loops/gap/core_methods.gi

1125 lines
36 KiB
Plaintext

#############################################################################
##
#W core_methods.gi Most common structural methods [loops]
##
#H @(#)$Id: core_methods.gi, v 3.3.0 2016/09/21 gap Exp $
##
#Y Copyright (C) 2004, G. P. Nagy (University of Szeged, Hungary),
#Y P. Vojtechovsky (University of Denver, USA)
##
#############################################################################
## GENERATORS
## -------------------------------------------------------------------------
#############################################################################
##
#A GeneratorsOfQuasigroup( Q )
##
## Returns a subset of <Q> gnerating <Q>. In most circumstances,
## Elements( Q ) is returned.
InstallMethod( GeneratorsOfQuasigroup, "for quasigroup",
[ IsQuasigroup ],
GeneratorsOfDomain
);
#############################################################################
##
#A GeneratorsSmallest( Q )
##
## Returns a smallest generating set of a quasigroup <Q> with respect
## to lexicographic ordering of elements.
InstallOtherMethod( GeneratorsSmallest, "for a quasigroup",
[ IsQuasigroup ],
function( Q )
local gens, diff;
gens := [ ];
diff := Elements( Q );
while diff <> [ ] do
Add( gens, diff[ Length(diff) ] );
diff := Difference( diff, Subquasigroup( Q, gens ) );
od;
return Set( gens );
end );
#############################################################################
##
#A SmallGeneratingSet( Q )
##
## Returns a small generating set of a quasigroup <Q>. There is no
## guarantee that the set is of minimal cardinality.
InstallOtherMethod( SmallGeneratingSet, "for a quasigroup",
[ IsQuasigroup ],
function( Q )
local gens, sub, candidates, max, S, best_gen, best_S;
gens := []; # generating set to be returned
sub := []; # substructure generated so far
while sub <> Q do
# find an element not in sub that most enlarges sub
candidates := Difference( Elements(Q), sub );
max := 0;
while not IsEmpty( candidates ) do
S := Subquasigroup( Q, Union( gens, [candidates[1]] ) );
if Size(S) > max then
max := Size( S );
best_gen := candidates[1];
best_S := S;
fi;
# discard elements of S since they cannot do better
candidates := Difference( candidates, Elements( S ) );
od;
AddSet( gens, best_gen );
sub := best_S;
od;
return gens;
end );
#############################################################################
## COMPARING QUASIGROUPS WITH COMMON PARENT
## -------------------------------------------------------------------------
#############################################################################
##
#A \<( L, K )
##
## Ordering between quasigroups with common parent quasigroup. Analogous to the
## basic method for groups. We use the lexicographical ordering between the
## small (greedy) generating sets.
InstallMethod(\<,
"for quasigroups by lexicographically ordered small generating sets",
IsIdenticalObj,
[IsQuasigroup, IsQuasigroup],
function(a,b)
local ga,gb;
ga:=GeneratorsSmallest(a);
gb:=GeneratorsSmallest(b);
if Length(ga)<Length(gb) then
a:=Elements(a)[Size(a)];
ga:=ShallowCopy(ga);
while Length(ga)<Length(gb) do Add(ga,a); od;
else
b:=Elements(b)[Size(b)];
gb:=ShallowCopy(gb);
while Length(gb)<Length(ga) do Add(gb,b); od;
fi;
return ga<gb;
end);
#############################################################################
## SECTIONS
## -------------------------------------------------------------------------
#############################################################################
##
#A LeftSection( Q )
##
## Returns the left section of a quasigroup <Q>. Left section consists of
## all left translations L_x: y --> x*y.
InstallMethod( LeftSection, "for quasigroup",
[ IsQuasigroup ],
function( Q )
local P;
P := PosInParent( Q );
return List( CayleyTable( Q ), row -> MappingPermListList( P, row ) );
end );
#############################################################################
##
#A RightSection( Q )
##
## Returns the right section of a quasigroup <Q>. Right section consists of
## all right translations R_x: y --> y*x.
InstallMethod( RightSection, "for quasigroup",
[ IsQuasigroup ],
function( Q )
local P;
P := PosInParent( Q );
return List( TransposedMat( CayleyTable( Q ) ), row -> MappingPermListList( P, row ) );
end );
#############################################################################
##
#O LeftTranslation( Q, x )
