104 lines
5.9 KiB
Plaintext
104 lines
5.9 KiB
Plaintext
|
||
|
||
[1XReferences[101X
|
||
|
||
[[20XArt15[120X] [16XArtic, K.[116X, [17XOn conjugacy closed loops and conjugacy closed loop
|
||
folders[117X, Ph.D. thesis, RWTH Aachen University (2015).
|
||
|
||
[[20XArt59[120X] [16XArtzy, R.[116X, [17XOn automorphic-inverse properties in loops[117X, [18XProc. Amer.
|
||
Math. Soc.[118X, [19X10[119X (1959), 588–591.
|
||
|
||
[[20XBru58[120X] [16XBruck, R. H.[116X, [17XA survey of binary systems[117X, Springer Verlag,
|
||
Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 20.
|
||
Reihe: Gruppentheorie, Berlin (1958), viii+185 pages.
|
||
|
||
[[20XBP56[120X] [16XBruck, R. H. and Paige, L. J.[116X, [17XLoops whose inner mappings are
|
||
automorphisms[117X, [18XAnn. of Math. (2)[118X, [19X63[119X (1956), 308–323.
|
||
|
||
[[20XCR99[120X] [16XColbourn, C. J. and Rosa, A.[116X, [17XTriple systems[117X, The Clarendon Press
|
||
Oxford University Press, Oxford Mathematical Monographs, New York (1999),
|
||
xvi+560 pages.
|
||
|
||
[[20XCD05[120X] [16XCsörgő, P. and Drápal, A.[116X, [17XLeft conjugacy closed loops of nilpotency
|
||
class two[117X, [18XResults Math.[118X, [19X47[119X, 3-4 (2005), 242–265.
|
||
|
||
[[20XDV09[120X] [16XDaly, D. and Vojtěchovský, P.[116X, [17XEnumeration of nilpotent loops via
|
||
cohomology[117X, [18XJ. Algebra[118X, [19X322[119X, 11 (2009), 4080–4098.
|
||
|
||
[[20XBGV12[120X] [16XDe Barros, D. A. S., Grishkov, A. and Vojtěchovský, P.[116X, [17XCommutative
|
||
automorphic loops of order p^3[117X, [18XJ. Algebra Appl.[118X, [19X11[119X, 5 (2012), 1250100, 15.
|
||
|
||
[[20XDrá03[120X] [16XDrápal, A.[116X, [17XCyclic and dihedral constructions of even order[117X,
|
||
[18XComment. Math. Univ. Carolin.[118X, [19X44[119X, 4 (2003), 593–614.
|
||
|
||
[[20XDV06[120X] [16XDrápal, A. and Vojtěchovský, P.[116X, [17XMoufang loops that share associator
|
||
and three quarters of their multiplication tables[117X, [18XRocky Mountain J. Math.[118X,
|
||
[19X36[119X, 2 (2006), 425–455.
|
||
|
||
[[20XFen69[120X] [16XFenyves, F.[116X, [17XExtra loops. II. On loops with identities of
|
||
Bol-Moufang type[117X, [18XPubl. Math. Debrecen[118X, [19X16[119X (1969), 187–192.
|
||
|
||
[[20XGMR99[120X] [16XGoodaire, E. G., May, S. and Raman, M.[116X, [17XThe Moufang loops of order
|
||
less than 64[117X, Nova Science Publishers Inc., Commack, NY (1999), xviii+287
|
||
pages.
|
||
|
||
[[20XGKN14[120X] [16XGrishkov, A., Kinyon, M. and Nagy, G. P.[116X, [17XSolvability of commutative
|
||
automorphic loops[117X, [18XProc. Amer. Math. Soc.[118X, [19X142[119X, 9 (2014), 3029–3037.
|
||
|
||
[[20XJM96[120X] [16XJacobson, M. T. and Matthews, P.[116X, [17XGenerating uniformly distributed
|
||
random Latin squares[117X, [18XJ. Combin. Des.[118X, [19X4[119X, 6 (1996), 405–437.
|
||
|
||
[[20XJKV12[120X] [16XJedlička, P., Kinyon, M. and Vojtěchovský, P.[116X, [17XNilpotency in
|
||
automorphic loops of prime power order[117X, [18XJ. Algebra[118X, [19X350[119X (2012), 64–76.
