loops/gap/moufang_modifications.gi

219 lines
7.2 KiB
Plaintext
Raw Normal View History

2017-10-16 19:43:09 +00:00
#############################################################################
##
#W moufang_modifications.gi Moufang modifications [loops]
##
#H @(#)$Id: moufang_modifications.gi, v 3.0.0 2015/06/15 gap Exp $
##
#Y Copyright (C) 2004, G. P. Nagy (University of Szeged, Hungary),
#Y P. Vojtechovsky (University of Denver, USA)
##
#############################################################################
## LOOPS M(G,2)
## -------------------------------------------------------------------------
#############################################################################
##
#F LoopMG2( G )
##
## Returns the Chein loop M(G,2) constructed from a group <G>.
## See documentation for details.
InstallGlobalFunction( LoopMG2, function( G )
local T, inv, n, L, i, j;
T := MultiplicationTable( Elements( G ) );
n := Size( G );
inv := List( [1..n], i->Position( T[i], 1 ) ); #inverses
L := List( [1..2*n], i->[]);
for i in [1..n] do for j in [1..n] do
L[ i ][ j ] := T[ i ][ j ]; # g*h = gh
L[ i ][ j+n ] := T[ j ][ i ] + n; # g*hu = (hg)u
L[ i+n ][ j ] := T[ i ][ inv[ j ] ] + n; # gu*h = (gh^{-1})u
L[ i+n ][ j+n ] := T[ inv[ j ] ][ i ]; # gu*hu = h^{-1}g
od; od;
return LoopByCayleyTable( L );
end);
#############################################################################
## AUXILIARY FUNCTIONS FOR MOUFANG MODIFICATIONS
## -------------------------------------------------------------------------
#############################################################################
##
#F LOOPS_PositionList( A, B )
##
## input: lists A, B
## returns: list P, where P[i] is the position of B[i] in A
InstallGlobalFunction( LOOPS_PositionList,
function( A, B )
local P, b;
P := [];
for b in B do Add( P, Position( A, b ) ); od;
return P;
end);
#############################################################################
##
#F LOOPS_Modular( i, m )
##
## returns i modulo the set [-m+1..m]
InstallGlobalFunction( LOOPS_Modular,
function(i, m)
while i>m do i:=i-2*m; od;
while i<1-m do i:=i+2*m; od;
return i;
end);
#############################################################################
##
#F LOOPS_DVSigma( i, m )
##
## Calculates overflow of i modulo [-m+1..m].
## See documentation for more details.
InstallGlobalFunction( LOOPS_DVSigma,
function( i, m )
if i > m then return 1; fi;
if i < 1 - m then return -1; fi;
return 0;
end);
#############################################################################
## CYCLIC MODIFICATION
## -------------------------------------------------------------------------
#############################################################################
##
#F LoopByCyclicModification( L, S, a, h)
##
## Returns the cyclic modification of Moufang loop <L> with parameters
## <S>, <a>, <h>, as described in the documentation.
# (MATH)
# L is a loop,
# S is a normal subloop of L, or a set generating a normal subloop of L,
# L/S is cyclic of order 2m, generated by aS,
# h is an element of Z(L) and S
# (PROG)
# NOTHING IS CHECKED!!
InstallGlobalFunction( LoopByCyclicModification, function( L, S, a, h )
local n, ih, m, aP, aa, i, iL, T, x, y, z, exponent;
# making sure that S is a subloop of L
if not IsLoop( S ) then S := Subloop( L, S ); fi;
# converting all into numbers for faster calculation
n := Size( L );
ih := Position( Elements( L ), h^(-1) ); #inverse of h
h := Position( Elements( L ), h );
a := Position( Elements( L ), a );
S := LOOPS_PositionList( Elements( L ), Elements( S ) );
L := CayleyTable( L );
# setting parameter m of the construction
m := n / ( 2 * Length( S ) );
# calculating all cosets a^i, for i in M
aP := []; aa := 1;
for i in [ 0..2*m-1 ] do
Add( aP, List( S, j -> L[ aa ][ j ] ) );
aa := L[ aa ][ a ];
od;
# into which cosets belong elements of L
iL := List( [ 1..n ], x -> LOOPS_Modular( LOOPS_SublistPosition(aP, x ) - 1, m ) );
# setting up the multiplication table
T := List( [ 1..n ], i->[] );
for x in [ 1..n ] do for y in [ 1..n ] do
z := L[ x ][ y ];
exponent := LOOPS_DVSigma( iL[ x ] + iL[ y ], m );
if exponent = 1 then z := L[ z ][ h ]; fi;
if exponent = -1 then z := L[ z ][ ih ]; fi;
T[ x ][ y ] := z;
od; od;
return LoopByCayleyTable( T );
end);
#############################################################################
## DIHEDRAL MODIFICATION
## -------------------------------------------------------------------------
#############################################################################
##
#F LoopByDihedralModification( L, S, e, f, h)
##
## Returns the dihedral modification of Moufang loop <L> with parameters
## <S>, <e>, <f>, <h>, as described in the documentation.
# (MATH)
# L is a loop,
# S is a normal subloop of L, or a set generating a normal subloop of L,
# L/S is dihedral of order 4m,
# eS, fS are involutions of L/S such that eS*fS is of order 2m,
# let G0 be the union of cosets of L/S generated by eS*fS,
# h is an element of N(L), S and Z(G0).
# (PROG)
# NOTHING IS CHECKED!!
InstallGlobalFunction( LoopByDihedralModification, function( L, S, e, f, h )
local a, G0, n, m, ih, aP, aa, i, eP, fP, eL, fL, T, x, y, z, exp;
# making sure that S is a subloop of L
if not IsLoop( S ) then S := Subloop( L, S ); fi;
# obtaining a and G0
a := e * f;
G0:= Subloop( L, a * Elements( S ) );
# all in numbers
n := Size( L );
ih := Position( Elements( L ), h^(-1) ); #inverse of h
h := Position( Elements( L ), h );
a := Position( Elements( L ), a );
e := Position( Elements( L ), e );
f := Position( Elements( L ), f );
S := LOOPS_PositionList( Elements( L ), Elements( S ) );
G0 := LOOPS_PositionList( Elements( L ), Elements( G0 ) );
L := CayleyTable( L );
# setting parameter m
m := n / ( 4 * Length( S ) );
# powers of aS, eS and fS
aP := []; aa := 1;
for i in [ 0..2*m-1 ] do
Add( aP, List( S, i -> L[ aa ][ i ] ) );
aa := L[ aa ][ a ];
od;
eP := List( aP, x -> Union( List( x, y -> [ y, L[ e ][ y ] ] ) ) );
fP := List( aP, x -> Union( List( x, y -> [ y, L[ y ][ f ] ] ) ) );
# into which cosets belong elements of L
eL := List( [ 1..n ], x -> LOOPS_Modular( LOOPS_SublistPosition(eP, x ) - 1, m ) );
fL := List( [ 1..n ], x -> LOOPS_Modular( LOOPS_SublistPosition(fP, x ) - 1, m ) );
# setting up multiplication table
T := List( L, x->[] );
for x in [ 1..n ] do for y in [ 1..n ] do
if y in G0 then exp := LOOPS_DVSigma( eL[ x ] + fL[ y ], m );
else exp := (-1)*LOOPS_DVSigma( eL[ x ] + fL[ y ], m ); fi;
z := L[ x ][ y ];
if exp = 1 then z := L[ z ][ h ]; fi;
if exp = -1 then z := L[ z ][ ih ]; fi;
T[ x ][ y ] := z;
od; od;
return LoopByCayleyTable(T);
end);