##
## Let <x> be an element of a quasigroup <Q>. Returns the left translation
## by <x> in <Q>.
InstallMethod( LeftTranslation, "for quasigroup and quasigroup element",
[ IsQuasigroup, IsQuasigroupElement ],
function( Q, x )
if not x in Q then
Error( "LOOPS: <2> must be an element of the quasigroup <1>.");
fi;
return LeftSection( Q )[ Position( Q, x ) ];
end);
#############################################################################
##
#O RightTranslation( Q, x )
##
## Let <x> be an element of a quasigroup <Q>. Returns the right translation
## by <x> in <Q>.
InstallMethod( RightTranslation, "for quasigroup and quasigroup element",
[ IsQuasigroup, IsQuasigroupElement ],
function( Q, x )
if not x in Q then
Error( "LOOPS: <2> must be an element of the quasigroup <1>.");
fi;
return RightSection( Q )[ Position( Q, x ) ];
end);
#############################################################################
## MULTIPLICATION GROUPS
## -------------------------------------------------------------------------
#############################################################################
##
#A LeftMultiplicationGroup( Q )
##
## Returns the subgroup of S_<Q> generated by all left translations of the
## quasigroup <Q>.
InstallMethod( LeftMultiplicationGroup, "for quasigroup",
[IsQuasigroup ],
function( Q )
return Group( LeftSection( Q ) );
end );
#############################################################################
##
#A RightMultiplicationGroup( Q )
##
## Returns the subgroup of S_<Q> generated by all right translations of the
## quasigroup <Q>.
InstallMethod( RightMultiplicationGroup, "for quasigroup",
[IsQuasigroup ],
function( Q )
return Group( RightSection( Q ) );
end );
#############################################################################
##
#A MultiplicationGroup( Q )
##
## Returns the smallest subgroup of S_<Q> containing the both the left
## and right multiplication groups of the quasigroup <Q>.
InstallMethod( MultiplicationGroup, "for quasigroup",
[IsQuasigroup ],
function( Q )
return Group( Union( LeftSection( Q ), RightSection( Q ) ) );
end );
#############################################################################
##
#O RelativeLeftMultiplicationGroup( L, S )
##
## Returns the relative left multiplication group of a quasigroup <L>
## with respect to its subquasigroup <S>.
InstallMethod( RelativeLeftMultiplicationGroup, "for two quasigroups",
[ IsQuasigroup, IsQuasigroup ],
function( L, S )
local perms;
if not IsSubquasigroup( L, S ) then
Error("LOOPS: <2> must be a subquasigroup of <1>.");
fi;
perms := List( S, x -> LeftTranslation( L, x ) );
return Group( perms );
end);
#############################################################################
##
#O RelativeRightMultiplicationGroup( L, S )
##
## Returns the relative right multiplication group of a quasigroup <L>
## with respect to its subquasigroup <S>.
InstallMethod( RelativeRightMultiplicationGroup, "for two quasigroups",
[ IsQuasigroup, IsQuasigroup ],
function( L, S )
local perms;
if not IsSubquasigroup( L, S ) then
Error("LOOPS: <2> must be a subquasigroup of <1>.");
fi;
perms := List( S, x -> RightTranslation( L, x ) );
return Group( perms );
end);
#############################################################################
##
#O RelativeMultiplicationGroup( L, S )
##
## Returns the relative multiplication group of a quasigroup <L>
## with respect to its subquasigroup <S>.
InstallMethod( RelativeMultiplicationGroup, "for two quasigroups",
[ IsQuasigroup, IsQuasigroup ],
function( L, S )
return Group( Union(
RelativeLeftMultiplicationGroup( L, S ),
RelativeRightMultiplicationGroup( L, S)
) );
end);
#############################################################################
## INNER MAPPING GROUPS
## -------------------------------------------------------------------------
#############################################################################
##
#O LeftInnerMapping( L, x, y )
