f64208f12f
These are simply the changes as distributed.
439 lines
13 KiB
Plaintext
439 lines
13 KiB
Plaintext
|
||
|
||
[1XIndex[101X
|
||
|
||
[2XAllLoopsWithMltGroup[102X 8.4-5
|
||
[2XAllLoopTablesInGroup[102X 8.4-1
|
||
[2XAllProperLoopTablesInGroup[102X 8.4-2
|
||
[2XAllSubloops[102X 6.2-5
|
||
[2XAllSubquasigroups[102X 6.2-4
|
||
alternative loop 7.4
|
||
alternative loop, left 7.4
|
||
alternative loop, right 7.4
|
||
antiautomorphic inverse property 7.2-5
|
||
[2XAreEqualDiscriminators[102X 6.11-11
|
||
[2XAssociatedLeftBruckLoop[102X 8.1-1
|
||
[2XAssociatedRightBruckLoop[102X 8.1-1
|
||
associator 2.5
|
||
[2XAssociator[102X 5.4-1
|
||
associator subloop 2.5
|
||
[2XAssociatorSubloop[102X 6.6-5
|
||
automorphic inverse property 7.2-4
|
||
automorphic loop 7.7
|
||
automorphic loop, left 7.7
|
||
automorphic loop, middle 7.7
|
||
automorphic loop, right 7.7
|
||
[2XAutomorphicLoop[102X 9.11-1
|
||
[2XAutomorphismGroup[102X 6.11-5
|
||
Bol loop, left 3.3
|
||
Bol loop, left 7.4
|
||
Bol loop, left 8.1-1
|
||
Bol loop, right 7.4
|
||
Bruck loop, associated left 8.1-1
|
||
Bruck loop, left 7.8-3
|
||
Bruck loop, right 7.8-4
|
||
C loop 7.4
|
||
[2XCanonicalCayleyTable[102X 4.3-1
|
||
[2XCanonicalCopy[102X 4.3-2
|
||
Cayley table 4.1
|
||
Cayley table, canonical 4.3-1
|
||
[2XCayleyTable[102X 5.1-2
|
||
[2XCayleyTableByPerms[102X 4.6-1
|
||
[2XCCLoop[102X 9.7-3
|
||
center 2.3
|
||
[2XCenter[102X 6.6-4
|
||
central series, lower 6.9-5
|
||
central series, upper 2.4
|
||
Chein loop 8.2-3
|
||
cocycle 4.8
|
||
code loop 7.8-1
|
||
[2XCodeLoop[102X 9.5-1
|
||
commutant 2.3
|
||
[2XCommutant[102X 6.6-3
|
||
commutator 2.5
|
||
[2XCommutator[102X 5.4-2
|
||
conjugacy closed loop 7.6
|
||
conjugacy closed loop, left 7.6
|
||
conjugacy closed loop, right 7.6
|
||
[2XConjugacyClosedLoop[102X 9.7-3
|
||
conjugation 6.5
|
||
coset 6.2-6
|
||
derived series 2.4
|
||
derived subloop 2.4
|
||
[2XDerivedLength[102X 6.10-3
|
||
[2XDerivedSubloop[102X 6.10-2
|
||
diassociative quasigroup 7.1-4
|
||
[2XDirectProduct[102X 4.11-1
|
||
[2XDiscriminator[102X 6.11-10
|
||
[2XDisplayLibraryInfo[102X 9.1-3
|
||
distributive quasigroup 7.3-6
|
||
distributive quasigroup, left 7.3-6
|
||
distributive quasigroup, right 7.3-6
|
||
division, left 2.2
|
||
division, right 2.2
|
||
[2XElements[102X 5.1-1
|
||
entropic quasigroup 7.3-7
|
||
