286 lines
11 KiB
Plaintext
286 lines
11 KiB
Plaintext
|
||
|
||
[1XThe [5XLOOPS[105X Package[101X
|
||
|
||
|
||
[1XComputing with quasigroups and loops in [5XGAP[105X[101X
|
||
|
||
|
||
Version 3.3.0
|
||
|
||
|
||
Gábor P. Nagy
|
||
|
||
Petr Vojtěchovský
|
||
|
||
|
||
|
||
Gábor P. Nagy
|
||
Email: [7Xmailto:nagyg@math.u-szeged.hu[107X
|
||
Address: [33X[0;14YDepartment of Mathematics, University of Szeged[133X
|
||
|
||
|
||
Petr Vojtěchovský
|
||
Email: [7Xmailto:petr@math.du.edu[107X
|
||
Address: [33X[0;14YDepartment of Mathematics, University of Denver[133X
|
||
|
||
|
||
|
||
-------------------------------------------------------
|
||
[1XCopyright[101X
|
||
[33X[0;0Y© 2016 Gábor P. Nagy and Petr Vojtěchovský.[133X
|
||
|
||
|
||
-------------------------------------------------------
|
||
|
||
|
||
[1XContents (Loops)[101X
|
||
|
||
1 [33X[0;0YIntroduction[133X
|
||
1.1 [33X[0;0YLicense[133X
|
||
1.2 [33X[0;0YInstallation[133X
|
||
1.3 [33X[0;0YDocumentation[133X
|
||
1.4 [33X[0;0YTest Files[133X
|
||
1.5 [33X[0;0YMemory Management[133X
|
||
1.6 [33X[0;0YFeedback[133X
|
||
1.7 [33X[0;0YAcknowledgment[133X
|
||
2 [33X[0;0YMathematical Background[133X
|
||
2.1 [33X[0;0YQuasigroups and Loops[133X
|
||
2.2 [33X[0;0YTranslations[133X
|
||
2.3 [33X[0;0YSubquasigroups and Subloops[133X
|
||
2.4 [33X[0;0YNilpotence and Solvability[133X
|
||
2.5 [33X[0;0YAssociators and Commutators[133X
|
||
2.6 [33X[0;0YHomomorphism and Homotopisms[133X
|
||
3 [33X[0;0YHow the Package Works[133X
|
||
3.1 [33X[0;0YRepresenting Quasigroups[133X
|
||
3.2 [33X[0;0YConversions between magmas, quasigroups, loops and groups[133X
|
||
3.3 [33X[0;0YCalculating with Quasigroups[133X
|
||
3.4 [33X[0;0YNaming, Viewing and Printing Quasigroups and their Elements[133X
|
||
3.4-1 [33X[0;0YSetQuasigroupElmName and SetLoopElmName[133X
|
||
4 [33X[0;0YCreating Quasigroups and Loops[133X
|
||
4.1 [33X[0;0YAbout Cayley Tables[133X
|
||
4.2 [33X[0;0YTesting Cayley Tables[133X
|
||
4.2-1 [33X[0;0YIsQuasigroupTable and IsQuasigroupCayleyTable[133X
|
||
4.2-2 [33X[0;0YIsLoopTable and IsLoopCayleyTable[133X
|
||
4.3 [33X[0;0YCanonical and Normalized Cayley Tables[133X
|
||
4.3-1 CanonicalCayleyTable
|
||
4.3-2 CanonicalCopy
|
||
4.3-3 NormalizedQuasigroupTable
|
||
4.4 [33X[0;0YCreating Quasigroups and Loops From Cayley Tables[133X
|
||
4.4-1 [33X[0;0YQuasigroupByCayleyTable and LoopByCayleyTable[133X
|
||
4.5 [33X[0;0YCreating Quasigroups and Loops from a File[133X
|
||
4.5-1 [33X[0;0YQuasigroupFromFile and LoopFromFile[133X
|
||
4.6 [33X[0;0YCreating Quasigroups and Loops From Sections[133X
|
||
4.6-1 CayleyTableByPerms
|
||
4.6-2 [33X[0;0YQuasigroupByLeftSection and LoopByLeftSection[133X