|
||
|
||
[[20XJKNV11[120X] [16XJohnson, K. W., Kinyon, M. K., Nagy, G. P. and Vojtěchovský, P.[116X,
|
||
[17XSearching for small simple automorphic loops[117X, [18XLMS J. Comput. Math.[118X, [19X14[119X
|
||
(2011), 200–213.
|
||
|
||
[[20XKKP02[120X] [16XKinyon, M. K., Kunen, K. and Phillips, J. D.[116X, [17XEvery diassociative
|
||
A-loop is Moufang[117X, [18XProc. Amer. Math. Soc.[118X, [19X130[119X, 3 (2002), 619–624.
|
||
|
||
[[20XKKPV16[120X] [16XKinyon, M. K., Kunen, K., Phillips, J. D. and Vojtěchovský, P.[116X, [17XThe
|
||
structure of automorphic loops[117X, [18XTrans. Amer. Math. Soc.[118X, [19X368[119X, 12 (2016),
|
||
8901–8927.
|
||
|
||
[[20XKNV15[120X] [16XKinyon, M. K., Nagy, G. P. and Vojtěchovský, P.[116X, [17XBol loops and Bruck
|
||
loops of order pq[117X, [18X[118X (2015), ((preprint)).
|
||
|
||
[[20XKun00[120X] [16XKunen, K.[116X, [17XThe structure of conjugacy closed loops[117X, [18XTrans. Amer.
|
||
Math. Soc.[118X, [19X352[119X, 6 (2000), 2889–2911.
|
||
|
||
[[20XLie87[120X] [16XLiebeck, M. W.[116X, [17XThe classification of finite simple Moufang loops[117X,
|
||
[18XMath. Proc. Cambridge Philos. Soc.[118X, [19X102[119X, 1 (1987), 33–47.
|
||
|
||
[[20XMoo[120X] [16XMoorhouse, G. E.[116X, [17XBol loops of small order[117X,
|
||
((http://www.uwyo.edu/moorhouse/pub/bol/)).
|
||
|
||
[[20XNV03[120X] [16XNagy, G. P. and Vojtěchovský, P.[116X, [17XOctonions, simple Moufang loops and
|
||
triality[117X, [18XQuasigroups Related Systems[118X, [19X10[119X (2003), 65–94.
|
||
|
||
[[20XNV07[120X] [16XNagy, G. P. and Vojtěchovský, P.[116X, [17XThe Moufang loops of order 64 and
|
||
81[117X, [18XJ. Symbolic Comput.[118X, [19X42[119X, 9 (2007), 871–883.
|
||
|
||
[[20XPfl90[120X] [16XPflugfelder, H. O.[116X, [17XQuasigroups and loops: introduction[117X, Heldermann
|
||
Verlag, Sigma Series in Pure Mathematics, [19X7[119X, Berlin (1990), viii+147 pages.
|
||
|
||
[[20XPV05[120X] [16XPhillips, J. D. and Vojtěchovský, P.[116X, [17XThe varieties of loops of
|
||
Bol-Moufang type[117X, [18XAlgebra Universalis[118X, [19X54[119X, 3 (2005), 259–271.
|
||
|
||
[[20XSZ12[120X] [16XSlattery, M. and Zenisek, A.[116X, [17XMoufang loops of order 243[117X,
|
||
[18XCommentationes Mathematicae Universitatis Carolinae[118X, [19X53[119X, 3 (2012), 423–428.
|
||
|
||
[[20XVoj06[120X] [16XVojtěchovský, P.[116X, [17XToward the classification of Moufang loops of
|
||
order 64[117X, [18XEuropean J. Combin.[118X, [19X27[119X, 3 (2006), 444–460.
|
||
|
||
[[20XVoj15[120X] [16XVojtěchovský, P.[116X, [17XThree lectures on automorphic loops[117X, [18XQuasigroups
|
||
Related Systems[118X, [19X23[119X, 1 (2015), 129–163.
|
||
|
||
[[20XWJ75[120X] [16XWilson Jr., R. L.[116X, [17XQuasidirect products of quasigroups[117X, [18XComm.
|
||
Algebra[118X, [19X3[119X, 9 (1975), 835–850.
|
||
|
||
|
||
|
||
[32X
|