exact group factorization 8.1-2
|
||
[2XExponent[102X 5.1-5
|
||
exponent 5.1-5
|
||
extension 4.8
|
||
extension, nuclear 4.8
|
||
extra loop 7.4
|
||
[2XFactorLoop[102X 6.8-1
|
||
flexible loop 7.4
|
||
folder, quasigroup 4.7
|
||
Frattini subloop 6.10-4
|
||
[2XFrattinifactorSize[102X 6.10-5
|
||
[2XFrattiniSubloop[102X 6.10-4
|
||
[2XGeneratorsOfLoop[102X 5.5-1
|
||
[2XGeneratorsOfQuasigroup[102X 5.5-1
|
||
[2XGeneratorsSmallest[102X 5.5-2
|
||
group 2.1
|
||
group with triality 8.3
|
||
groupoid 2.1
|
||
[2XHasAntiautomorphicInverseProperty[102X 7.2-5
|
||
[2XHasAutomorphicInverseProperty[102X 7.2-4
|
||
[2XHasInverseProperty[102X 7.2-1
|
||
[2XHasLeftInverseProperty[102X 7.2-1
|
||
[2XHasRightInverseProperty[102X 7.2-1
|
||
[2XHasTwosidedInverses[102X 7.2-2
|
||
[2XHasWeakInverseProperty[102X 7.2-3
|
||
homomorphism 2.6
|
||
homotopism 2.6
|
||
idempotent quasigroup 7.3-3
|
||
identity, element 2.1
|
||
identity, of Bol-Moufang type 7.4
|
||
inner mapping, left 6.5
|
||
inner mapping, middle 6.5
|
||
inner mapping, right 6.5
|
||
inner mapping group 2.2
|
||
inner mapping group, left 2.2
|
||
inner mapping group, middle 6.5
|
||
inner mapping group, right 2.2
|
||
[2XInnerMappingGroup[102X 6.5-3
|
||
[2XInterestingLoop[102X 9.12-1
|
||
[2XIntoGroup[102X 4.10-4
|
||
[2XIntoLoop[102X 4.10-3
|
||
[2XIntoQuasigroup[102X 4.10-1
|
||
inverse 5.3
|
||
[2XInverse[102X 5.3-1
|
||
inverse, left 5.3
|
||
inverse, left 7.2
|
||
inverse, right 5.3
|
||
inverse, right 7.2
|
||
inverse, two-sided 2.1
|
||
inverse, two-sided 7.2-2
|
||
inverse property 7.2-1
|
||
inverse property, antiautomorphic 7.2-5
|
||
inverse property, automorphic 7.2-4
|
||
inverse property, left 7.2-1
|
||
inverse property, right 7.2-1
|
||
inverse property, weak 7.2-3
|
||
[2XIsALoop[102X 7.7-4
|
||
[2XIsAlternative[102X 7.4-15
|
||
[2XIsAssociative[102X 7.1-1
|
||
[2XIsAutomorphicLoop[102X 7.7-4
|
||
[2XIsCCLoop[102X 7.6-3
|
||
[2XIsCLoop[102X 7.4-3
|
||
[2XIsCodeLoop[102X 7.8-1
|
||
[2XIsCommutative[102X 7.1-2
|
||
[2XIsConjugacyClosedLoop[102X 7.6-3
|
||
[2XIsDiassociative[102X 7.1-4
|
||
[2XIsDistributive[102X 7.3-6
|
||
[2XIsEntropic[102X 7.3-7
|
||
[2XIsExactGroupFactorization[102X 8.1-2
|
||
[2XIsExtraLoop[102X 7.4-1
|
||
[2XIsFlexible[102X 7.4-12
|
||
[2XIsIdempotent[102X 7.3-3
|
||
[2XIsLCCLoop[102X 7.6-1
|
||
[2XIsLCLoop[102X 7.4-6
|
||