|
||
4.6-3 [33X[0;0YQuasigroupByRightSection and LoopByRightSection[133X
|
||
4.7 [33X[0;0YCreating Quasigroups and Loops From Folders[133X
|
||
4.7-1 [33X[0;0YQuasigroupByRightFolder and LoopByRightFolder[133X
|
||
4.8 [33X[0;0YCreating Quasigroups and Loops By Nuclear Extensions[133X
|
||
4.8-1 NuclearExtension
|
||
4.8-2 LoopByExtension
|
||
4.9 [33X[0;0YRandom Quasigroups and Loops[133X
|
||
4.9-1 [33X[0;0YRandomQuasigroup and RandomLoop[133X
|
||
4.9-2 RandomNilpotentLoop
|
||
4.10 [33X[0;0YConversions[133X
|
||
4.10-1 IntoQuasigroup
|
||
4.10-2 PrincipalLoopIsotope
|
||
4.10-3 IntoLoop
|
||
4.10-4 IntoGroup
|
||
4.11 [33X[0;0YProducts of Quasigroups and Loops[133X
|
||
4.11-1 DirectProduct
|
||
4.12 [33X[0;0YOpposite Quasigroups and Loops[133X
|
||
4.12-1 [33X[0;0YOpposite, OppositeQuasigroup and OppositeLoop[133X
|
||
5 [33X[0;0YBasic Methods And Attributes[133X
|
||
5.1 [33X[0;0YBasic Attributes[133X
|
||
5.1-1 Elements
|
||
5.1-2 CayleyTable
|
||
5.1-3 One
|
||
5.1-4 Size
|
||
5.1-5 Exponent
|
||
5.2 [33X[0;0YBasic Arithmetic Operations[133X
|
||
5.2-1 [33X[0;0YLeftDivision and RightDivision[133X
|
||
5.2-2 [33X[0;0YLeftDivisionCayleyTable and RightDivisionCayleyTable[133X
|
||
5.3 [33X[0;0YPowers and Inverses[133X
|
||
5.3-1 [33X[0;0YLeftInverse, RightInverse and Inverse[133X
|
||
5.4 [33X[0;0YAssociators and Commutators[133X
|
||
5.4-1 Associator
|
||
5.4-2 Commutator
|
||
5.5 [33X[0;0YGenerators[133X
|
||
5.5-1 [33X[0;0YGeneratorsOfQuasigroup and GeneratorsOfLoop[133X
|
||
5.5-2 GeneratorsSmallest
|
||
5.5-3 SmallGeneratingSet
|
||
6 [33X[0;0YMethods Based on Permutation Groups[133X
|
||
6.1 [33X[0;0YParent of a Quasigroup[133X
|
||
6.1-1 Parent
|
||
6.1-2 Position
|
||
6.1-3 PosInParent
|
||
6.2 [33X[0;0YSubquasigroups and Subloops[133X
|
||
6.2-1 Subquasigroup
|
||
6.2-2 Subloop
|
||
6.2-3 [33X[0;0YIsSubquasigroup and IsSubloop[133X
|
||
6.2-4 AllSubquasigroups
|
||
6.2-5 AllSubloops
|
||
6.2-6 RightCosets
|
||
6.2-7 RightTransversal
|
||
6.3 [33X[0;0YTranslations and Sections[133X
|
||
6.3-1 [33X[0;0YLeftTranslation and RightTranslation[133X
|
||
6.3-2 [33X[0;0YLeftSection and RightSection[133X
|
||
6.4 [33X[0;0YMultiplication Groups[133X
|
||
6.4-1 [33X[0;0YLeftMutliplicationGroup, RightMultiplicationGroup and
|
||
MultiplicationGroup[133X
|
||
6.4-2 [33X[0;0YRelativeLeftMultiplicationGroup, RelativeRightMultiplicationGroup
|
||
and RelativeMultiplicationGroup[133X
|
||
6.5 [33X[0;0YInner Mapping Groups[133X
|
||
6.5-1 [33X[0;0YLeftInnerMapping, RightInnerMapping, MiddleInnerMapping[133X
|
||
6.5-2 [33X[0;0YLeftInnerMappingGroup, RightInnerMappingGroup,
|
||
MiddleInnerMappingGroup[133X