##
## Returns the left inner mapping of loop <L> determined by elements
## <x>, <y>, i.e., the mapping L(x,y) = L_{yx}^{-1} L_y L_x, where we compose
## mappings from right to left.
InstallMethod( LeftInnerMapping, "for loop and a loop elements",
[ IsLoop, IsLoopElement, IsLoopElement ],
function( L, x, y )
if not (x in L and y in L) then
Error( "LOOPS: <2>, <3> must be elements of the loop <1>.");
fi;
return LeftTranslation( L, x ) * LeftTranslation( L, y ) * LeftTranslation( L, y*x )^(-1);
end);
#############################################################################
##
#O MiddleInnerMapping( L, x )
##
## Let <x> be an element of a loop <L>. Returns the middle inner mapping
## determined by <x>, i.e., the mapping L(x)^{-1} R(x), where we compose
## mappings from right to left.
InstallMethod( MiddleInnerMapping, "for loop and a loop elements",
[ IsLoop, IsLoopElement ],
function( L, x )
if not x in L then
Error( "LOOPS: <2> must be an element of the loop <1>.");
fi;
return RightTranslation( L, x ) * LeftTranslation( L, x )^(-1);
end);
#############################################################################
##
#O RightInnerMapping( L, x, y )
##
## Returns the right inner mapping of loop <L> determined by elements
## <x>, <y>, i.e., the mapping R(x,y) = R_{xy}^{-1} R_y R_x, where we compose
## mappings from right to left.
InstallMethod( RightInnerMapping, "for loop and a loop elements",
[ IsLoop, IsLoopElement, IsLoopElement ],
function( L, x, y )
if not (x in L and y in L) then
Error( "LOOPS: <2>, <3> must be elements of the loop <1>.");
fi;
return RightTranslation( L, x ) * RightTranslation( L, y ) * RightTranslation( L, x*y )^(-1);
end);
#############################################################################
##
#A InnerMappingGroup( L )
##
## Returns the inner mapping group of a loop <L>, i.e., the subgroup
## of MultplicationGroup( L ) consisting of maps fixing One( L ).
InstallMethod( InnerMappingGroup, "for loop",
[ IsLoop ],
function( L )
return Stabilizer( MultiplicationGroup( L ), 1 );
end);
#############################################################################
##
#A LeftInnerMappingGroup( L )
##
## Returns the left inner mapping group of a loop <L>, i.e., the subgroup
## of LeftMultiplicationGroup( L ) consisting of maps fixing One( L ).
InstallMethod( LeftInnerMappingGroup, "for loop",
[ IsLoop ],
function( L )
return Stabilizer( LeftMultiplicationGroup( L ), 1 );
end);
#############################################################################
##
#A MiddleInnerMappingGroup( L )
##
## returns the middle inner mapping group of a loop <L>
InstallMethod( MiddleInnerMappingGroup, "for loop",
[ IsLoop ],
function( L )
return Group( List( L, x -> MiddleInnerMapping( L, x ) ) );
end);
#############################################################################
##
#A RightInnerMappingGroup( L )
##
## Returns the right inner mapping group of a loop <L>, i.e., the subgroup
## of RightMultiplicationGroup( L ) consisting of maps fixing One( L ).
InstallMethod( RightInnerMappingGroup, "for loop",
[ IsLoop ],
function( L )
return Stabilizer( RightMultiplicationGroup( L ), 1 );
end);
#############################################################################
## SUBQUASIGROUPS AND SUBLOOPS
## -------------------------------------------------------------------------
InstallOtherMethod( Position, "for quasigroup and quasigroup element",
[ IsQuasigroup, IsQuasigroupElement, IsInt],
function( Q, x, dummy )
return Position( Elements( Q ), x );
end );
#############################################################################
##
#O PosInParent( coll )
##
## Let <coll> be a collection of elements of a quasigroup Q, and let P
## be the parent of Q. Then PosInParent( coll )[ i ] is equal to
## Pos ( Elements( P ), coll[ i ] ).
## Note that we do not demand that all elements of <coll>
## belong to the same quasigroup.
InstallMethod( PosInParent, "for collection of quasigroup elements",
[ IsCollection ],
function( coll )
if not ForAll( coll, x -> IsQuasigroupElement( x ) ) then
Error( "LOOPS: <1> must be a list of quasigroup elements." );
fi;
return List( coll, x -> x![ 1 ] );
end );
#############################################################################
##
#O SubquasigroupNC( Q, pos_of_gens )