[2XIsLeftALoop[102X 7.7-1
|
||
[2XIsLeftAlternative[102X 7.4-13
|
||
[2XIsLeftAutomorphicLoop[102X 7.7-1
|
||
[2XIsLeftBolLoop[102X 7.4-4
|
||
[2XIsLeftBruckLoop[102X 7.8-3
|
||
[2XIsLeftConjugacyClosedLoop[102X 7.6-1
|
||
[2XIsLeftDistributive[102X 7.3-6
|
||
[2XIsLeftKLoop[102X 7.8-3
|
||
[2XIsLeftNuclearSquareLoop[102X 7.4-8
|
||
[2XIsLeftPowerAlternative[102X 7.5-1
|
||
IsLoop 3.1
|
||
[2XIsLoopCayleyTable[102X 4.2-2
|
||
IsLoopElement 3.1
|
||
[2XIsLoopTable[102X 4.2-2
|
||
[2XIsMedial[102X 7.3-7
|
||
[2XIsMiddleALoop[102X 7.7-2
|
||
[2XIsMiddleAutomorphicLoop[102X 7.7-2
|
||
[2XIsMiddleNuclearSquareLoop[102X 7.4-9
|
||
[2XIsMoufangLoop[102X 7.4-2
|
||
[2XIsNilpotent[102X 6.9-1
|
||
[2XIsNormal[102X 6.7-1
|
||
[2XIsNuclearSquareLoop[102X 7.4-11
|
||
[2XIsomorphicCopyByNormalSubloop[102X 6.11-9
|
||
[2XIsomorphicCopyByPerm[102X 6.11-8
|
||
isomorphism 2.6
|
||
[2XIsomorphismLoops[102X 6.11-2
|
||
[2XIsomorphismQuasigroups[102X 6.11-1
|
||
[2XIsOsbornLoop[102X 7.6-4
|
||
isotopism 2.6
|
||
isotopism, principal 2.6
|
||
[2XIsotopismLoops[102X 6.12-1
|
||
[2XIsPowerAlternative[102X 7.5-1
|
||
[2XIsPowerAssociative[102X 7.1-3
|
||
IsQuasigroup 3.1
|
||
[2XIsQuasigroupCayleyTable[102X 4.2-1
|
||
IsQuasigroupElement 3.1
|
||
[2XIsQuasigroupTable[102X 4.2-1
|
||
[2XIsRCCLoop[102X 7.6-2
|
||
[2XIsRCLoop[102X 7.4-7
|
||
[2XIsRightALoop[102X 7.7-3
|
||
[2XIsRightAlternative[102X 7.4-14
|
||
[2XIsRightAutomorphicLoop[102X 7.7-3
|
||
[2XIsRightBolLoop[102X 7.4-5
|
||
[2XIsRightBruckLoop[102X 7.8-4
|
||
[2XIsRightConjugacyClosedLoop[102X 7.6-2
|
||
[2XIsRightDistributive[102X 7.3-6
|
||
[2XIsRightKLoop[102X 7.8-4
|
||
[2XIsRightNuclearSquareLoop[102X 7.4-10
|
||
[2XIsRightPowerAlternative[102X 7.5-1
|
||
[2XIsSemisymmetric[102X 7.3-1
|
||
[2XIsSimple[102X 6.7-3
|
||
[2XIsSolvable[102X 6.10-1
|
||
[2XIsSteinerLoop[102X 7.8-2
|
||
[2XIsSteinerQuasigroup[102X 7.3-4
|
||
[2XIsStronglyNilpotent[102X 6.9-3
|
||
[2XIsSubloop[102X 6.2-3
|
||
[2XIsSubquasigroup[102X 6.2-3
|
||
[2XIsTotallySymmetric[102X 7.3-2
|
||
[2XIsUnipotent[102X 7.3-5
|
||
[2XItpSmallLoop[102X 9.13-1
|
||
K loop, left 7.8-3
|
||
K loop, right 7.8-4
|
||
latin square 2.1
|
||
latin square 4.1
|
||
latin square, random 4.9
|
||
LC loop 7.4
|
||
[2XLCCLoop[102X 9.7-2
|
||
[2XLeftBolLoop[102X 9.2-1
|
||
[2XLeftBruckLoop[102X 9.3-1
|
||
[2XLeftConjugacyClosedLoop[102X 9.7-2
