99 lines
3.1 KiB
Plaintext
99 lines
3.1 KiB
Plaintext
|
#############################################################################
|
||
|
##
|
||
|
#W moufang_triality.gi Triality of Moufang loops [loops]
|
||
|
##
|
||
|
#H @(#)$Id: moufang_triality.gi, v 3.0.0 2015/06/12 gap Exp $
|
||
|
##
|
||
|
#Y Copyright (C) 2004, G. P. Nagy (University of Szeged, Hungary),
|
||
|
#Y P. Vojtechovsky (University of Denver, USA)
|
||
|
##
|
||
|
|
||
|
#############################################################################
|
||
|
##
|
||
|
#F TrialityPermGroup( L )
|
||
|
##
|
||
|
## Returns the triality group associated with Moufang loop <L>,
|
||
|
## as a permutation group.
|
||
|
|
||
|
InstallGlobalFunction( TrialityPermGroup, function( L )
|
||
|
local AA, BB, L_inv, i, trg_perm, trrho, trsigma;
|
||
|
|
||
|
|
||
|
if IsGroup( L ) then L:=IntoLoop( L ); fi;
|
||
|
|
||
|
if not( IsMoufangLoop( L ) ) then
|
||
|
Error( "LOOPS: <1> has to be a Moufang loop." );
|
||
|
fi;
|
||
|
|
||
|
trrho := Product( List( [1..Size(L)], k -> (k,k+Size(L),k+2*Size(L)) ) );
|
||
|
L_inv := PermList( List( [1..Size(L)], k -> 1^(LeftSection(L)[k]^-1) ) );
|
||
|
trsigma := L_inv^(trrho^2) *
|
||
|
Product( List( [1..Size(L)], k ->
|
||
|
(k, Size(L)+k^L_inv ) ) );
|
||
|
|
||
|
AA := [];
|
||
|
BB := [];
|
||
|
for i in PosInParent( GeneratorsSmallest( L ) ) do
|
||
|
Add( AA, (LeftSection(L)[i]*RightSection(L)[i])^-1
|
||
|
* LeftSection(L)[i]^trrho
|
||
|
* RightSection(L)[i]^(trrho^2) );
|
||
|
od;
|
||
|
BB := OnTuples( AA, trrho );
|
||
|
|
||
|
trg_perm := Group( Concatenation( AA, BB ) );
|
||
|
SetName(trg_perm, Concatenation(
|
||
|
"<Triality (dual collineation) group of order ",
|
||
|
StringPP( Order( trg_perm ) ),
|
||
|
">"
|
||
|
));
|
||
|
|
||
|
return rec( group := trg_perm, sigma := trsigma, rho := trrho );
|
||
|
end);
|
||
|
|
||
|
|
||
|
#############################################################################
|
||
|
##
|
||
|
#F TrialityPcGroup( L )
|
||
|
##
|
||
|
## Returns the triality group associated with Moufang loop <L>,
|
||
|
## as a pc group.
|
||
|
|
||
|
InstallGlobalFunction( TrialityPcGroup, function( L )
|
||
|
local trcoll, trcoll_pcgs, pc_gens, big_gr, big_pcgs,
|
||
|
trg_pc,sigma_pc,rho_pc;
|
||
|
|
||
|
if not( IsSolvable( MultiplicationGroup( L ) ) ) then
|
||
|
Error( "LOOPS: The triality group is not solvable." );
|
||
|
fi;
|
||
|
|
||
|
trcoll := TrialityPermGroup( L );
|
||
|
if IsNilpotent( L ) then
|
||
|
trcoll_pcgs := SpecialPcgs( trcoll.group );
|
||
|
else
|
||
|
trcoll_pcgs := Pcgs( trcoll.group );
|
||
|
fi;
|
||
|
|
||
|
pc_gens := PcgsByPcSequence(
|
||
|
FamilyObj( One( trcoll.group ) ),
|
||
|
Concatenation(
|
||
|
[ trcoll.sigma, trcoll.rho ],
|
||
|
trcoll_pcgs
|
||
|
)
|
||
|
);
|
||
|
|
||
|
big_gr := PcGroupWithPcgs( pc_gens );
|
||
|
big_pcgs := Pcgs( big_gr );
|
||
|
|
||
|
trg_pc := Group( big_pcgs{[3..Length(big_pcgs)]} );
|
||
|
sigma_pc := big_pcgs[1];
|
||
|
rho_pc := big_pcgs[2];
|
||
|
|
||
|
SetName(trg_pc, Concatenation(
|
||
|
"<Triality pc group of order ",
|
||
|
StringPP( Order( trg_pc ) ),
|
||
|
">"
|
||
|
));
|
||
|
|
||
|
return rec( group := trg_pc, sigma := sigma_pc, rho := rho_pc );
|
||
|
end);
|