##
## This auxiliary function assumes that:
## a) Q is a quasigroup with Q = Parent( Q )
## b) pos_of_gens is a nonempty subset of [ 1..Size( Q ) ] (not a sublist)
## c) pos_of_gens determines a subquasigroup of Q
## It then returns the corresponding subquasigroup of Q.
InstallMethod( SubquasigroupNC, "for quasigroup and set of integers",
[ IsQuasigroup, IsSet ],
function( Q, pos_of_gens )
local subqg, Qtype, elms;
if IsEmpty( pos_of_gens ) then
Error( "LOOPS: <2> must be a nonempty subset.");
fi;
if not( Q = Parent( Q ) ) then
Error( "LOOPS: <1> must be its own parent." );
fi;
elms := Immutable( Elements( Q ){ pos_of_gens } );
if IsLoop( Q ) then
Qtype := NewType( FamilyObj( elms ), IsLoop and IsAttributeStoringRep );
else
Qtype := NewType( FamilyObj( elms ), IsQuasigroup and IsAttributeStoringRep );
fi;
subqg := Objectify( Qtype, rec( ) );
SetSize( subqg, Length( pos_of_gens ) );
SetAsSSortedList( subqg, elms );
SetParent( subqg, Q );
if IsLoop( Q ) then
SetOne( subqg, One( Q ) );
fi;
return subqg;
end );
#############################################################################
##
#O Subquasigroup( Q, gens )
##
## When <gens> is a nonempty list of elements of a quasigroup <Q>, or the
## indices of them, it returns the subquasigroup of <Q> generated by <gens>.
InstallMethod( Subquasigroup, "for quasigroup and list of elements",
[ IsQuasigroup, IsList ],
function( Q, gens )
local pos_gens, transl, pos_of_elms, relmultgr, subqg;
# NG: we allow list of indices as well
# PV: we allow gens to be empty, too. When Q is a loop, the trivial subloop is returned.
# When Q is a quasigroup, we return []. This is useful when Nuc(Q) is empty in a quasigroup,
# for instance.
if IsEmpty( gens ) then
if IsLoop( Q ) then
return SubquasigroupNC( Q, [1] ); # trivial subloop
fi;
return [];
fi;
if not( ForAll( gens, g -> g in Q ) or ForAll( gens, g-> g in PosInParent( Q ) ) ) then
Error("LOOPS: <2> must be a list of elements of quasigroup <1> or their indices.");
fi;
if not IsInt( gens[1] ) then # convert elements to indices
pos_gens := PosInParent( gens );
else
pos_gens := ShallowCopy( gens );
gens := Elements( Parent( Q ) ){ gens };
fi;
# calculating the subquasigroup
pos_of_elms := [];
while pos_gens<>pos_of_elms do
pos_of_elms := pos_gens;
transl := Union( LeftSection( Parent( Q ) ){ pos_gens }, RightSection( Parent( Q ) ){ pos_gens } );
relmultgr := Subgroup( MultiplicationGroup( Parent( Q ) ), transl );
pos_gens := Set( Orbits( relmultgr, pos_gens )[ 1 ] );
od;
subqg := SubquasigroupNC( Parent( Q ), Set( pos_of_elms ) );
SetGeneratorsOfMagma( subqg, gens );
return subqg;
end );
#############################################################################
##
#O Subloop( L, gens )
##
## When <gens> is a list of elements of a loop <L>, it returns the
## subloop of <L> generated by <gens>. When <gens> is empty, it returns
## the trivial subloop of <L>.
InstallMethod( Subloop, "for loop and list of elements",
[ IsLoop, IsList ],
function( L, gens )
return Subquasigroup( L, gens );
end );
#############################################################################
##
#O IsSubquasigroup( Q, S )
##
## Returns true if <S> is a subquasigorup of a quasigroup <Q>.
InstallMethod( IsSubquasigroup, "for two quasigroups",
[ IsQuasigroup, IsQuasigroup ],
function( Q, S )
return Parent( Q ) = Parent( S ) and
IsSubset( Elements( Q ), Elements( S ) );
end );
#############################################################################
##
#O IsSubloop( L, S )
##
## Returns true if <S> is a subloop of a loop <L>.
InstallMethod( IsSubloop, "for two loops",
[ IsLoop, IsLoop ],
function( L, S )
return IsSubquasigroup( L, S );
end );
#############################################################################
##
#0 AllSubquasigroups( Q )
##
## Returns a set of all subquasigroups of a quasigroup <Q>.
InstallMethod( AllSubquasigroups, "for a quasigroup",
[ IsQuasigroup ],
function( Q )
# MATH:
# If S is a subquasigroup of L and x is in L\S, then the cosets S and Sx are disjoint.
# If S is a proper subquasigroup of L then |L| is at least 2|S|.
# If S is a proper subquasigroup of L and |S| > |L|/4 then S is maximal in L.
# If S is a subloop of a power-associative loop L and x is in L\S then <S,x> = <S,x^m> whenever m is relatively prime to |x|.