|
||
[2XLeftDivision[102X 5.2-1
|
||
[2XLeftDivision[102X 5.2-1
|
||
[2XLeftDivision[102X 5.2-1
|
||
[2XLeftDivisionCayleyTable[102X 5.2-2
|
||
[2XLeftInnerMapping[102X 6.5-1
|
||
[2XLeftInnerMappingGroup[102X 6.5-2
|
||
[2XLeftInverse[102X 5.3-1
|
||
[2XLeftMultiplicationGroup[102X 6.4-1
|
||
[2XLeftNucleus[102X 6.6-1
|
||
[2XLeftSection[102X 6.3-2
|
||
[2XLeftTranslation[102X 6.3-1
|
||
[2XLibraryLoop[102X 9.1-1
|
||
loop 2.1
|
||
loop, C 7.4
|
||
loop, Chein 8.2-3
|
||
loop, LC 7.4
|
||
loop, Moufang 7.4
|
||
loop, Osborn 7.6-4
|
||
loop, Paige 9.9
|
||
loop, RC 7.4
|
||
loop, Steiner 7.8-2
|
||
loop, alternative 7.4
|
||
loop, associated left Bruck 8.1-1
|
||
loop, automorphic 7.7
|
||
loop, code 7.8-1
|
||
loop, conjugacy closed 7.6
|
||
loop, extra 7.4
|
||
loop, flexible 7.4
|
||
loop, left Bol 3.3
|
||
loop, left Bol 7.4
|
||
loop, left Bol 8.1-1
|
||
loop, left Bruck 7.8-3
|
||
loop, left K 7.8-3
|
||
loop, left alternative 7.4
|
||
loop, left automorphic 7.7
|
||
loop, left conjugacy closed 7.6
|
||
loop, left nuclear square 7.4
|
||
loop, left power alternative 7.5
|
||
loop, middle automorphic 7.7
|
||
loop, middle nuclear square 7.4
|
||
loop, nilpotent 2.4
|
||
loop, nilpotent 4.9-2
|
||
loop, nuclear square 7.4
|
||
loop, octonion 9.4-1
|
||
loop, of Bol-Moufang type 7.4
|
||
loop, power alternative 7.5
|
||
loop, power associative 5.1-5
|
||
loop, right Bol 7.4
|
||
loop, right Bruck 7.8-4
|
||
loop, right K 7.8-4
|
||
loop, right alternative 7.4
|
||
loop, right automorphic 7.7
|
||
loop, right conjugacy closed 7.6
|
||
loop, right nuclear square 7.4
|
||
loop, right power alternative 7.5
|
||
loop, sedenion 9.12
|
||
loop, simple 3.3
|
||
loop, simple 6.7-3
|
||
loop, solvable 2.4
|
||
loop, strongly nilpotent 6.9-3
|
||
loop isotope, principal 2.6
|
||
loop table 4.1
|
||
[2XLoopByCayleyTable[102X 4.4-1
|
||
[2XLoopByCyclicModification[102X 8.2-1
|
||
[2XLoopByDihedralModification[102X 8.2-2
|
||
[2XLoopByExtension[102X 4.8-2
|
||
[2XLoopByLeftSection[102X 4.6-2
|
||
[2XLoopByRightFolder[102X 4.7-1
|
||
[2XLoopByRightSection[102X 4.6-3
|
||
[2XLoopFromFile[102X 4.5-1
|
||
[2XLoopIsomorph[102X 6.11-7
|
||
[2XLoopMG2[102X 8.2-3
|
||
[2XLoopsUpToIsomorphism[102X 6.11-4
|
||
[2XLoopsUpToIsotopism[102X 6.12-2
|
||
[2XLowerCentralSeries[102X 6.9-5
|
||
magma 2.1
|
||
medial quasigroup 7.3-7
|
||
