Left conjugacy closed loops of nilpotency
class two, Results Math., 47, 3-4 (2005), 242265.
[DV09] Daly, D. and Vojtěchovský, P., Enumeration of nilpotent loops via
cohomology, J. Algebra, 322, 11 (2009), 40804098.
[BGV12] De Barros, D. A. S., Grishkov, A. and Vojtěchovský, P., Commutative
automorphic loops of order p^3, J. Algebra Appl., 11, 5 (2012), 1250100, 15.
[Drá03] Drápal, A., Cyclic and dihedral constructions of even order,
Comment. Math. Univ. Carolin., 44, 4 (2003), 593614.
[DV06] Drápal, A. and Vojtěchovský, P., Moufang loops that share associator
and three quarters of their multiplication tables, Rocky Mountain J. Math.,
36, 2 (2006), 425455.
[Fen69] Fenyves, F., Extra loops. II. On loops with identities of
Bol-Moufang type, Publ. Math. Debrecen, 16 (1969), 187192.
[GMR99] Goodaire, E. G., May, S. and Raman, M., The Moufang loops of order
less than 64, Nova Science Publishers Inc., Commack, NY (1999), xviii+287
pages.
[GKN14] Grishkov, A., Kinyon, M. and Nagy, G. P., Solvability of commutative
automorphic loops, Proc. Amer. Math. Soc., 142, 9 (2014), 30293037.
[JM96] Jacobson, M. T. and Matthews, P., Generating uniformly distributed
random Latin squares, J. Combin. Des., 4, 6 (1996), 405437.
[JKV12] Jedlička, P., Kinyon, M. and Vojtěchovský, P., Nilpotency in
automorphic loops of prime power order, J. Algebra, 350 (2012), 6476.
[JKNV11] Johnson, K. W., Kinyon, M. K., Nagy, G. P. and Vojtěchovský, P.,
Searching for small simple automorphic loops, LMS J. Comput. Math., 14
(2011), 200213.
[KKP02] Kinyon, M. K., Kunen, K. and Phillips, J. D., Every diassociative
A-loop is Moufang, Proc. Amer. Math. Soc., 130, 3 (2002), 619624.
[KKPV16] Kinyon, M. K., Kunen, K., Phillips, J. D. and Vojtěchovský, P., The
structure of automorphic loops, Trans. Amer. Math. Soc., 368, 12 (2016),
89018927.
[KNV15] Kinyon, M. K., Nagy, G. P. and Vojtěchovský, P., Bol loops and Bruck
loops of order pq,  (2015), ((preprint)).
[Kun00] Kunen, K., The structure of conjugacy closed loops, Trans. Amer.
Math. Soc., 352, 6 (2000), 28892911.
[Lie87] Liebeck, M. W., The classification of finite simple Moufang loops,
Math. Proc. Cambridge Philos. Soc., 102, 1 (1987), 3347.
[Moo] Moorhouse, G. E., Bol loops of small order,
((http://www.uwyo.edu/moorhouse/pub/bol/)).
[NV03] Nagy, G. P. and Vojtěchovský, P., Octonions, simple Moufang loops and
triality, Quasigroups Related Systems, 10 (2003), 6594.
[NV07] Nagy, G. P. and Vojtěchovský, P., The Moufang loops of order 64 and
81, J. Symbolic Comput., 42, 9 (2007), 871883.
[Pfl90] Pflugfelder, H. O., Quasigroups and loops: introduction, Heldermann
Verlag, Sigma Series in Pure Mathematics, 7, Berlin (1990), viii+147 pages.
[PV05] Phillips, J. D. and Vojtěchovský, P., The varieties of loops of
Bol-Moufang type, Algebra Universalis, 54, 3 (2005), 259271.
[SZ12] Slattery, M. and Zenisek, A., Moufang loops of order 243,
Commentationes Mathematicae Universitatis Carolinae, 53, 3 (2012), 423428.
[Voj06] Vojtěchovský, P., Toward the classification of Moufang loops of
order 64, European J. Combin., 27, 3 (2006), 444460.
[Voj15] Vojtěchovský, P., Three lectures on automorphic loops, Quasigroups
Related Systems, 23, 1 (2015), 129163.
[WJ75] Wilson Jr., R. L., Quasidirect products of quasigroups, Comm.
Algebra, 3, 9 (1975), 835850.