# If S is a subloop of a LIP loop L and x is in L\S then <S,zx> = <S,x> for every z in S.
# If S is a subloop of a LIP power associative loop L and x is in L\S then <S,z(x^m)> = <S,x> for every z in S and every m relatively prime to |x|.
local All, Last, New, A, Out, B, x, coprime_powers, n, m;
# initialization
All := []; #all subquasigroups
if IsLoop( Q ) then
New := [ Subloop( Q, [ One( Q ) ] ) ]; # the trivial subloop
else
New := Set( Elements( Q ), x -> Subquasigroup( Q, [ x ] ) ); # all mono-generated subquasigroups
fi;
# rounds
repeat
Append( All, New );
Last := Filtered( New, A -> Size( A ) <= Size( Q )/4 ); # subquasigroups found in the previous round that are possibly not maximal in Q
New := []; # subquasigroups generated in this round
for A in Last do
Out := Difference( Elements( Q ), Elements( A ) );
while not IsEmpty(Out) do
x := Out[ 1 ];
Out := Out{[2..Length(Out)]};
B := Subquasigroup( Q, Union( Elements( A ), [ x ] ) );
if not B in New and not B in All then
Add( New, B ); # new subquasigroup found
fi;
# attempting to reduce the number of elements to be checked. This is critical for speed.
if Size( B ) < 4*Size( A ) then # A is maximal in B, removing everything in B
Out := Difference( Out, Elements( B ) );
elif IsLoop( Q ) then # additional removal methods for loops
coprime_powers := [ 1 ];
if IsPowerAssociative( Q ) then
n := Order( x );
coprime_powers := Filtered( [1..n], m -> Gcd(m,n) = 1 );
fi;
Out := Difference( Out, List( coprime_powers, m -> x^m ) );
if HasLeftInverseProperty( Q ) then
for m in coprime_powers do
Out := Difference( Out, Elements(A)*(x^m) );
od;
fi;
if HasRightInverseProperty( Q ) then
for m in coprime_powers do
Out := Difference( Out, (x^m)*Elements(A) );
od;
fi;
fi; # end of removal
od; # end of cycle for x
od; # end of cycle for A
until IsEmpty( New );
# finishing
if not Q in All then Add( All, Q ); fi;
return All;
end);
#############################################################################
##
#0 AllSubloops( L )
##
## Returns a set of all subloops of a loop <L>.
InstallMethod( AllSubloops, "for a loop",
[ IsLoop ],
function( L )
return AllSubquasigroups( L );
end);
#############################################################################
##
#O RightCosetsNC( L, S )
##
## Returns a list of duplicate-free right cosets S*u, for u in L.
# (PROG) RightCosets(L,S) is implemented as a global function in GAP. It
# checks if S is a subset of L and then calls operation RightCosetsNC.
# LeftCosets is not implemented in GAP.
InstallOtherMethod( RightCosetsNC, "for two loops",
[ IsLoop, IsLoop ],
function( L, S )
local R, cosets, p, last_coset;
if not IsSubloop( L, S ) then
Error( "LOOPS: <2> must be a subloop of <1>" );
fi;
R := RightSection( L );
cosets := [];
while not IsEmpty( R ) do
p := R[1];
last_coset := List( S, x -> x^p );
R := Filtered( R, r -> not One(L)^r in last_coset );
Add(cosets, last_coset);
od;
return cosets;
end);
#############################################################################
##
#O RightTransversal( L, S )
##
## Returns a right transversal for the subloop S of loop L.
InstallMethod( RightTransversal, "for two loops",
[ IsLoop, IsLoop ],
function( L, S )
return List( RightCosetsNC( L, S ), x -> x[1] );
end);
#############################################################################
## NUCLEUS, COMMUTANT, CENTER
## -------------------------------------------------------------------------
#############################################################################
##
#A LeftNucleus( Q )