|
||
6.5-3 InnerMappingGroup
|
||
6.6 [33X[0;0YNuclei, Commutant, Center, and Associator Subloop[133X
|
||
6.6-1 [33X[0;0YLeftNucles, MiddleNucleus, and RightNucleus[133X
|
||
6.6-2 [33X[0;0YNuc, NucleusOfQuasigroup and NucleusOfLoop[133X
|
||
6.6-3 Commutant
|
||
6.6-4 Center
|
||
6.6-5 AssociatorSubloop
|
||
6.7 [33X[0;0YNormal Subloops and Simple Loops[133X
|
||
6.7-1 IsNormal
|
||
6.7-2 NormalClosure
|
||
6.7-3 IsSimple
|
||
6.8 [33X[0;0YFactor Loops[133X
|
||
6.8-1 FactorLoop
|
||
6.8-2 NaturalHomomorphismByNormalSubloop
|
||
6.9 [33X[0;0YNilpotency and Central Series[133X
|
||
6.9-1 IsNilpotent
|
||
6.9-2 NilpotencyClassOfLoop
|
||
6.9-3 IsStronglyNilpotent
|
||
6.9-4 UpperCentralSeries
|
||
6.9-5 LowerCentralSeries
|
||
6.10 [33X[0;0YSolvability, Derived Series and Frattini Subloop[133X
|
||
6.10-1 IsSolvable
|
||
6.10-2 DerivedSubloop
|
||
6.10-3 DerivedLength
|
||
6.10-4 [33X[0;0YFrattiniSubloop and FrattinifactorSize[133X
|
||
6.10-5 FrattinifactorSize
|
||
6.11 [33X[0;0YIsomorphisms and Automorphisms[133X
|
||
6.11-1 IsomorphismQuasigroups
|
||
6.11-2 IsomorphismLoops
|
||
6.11-3 QuasigroupsUpToIsomorphism
|
||
6.11-4 LoopsUpToIsomorphism
|
||
6.11-5 AutomorphismGroup
|
||
6.11-6 IsomorphicCopyByPerm
|
||
6.11-7 IsomorphicCopyByNormalSubloop
|
||
6.11-8 Discriminator
|
||
6.11-9 AreEqualDiscriminators
|
||
6.12 [33X[0;0YIsotopisms[133X
|
||
6.12-1 IsotopismLoops
|
||
6.12-2 LoopsUpToIsotopism
|
||
7 [33X[0;0YTesting Properties of Quasigroups and Loops[133X
|
||
7.1 [33X[0;0YAssociativity, Commutativity and Generalizations[133X
|
||
7.1-1 IsAssociative
|
||
7.1-2 IsCommutative
|
||
7.1-3 IsPowerAssociative
|
||
7.1-4 IsDiassociative
|
||
7.2 [33X[0;0YInverse Propeties[133X
|
||
7.2-1 [33X[0;0YHasLeftInverseProperty, HasRightInverseProperty and
|
||
HasInverseProperty[133X
|
||
7.2-2 HasTwosidedInverses
|
||
7.2-3 HasWeakInverseProperty
|
||
7.2-4 HasAutomorphicInverseProperty
|
||
7.2-5 HasAntiautomorphicInverseProperty
|
||
7.3 [33X[0;0YSome Properties of Quasigroups[133X
|
||
7.3-1 IsSemisymmetric
|
||
7.3-2 IsTotallySymmetric
|
||
7.3-3 IsIdempotent
|
||
7.3-4 IsSteinerQuasigroup
|
||
7.3-5 IsUnipotent
|
||
7.3-6 [33X[0;0YIsLeftDistributive, IsRightDistributive, IsDistributive[133X
|
||
7.3-7 [33X[0;0YIsEntropic and IsMedial[133X
|
||
7.4 [33X[0;0YLoops of Bol Moufang Type[133X
|
||
7.4-1 IsExtraLoop
|
||
7.4-2 IsMoufangLoop
|
||
7.4-3 IsCLoop
|
||
7.4-4 IsLeftBolLoop
|
||
7.4-5 IsRightBolLoop
|
||
7.4-6 IsLCLoop
|
||
7.4-7 IsRCLoop
|
||
7.4-8 IsLeftNuclearSquareLoop
|
||
7.4-9 IsMiddleNuclearSquareLoop
|
||
7.4-10 IsRightNuclearSquareLoop
|
||
7.4-11 IsNuclearSquareLoop
|
||
7.4-12 IsFlexible
|
||