[2XMiddleInnerMapping[102X 6.5-1
|
||
[2XMiddleInnerMappingGroup[102X 6.5-2
|
||
[2XMiddleNucleus[102X 6.6-1
|
||
modification, Moufang 8.2
|
||
modification, cyclic 8.2-1
|
||
modification, dihedral 8.2-2
|
||
Moufang loop 7.4
|
||
[2XMoufangLoop[102X 9.4-1
|
||
multiplication group 2.2
|
||
multiplication group, left 2.2
|
||
multiplication group, relative 6.4-2
|
||
multiplication group, relative left 6.4-2
|
||
multiplication group, relative right 6.4-2
|
||
multiplication group, right 2.2
|
||
multiplication table 4.1
|
||
[2XMultiplicationGroup[102X 6.4-1
|
||
[2XMyLibraryLoop[102X 9.1-2
|
||
[2XNaturalHomomorphismByNormalSubloop[102X 6.8-2
|
||
neutral element 2.1
|
||
nilpotence class 2.4
|
||
[2XNilpotencyClassOfLoop[102X 6.9-2
|
||
nilpotent loop 2.4
|
||
nilpotent loop, strongly 6.9-3
|
||
[2XNilpotentLoop[102X 9.10-1
|
||
normal closure 6.7-2
|
||
normal subloop 6.7-1
|
||
[2XNormalClosure[102X 6.7-2
|
||
[2XNormalizedQuasigroupTable[102X 4.3-3
|
||
[2XNuc[102X 6.6-2
|
||
nuclear square loop 7.4
|
||
nuclear square loop, left 7.4
|
||
nuclear square loop, middle 7.4
|
||
nuclear square loop, right 7.4
|
||
[2XNuclearExtension[102X 4.8-1
|
||
nucleus 2.3
|
||
nucleus, left 2.3
|
||
nucleus, middle 2.3
|
||
nucleus, right 2.3
|
||
[2XNucleusOfLoop[102X 6.6-2
|
||
[2XNucleusOfQuasigroup[102X 6.6-2
|
||
octonion loop 9.4-1
|
||
[2XOne[102X 5.1-3
|
||
[2XOneLoopTableInGroup[102X 8.4-3
|
||
[2XOneLoopWithMltGroup[102X 8.4-6
|
||
[2XOneProperLoopTableInGroup[102X 8.4-4
|
||
[2XOpposite[102X 4.12-1
|
||
opposite quasigroup 4.12
|
||
[2XOppositeLoop[102X 4.12-1
|
||
[2XOppositeQuasigroup[102X 4.12-1
|
||
Osborn loop 7.6-4
|
||
Paige loop 9.9
|
||
[2XPaigeLoop[102X 9.9-1
|
||
[2XParent[102X 6.1-1
|
||
[2XPosInParent[102X 6.1-3
|
||
[2XPosition[102X 6.1-2
|
||
power alternative loop 7.5
|
||
power alternative loop, left 7.5
|
||
power alternative loop, right 7.5
|
||
power associative loop 5.1-5
|
||
power associative quasigroup 7.1-3
|
||
[2XPrincipalLoopIsotope[102X 4.10-2
|
||
quasigroup 2.1
|
||
quasigroup, Steiner 7.3-4
|
||
quasigroup, diassociative 7.1-4
|
||
quasigroup, distributive 7.3-6
|
||
quasigroup, entropic 7.3-7
|
||
quasigroup, idempotent 7.3-3
|
||
quasigroup, left distributive 7.3-6
|
||
quasigroup, medial 7.3-7
|
||
quasigroup, opposite 4.12
|
||
quasigroup, power associative 7.1-3
|
||