##
## The left nucleus of quasigroup <Q>.
InstallMethod( LeftNucleus, "for quasigroup",
[ IsQuasigroup ],
function( Q )
local S, LS, n, e;
LS := LeftSection( Q );
n := Size( Q );
e := Elements( Q );
S := Filtered( [ 1..n ], i -> ForAll( [ 1..n ], j ->
LS[ j ]*LS[ i ] = LS[ Position( e, e[ i ]*e[ j ] ) ] ) );
S := Subquasigroup( Q, Elements( Q ){ S } );
if Size(S)>0 then
SetIsAssociative( S, true );
fi;
return S;
end);
#############################################################################
##
#A MiddleNucleus( Q )
##
## The middle nucleus of quasigroup <Q>.
InstallMethod( MiddleNucleus, "for quasigroup",
[ IsQuasigroup ],
function( Q )
local S, LS, n, e;
LS := LeftSection( Q );
n := Size( Q );
e := Elements( Q );
S := Filtered( [ 1..n ], i -> ForAll( [ 1..n ], j ->
LS[ i ]*LS[ j ] = LS[ Position( e, e[ j ]*e[ i ] ) ] ) );
S := Subquasigroup( Q, Elements( Q ){ S } );
if Size(S)>0 then
SetIsAssociative( S, true );
fi;
return S;
end);
#############################################################################
##
#A RightNucleus( Q )
##
## The right nucleus of quasigroup <Q>.
InstallMethod( RightNucleus, "for quasigroup",
[ IsQuasigroup ],
function( Q )
local S, RS, n, e;
RS := RightSection( Q );
n := Size( Q );
e := Elements( Q );
S := Filtered( [ 1..n ], i -> ForAll( [ 1..n ], j ->
RS[ j ]*RS[ i ] = RS[ Position( e, e[ j ]*e[ i ] ) ] ) );
S := Subquasigroup( Q, Elements( Q ){ S } );
if Size(S)>0 then
SetIsAssociative( S, true );
fi;
return S;
end);
#############################################################################
##
#A Nuc( Q )
##
## The nucleus of quasigroup <Q>.
InstallMethod( Nuc, "for quasigroup",
[ IsQuasigroup ],
function( Q )
local N, S;
N := Intersection( Elements( LeftNucleus( Q ) ),
Elements( RightNucleus( Q ) ), Elements( MiddleNucleus( Q ) ) );
S := Subquasigroup( Q, N );
if Size(S)>0 then
SetIsAssociative( S, true );
fi;
return S;
end);
#############################################################################
##
#A Commutant( Q )
##
## The commutant of quasigroup <Q>.
InstallMethod( Commutant, "for quasigroup",
[ IsQuasigroup ],
function( Q )
return Elements( Q ){ Filtered( [1..Size( Q )], i
-> LeftSection( Q )[ i ] = RightSection( Q )[ i ] ) };
end);
#############################################################################
##
#A Center( Q )
##
## The center of a quasigroup <Q>.
# (PROG) setting rank high to make sure that Center for
# IsMagma and IsCommutative is not called first
InstallOtherMethod( Center, "for quasigroup",
[ IsQuasigroup ], 1*SUM_FLAGS + 20,
function( Q )
local S;
S := Intersection( Nuc( Q ), Commutant( Q ) );
S := Subquasigroup( Q, S );
if Size( S ) > 0 then
SetIsAssociative( S, true );
SetIsCommutative( S, true );
fi;
return S;
end);
#############################################################################
##
#A AssociatorSubloop( L )
##
## Returns the associator subloop of the loop <L>, i.e., the subloop of <L>
## generated by all associators.
InstallOtherMethod( AssociatorSubloop, "for Loop",
[ IsLoop ],
function( L )
local LeftInn, gens;
LeftInn := LeftInnerMappingGroup( L );
gens := List( L, x-> LeftDivision( x, Orbit( LeftInn, x ) ) );
return NormalClosure( L, Union( gens ) );
end);
#############################################################################
## EXPONENT
## -------------------------------------------------------------------------
#############################################################################
##
#A Exponent( L )