7.4-13 IsLeftAlternative
|
||
7.4-14 IsRightAlternative
|
||
7.4-15 IsAlternative
|
||
7.5 [33X[0;0YPower Alternative Loops[133X
|
||
7.5-1 [33X[0;0YIsLeftPowerAlternative, IsRightPowerAlternative and
|
||
IsPowerAlternative[133X
|
||
7.6 [33X[0;0YConjugacy Closed Loops and Related Properties[133X
|
||
7.6-1 IsLCCLoop
|
||
7.6-2 IsRCCLoop
|
||
7.6-3 IsCCLoop
|
||
7.6-4 IsOsbornLoop
|
||
7.7 [33X[0;0YAutomorphic Loops[133X
|
||
7.7-1 IsLeftAutomorphicLoop
|
||
7.7-2 IsMiddleAutomorphicLoop
|
||
7.7-3 IsRightAutomorphicLoop
|
||
7.7-4 IsAutomorphicLoop
|
||
7.8 [33X[0;0YAdditonal Varieties of Loops[133X
|
||
7.8-1 IsCodeLoop
|
||
7.8-2 IsSteinerLoop
|
||
7.8-3 [33X[0;0YIsLeftBruckLoop and IsLeftKLoop[133X
|
||
7.8-4 [33X[0;0YIsRightBruckLoop and IsRightKLoop[133X
|
||
8 [33X[0;0YSpecific Methods[133X
|
||
8.1 [33X[0;0YCore Methods for Bol Loops[133X
|
||
8.1-1 [33X[0;0YAssociatedLeftBruckLoop and AssociatedRightBruckLoop[133X
|
||
8.1-2 IsExactGroupFactorization
|
||
8.1-3 RightBolLoopByExactGroupFactorization
|
||
8.2 [33X[0;0YMoufang Modifications[133X
|
||
8.2-1 LoopByCyclicModification
|
||
8.2-2 LoopByDihedralModification
|
||
8.2-3 LoopMG2
|
||
8.3 [33X[0;0YTriality for Moufang Loops[133X
|
||
8.3-1 TrialityPermGroup
|
||
8.3-2 TrialityPcGroup
|
||
8.4 [33X[0;0YRealizing Groups as Multiplication Groups of Loops[133X
|
||
8.4-1 AllLoopTablesInGroup
|
||
8.4-2 AllProperLoopTablesInGroup
|
||
8.4-3 OneLoopTableInGroup
|
||
8.4-4 OneProperLoopTableInGroup
|
||
8.4-5 AllLoopsWithMltGroup
|
||
8.4-6 OneLoopWithMltGroup
|
||
9 [33X[0;0YLibraries of Loops[133X
|
||
9.1 [33X[0;0YA Typical Library[133X
|
||
9.1-1 LibraryLoop
|
||
9.1-2 MyLibraryLoop
|
||
9.1-3 DisplayLibraryInfo
|
||
9.2 [33X[0;0YLeft Bol Loops and Right Bol Loops[133X
|
||
9.2-1 LeftBolLoop
|
||
9.2-2 RightBolLoop
|
||
9.3 [33X[0;0YMoufang Loops[133X
|
||
9.3-1 MoufangLoop
|
||
9.4 [33X[0;0YCode Loops[133X
|
||
9.4-1 CodeLoop
|
||
9.5 [33X[0;0YSteiner Loops[133X
|
||
9.5-1 SteinerLoop
|
||
9.6 [33X[0;0YConjugacy Closed Loops[133X
|
||
9.6-1 [33X[0;0YRCCLoop and RightConjugacyClosedLoop[133X
|
||
9.6-2 [33X[0;0YLCCLoop and LeftConjugacyClosedLoop[133X
|
||
9.6-3 [33X[0;0YCCLoop and ConjugacyClosedLoop[133X
|
||
9.7 [33X[0;0YSmall Loops[133X
|
||
9.7-1 SmallLoop
|
||
9.8 [33X[0;0YPaige Loops[133X
|
||
9.8-1 PaigeLoop
|
||
9.9 [33X[0;0YNilpotent Loops[133X
|
||
9.9-1 NilpotentLoop
|
||
9.10 [33X[0;0YAutomorphic Loops[133X
|
||
9.10-1 AutomorphicLoop
|
||
9.11 [33X[0;0YInteresting Loops[133X
|
||
9.11-1 InterestingLoop
|
||
9.12 [33X[0;0YLibraries of Loops Up To Isotopism[133X
|
||
9.12-1 ItpSmallLoop
|
||
A [33X[0;0YFiles[133X
|
||
B [33X[0;0YFilters[133X
|
||
|
||
|
||
[32X
|