quasigroup, right distributive 7.3-6
|
||
quasigroup, semisymmetric 7.3-1
|
||
quasigroup, totally symmetric 7.3-2
|
||
quasigroup, unipotent 7.3-5
|
||
quasigroup table 4.1
|
||
[2XQuasigroupByCayleyTable[102X 4.4-1
|
||
[2XQuasigroupByLeftSection[102X 4.6-2
|
||
[2XQuasigroupByRightFolder[102X 4.7-1
|
||
[2XQuasigroupByRightSection[102X 4.6-3
|
||
[2XQuasigroupFromFile[102X 4.5-1
|
||
[2XQuasigroupIsomorph[102X 6.11-6
|
||
[2XQuasigroupsUpToIsomorphism[102X 6.11-3
|
||
[2XRandomLoop[102X 4.9-1
|
||
[2XRandomNilpotentLoop[102X 4.9-2
|
||
[2XRandomQuasigroup[102X 4.9-1
|
||
RC loop 7.4
|
||
[2XRCCLoop[102X 9.7-1
|
||
[2XRelativeLeftMultiplicationGroup[102X 6.4-2
|
||
[2XRelativeMultiplicationGroup[102X 6.4-2
|
||
[2XRelativeRightMultiplicationGroup[102X 6.4-2
|
||
[2XRightBolLoop[102X 9.2-2
|
||
[2XRightBolLoopByExactGroupFactorization[102X 8.1-3
|
||
[2XRightBruckLoop[102X 9.3-2
|
||
[2XRightConjugacyClosedLoop[102X 9.7-1
|
||
[2XRightCosets[102X 6.2-6
|
||
[2XRightDivision[102X 5.2-1
|
||
[2XRightDivision[102X 5.2-1
|
||
[2XRightDivision[102X 5.2-1
|
||
[2XRightDivisionCayleyTable[102X 5.2-2
|
||
[2XRightInnerMapping[102X 6.5-1
|
||
[2XRightInnerMappingGroup[102X 6.5-2
|
||
[2XRightInverse[102X 5.3-1
|
||
[2XRightMultiplicationGroup[102X 6.4-1
|
||
[2XRightNucleus[102X 6.6-1
|
||
[2XRightSection[102X 6.3-2
|
||
[2XRightTranslation[102X 6.3-1
|
||
[2XRightTransversal[102X 6.2-7
|
||
section, left 2.2
|
||
section, right 2.2
|
||
sedenion loop 9.12
|
||
semisymmetric quasigroup 7.3-1
|
||
[2XSetLoopElmName[102X 3.4-1
|
||
[2XSetQuasigroupElmName[102X 3.4-1
|
||
simple loop 3.3
|
||
simple loop 6.7-3
|
||
[2XSize[102X 5.1-4
|
||
[2XSmallGeneratingSet[102X 5.5-3
|
||
[2XSmallLoop[102X 9.8-1
|
||
solvability class 2.4
|
||
solvable loop 2.4
|
||
Steiner loop 7.8-2
|
||
Steiner quasigroup 7.3-4
|
||
[2XSteinerLoop[102X 9.6-1
|
||
strongly nilpotent loop 6.9-3
|
||
subloop 2.3
|
||
[2XSubloop[102X 6.2-2
|
||
subloop, normal 2.3
|
||
subloop, normal 6.7-1
|
||
subquasigroup 2.3
|
||
[2XSubquasigroup[102X 6.2-1
|
||
totally symmetric quasigroup 7.3-2
|
||
translation, left 2.2
|
||
translation, right 2.2
|
||
transversal 6.2-7
|
||
[2XTrialityPcGroup[102X 8.3-2
|
||
[2XTrialityPermGroup[102X 8.3-1
|
||
unipotent quasigroup 7.3-5
|
||
[2XUpperCentralSeries[102X 6.9-4
|
||
|
||
|
||
-------------------------------------------------------
|