##
## Returns the exponent of the loop <L>. Assumes that <L> is power
## associative.
InstallMethod( Exponent, "for loop",
[ IsLoop ],
function( L )
local ords;
ords := List( Elements( L ), x -> Order( x ) );
return Lcm( ords );
end );
#############################################################################
## NORMALITY
## -------------------------------------------------------------------------
#############################################################################
##
#F IsNormal( L, S )
##
## Returns true if <S> is a normal subloop of loop <L>.
InstallOtherMethod( IsNormal,
"for loops",
[ IsLoop, IsLoop ],
function( L, S )
local upos;
if not( IsSubloop( L, S ) ) then
Error( "LOOPS: <2> must be a subloop of <1>." );
fi;
upos := PosInParent( S );
return ForAll( GeneratorsOfGroup( InnerMappingGroup( L ) ),
g -> upos = OnSets( upos, g ) );
end);
#############################################################################
##
#F NormalClosure( L, S )
##
## When <S> is a subset of a loop <L> or a subloop of < L >, returns the
## normal closure of <S> in <L>, i.e., the smallest normal subloop of <L>
## containing <S>.
InstallOtherMethod( NormalClosure,
"for loops",
[ IsLoop, IsLoop ],
function( L, S )
if not IsSubloop( L, S ) then
Error( "LOOPS: <2> must be a subloop of <1>." );
fi;
return NormalClosure( L, Elements( S ) );
end);
InstallOtherMethod( NormalClosure,
"for loops",
[ IsLoop, IsCollection ],
function( L, gens )
local transl_of_gens, nc_mltgr;
if ForAny( gens, x -> not x in L ) then
Error( "LOOPS: <2> must be a subset of <1>." );
fi;
transl_of_gens := List( gens, x -> LeftTranslation( L, x ) );
nc_mltgr := Group( Union(
GeneratorsOfGroup( InnerMappingGroup( L ) ), transl_of_gens
) );
return SubquasigroupNC( Parent( L ), Set( Orbit( nc_mltgr, 1 ) ) );
end);
#############################################################################
##
#P IsSimple( L )
##
## Returns true if <L> is a simple loop.
InstallOtherMethod( IsSimple,
"for a loop",
[ IsLoop ],
function( L )
return IsPrimitive( MultiplicationGroup( L ) );
end);
#############################################################################
## FACTOR LOOP
## -------------------------------------------------------------------------
#############################################################################
##
#O FactorLoop( L, N )
##
## When <N> is a normal subloop of loop <L>, returns the factor loop L/N.
InstallMethod( FactorLoop, "for two loops",
[ IsLoop, IsLoop ],
function( L, N )
local cosets, ltrans, f_ct, f_loop;
if not( IsNormal( L, N ) ) then
Error( "LOOPS: <2> must be normal in <1>." );
fi;
cosets := Set( Orbit( MultiplicationGroup( L ), Elements( N ), OnSets ) );
f_ct := List( cosets, x -> List( cosets, y ->
First( [1..Length(cosets)], i->x[1]*y[1] in cosets[i] )
) );
f_loop := LoopByCayleyTable( f_ct );
return f_loop;
end);
InstallOtherMethod( \/, "for two loops",
IsIdenticalObj,
[ IsLoop, IsLoop ], 0,
function( L, N )
return FactorLoop( L, N );
end );
#############################################################################
##
#O NaturalHomomorphismByNormalSubloop( L, N )
##
## When <N> is a normal subloop of loop <L>, returns the natural projection
## from <L> onto the factor loop L/N.
InstallMethod( NaturalHomomorphismByNormalSubloop, "for two loops",
[ IsLoop, IsLoop ],
function( L, N )
local cosets, in_coset, f_ct, f_loop, map;
if not( IsNormal( L, N ) ) then
Error( "LOOPS: <2> must be normal in <1>." );
fi;
cosets := Set( Orbit( MultiplicationGroup( L ), Elements( N ), OnSets ) );
in_coset := function( n )
return First( [1..Size( L )/Size( N )], i -> n in cosets[ i ] );
end;
f_ct := List( cosets, x -> List( cosets, y -> in_coset( x[1]*y[1] ) ) );
f_loop := LoopByCayleyTable( f_ct );
map := function( x )
return Elements( f_loop )[ in_coset( x ) ];
end;
return MappingByFunction( L, f_loop, map );
end );
###########################################################################
## NILPOTENCY
## -------------------------------------------------------------------------
#############################################################################
##
#A NilpotencyClassOfLoop( L )
##
## Returns the nilpotency class of loop <L>. When <L> is not nilpotent,
## returns fail.
InstallMethod( NilpotencyClassOfLoop, "for a loop",
[ IsLoop ],
function( L )
local n;
if Size( L ) = 1 then
return 0;
elif
Size( Centre( L ) ) = 1 then
return fail;
else
n := NilpotencyClassOfLoop( L / Centre( L ) );
if n = fail then
return fail;
else
return n + 1;
fi;
fi;
end );
#############################################################################
##
#P IsNilpotent( L )
##
## Returns true if <L> is nilpotent.
InstallOtherMethod( IsNilpotent, "for a loop",
[ IsLoop ],
function( L )
return NilpotencyClassOfLoop( L ) <> fail;
end );
#############################################################################
##
#P IsStronglyNilpotent( L )
##
## Returns true if <L> is strongly nilpotent, i.e., when the multiplication
## group of <L> is nilpotent.
InstallMethod( IsStronglyNilpotent, "for a loop",
[ IsLoop ],
function( L )
return IsNilpotent( MultiplicationGroup( L ) );
end );
#############################################################################
##
#A UpperCentralSeries( L )
##
## Returs the upper central series of the loop L.
InstallOtherMethod( UpperCentralSeries, "for a loop",
[ IsLoop ],
function(L)
local fmap, Lbar;
if Size(Center(L))=1 then return [ Subloop(L, []) ]; fi;
fmap := NaturalHomomorphismByNormalSubloop( L, Center( L ) );
Lbar := Range( fmap );
return Concatenation(
List( UpperCentralSeries( Lbar ), s -> Subloop(L, PreImage( fmap, s ) ) ),
[ Subloop( L, [] ) ]
);
end);
#############################################################################
##
#A LowerCentralSeries( L )
##
## Returs the lower central series of the loop L.
InstallOtherMethod( LowerCentralSeries, "for a loop",
[ IsLoop ],
function(L)
local last, new, ret, x;
last := [];
new := L;
ret := [];
while new <> last do
last := ShallowCopy(new);
Add( ret, last );
new := [ One(L) ];
for x in last do
new := Union( new, Orbit(InnerMappingGroup(L),x)/x );
od;
new := NormalClosure(L, new);
od;
return ret;
end);
#############################################################################
## SOLVABILITY
## -------------------------------------------------------------------------
#############################################################################
##
#P IsSolvable( L )
##
## Returns true if <L> is solvable.
InstallOtherMethod( IsSolvable, "for a loop",
[ IsLoop ],
function( L )
local N;
N := DerivedSubloop( L );
if Size( N ) = 1 then return true; fi;
if N = L then return false; fi;
return IsSolvable( N ) and IsSolvable( L / N );
end );
#############################################################################
##
#F DerivedSubloop( L )
##
## Returns the derived subloop of <L>.
InstallMethod( DerivedSubloop, "for a loop",
[ IsLoop ],
function( L )
local D;
D := Orbit( DerivedSubgroup( MultiplicationGroup( L ) ), One( L ) );
return Subloop( L, D );
end );
#############################################################################
##
#A DerivedLength( L )
##
## Returns the derived length of <L>.
InstallOtherMethod( DerivedLength, "for a loop",
[ IsLoop ],
function( L )
local D;
D := DerivedSubloop( L );
if Size( D ) = Size ( L ) then
return 0;
else
return DerivedLength( D ) + 1;
fi;
end );
#############################################################################
##
#A FrattiniSubloop( L )
##
## Returns the Frattini subloop of a strongly nilpotent loop <L>.
InstallMethod( FrattiniSubloop, "for a strongly nilpotent loop",
[ IsLoop ],
function( L )
local F;
if IsStronglyNilpotent( L ) then
F := Orbit( FrattiniSubgroup( MultiplicationGroup( L ) ), One( L ) );
return Subloop( L, F );
else
TryNextMethod();
return;
fi;
end );
#############################################################################
##
#A FrattinifactorSize( L )
##
## Returns the Frattini factor size of loop <L>, i.e., the index of
## the Frattini subloop of <L> in <L>.
InstallOtherMethod( FrattinifactorSize, "for a strongly nilpotent loop",
[ IsLoop ],
function( L )
if IsStronglyNilpotent( L ) then
return Size( L ) / Size( FrattiniSubloop( L ) );
else
TryNextMethod();
return;
fi;
end );