Add literal string constants #19
@ -11,7 +11,8 @@ language as possible to work in, given that I inevitably will be doing a
|
||||
bunch of coding. The language will be centrally organized around the
|
||||
concept of "streams" (somewhat in the spirit of
|
||||
[streem](https://github.com/matz/streem) and/or
|
||||
[Orc](http://orc.csres.utexas.edu/index.shtml)). In fact all higher-type
|
||||
[Orc](http://orc.csres.utexas.edu/index.shtml), or to a lesser extent,
|
||||
[Sisal-is](https://github.com/parsifal-47/sisal-is)). In fact all higher-type
|
||||
entities will be cast in terms of streams, or in slogan form, "++f++unctions
|
||||
and (binary) ++o++perators are ++str++eams" (hence the name "fostr").
|
||||
|
||||
|
@ -27,9 +27,9 @@ for path in TEST_LIST:
|
||||
if pfm: continue # skip examples that don't parse
|
||||
ntfm = re.search(r'\n\s*\]\].*?don.t.test', details)
|
||||
if ntfm: continue # explicit skip
|
||||
em = re.search(r'\n\s*\]\]', details)
|
||||
em = re.search(r'\n\]\]', details)
|
||||
if not em: continue
|
||||
example = details[:em.start()+1]
|
||||
example = details[:em.start()+1].replace('[[','').replace(']]','')
|
||||
expath = destdir / f"{name}.{EXT}"
|
||||
expath.write_text(example)
|
||||
echo Wrote @(expath)
|
||||
|
@ -22,3 +22,4 @@ menus
|
||||
|
||||
action: "Show pre-analyzed AST" = debug-show-pre-analyzed (source)
|
||||
action: "Show analyzed AST" = debug-show-analyzed
|
||||
action: "Show analyzed type" = debug-show-type
|
||||
|
@ -2,6 +2,7 @@ site_name: fostr language
|
||||
nav:
|
||||
- README.md
|
||||
- tests/basic.md
|
||||
- trans/statics.md
|
||||
- implementation.md
|
||||
|
||||
plugins:
|
||||
|
1
signature/TYPE.str
Symbolic link
1
signature/TYPE.str
Symbolic link
@ -0,0 +1 @@
|
||||
TYPE.stx
|
7
signature/TYPE.stx
Normal file
7
signature/TYPE.stx
Normal file
@ -0,0 +1,7 @@
|
||||
module signature/TYPE
|
||||
signature
|
||||
sorts TYPE // semantic type
|
||||
constructors
|
||||
INT : TYPE
|
||||
STRING : TYPE
|
||||
STREAM : TYPE
|
7
statics/util.stx
Normal file
7
statics/util.stx
Normal file
@ -0,0 +1,7 @@
|
||||
module statics/util
|
||||
imports signature/TYPE
|
||||
|
||||
rules
|
||||
lastTYPE : list(TYPE) -> TYPE
|
||||
lastTYPE([T]) = T.
|
||||
lastTYPE([U | TS]) = lastTYPE(TS).
|
@ -8,6 +8,14 @@ context-free start-symbols
|
||||
|
||||
Start
|
||||
|
||||
lexical sorts
|
||||
|
||||
STRING_LITERAL
|
||||
|
||||
lexical syntax
|
||||
|
||||
STRING_LITERAL = "'"~[\']*"'"
|
||||
|
||||
context-free sorts
|
||||
|
||||
Start LineSeq Line OptTermEx TermExLst TermEx Ex
|
||||
@ -29,13 +37,14 @@ context-free syntax
|
||||
|
||||
TermEx.Terminate = <<Ex>;>
|
||||
|
||||
Ex.Int = INT
|
||||
Ex.Stream = <stream>
|
||||
Ex.Sum = [[Ex] + [Ex]] {left}
|
||||
Ex.Gets = [[Ex] << [Ex]] {left}
|
||||
Ex.To = [[Ex] >> [Ex]] {left}
|
||||
Ex.Int = INT
|
||||
Ex.LitString = STRING_LITERAL
|
||||
Ex.Stream = <stream>
|
||||
Ex.Sum = <<Ex> + <Ex>> {left}
|
||||
Ex.Gets = [[Ex] << [Ex]] {left}
|
||||
Ex.To = [[Ex] >> [Ex]] {left}
|
||||
|
||||
Ex = <(<Ex>)> {bracket}
|
||||
Ex = <(<Ex>)> {bracket}
|
||||
|
||||
context-free priorities
|
||||
|
||||
|
@ -1,6 +1,16 @@
|
||||
module basic
|
||||
language fostr
|
||||
|
||||
test hw1_type [[
|
||||
[[stream]] << [['Hello, world! ']] << [[3+2]] << ' times.'
|
||||
]]
|
||||
run get-type on #1 to STREAM()
|
||||
run get-type on #2 to STRING()
|
||||
run get-type on #3 to INT()
|
||||
run get-type to STREAM()
|
||||
/** writes
|
||||
Hello, world! 5 times.**/
|
||||
|
||||
/** md
|
||||
Title: A whirlwind tour of fostr
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
stream << 72 + 87
|
||||
stream << 'Some numbers: '
|
||||
stream << 88
|
||||
+ 96
|
||||
99 + 12 >>
|
||||
|
1
tests/hw.fos
Normal file
1
tests/hw.fos
Normal file
@ -0,0 +1 @@
|
||||
stream << 'Hello, world!'
|
@ -1,5 +1,4 @@
|
||||
module analysis
|
||||
|
||||
imports
|
||||
|
||||
statixruntime
|
||||
@ -51,3 +50,18 @@ rules // Debugging
|
||||
debug-show-analyzed: (sel, _, _, path, projp) -> (filename, result)
|
||||
with filename := <guarantee-extension(|"analyzed.aterm")> path
|
||||
; result := sel
|
||||
|
||||
// Extract the type assigned to a node by Statix
|
||||
get-type: node -> type
|
||||
where
|
||||
// Assigns variable a to be the result of the Statix analysis of the entire program (or throws an error)
|
||||
a := <stx-get-ast-analysis <+ fail-msg(|$[no analysis on node [<strip-annos;write-to-string> node]])>;
|
||||
// Gets the type of the given node (or throws an error)
|
||||
type := <stx-get-ast-type(|a) <+ fail-msg(|$[no type on node [<strip-annos;write-to-string> node]])> node
|
||||
|
||||
fail-msg(|msg) = err-msg(|$[get-type: [msg]]); fail
|
||||
|
||||
// Prints the analyzed type of a selection.
|
||||
debug-show-type: (sel, _, _, path, projp) -> (filename, result)
|
||||
with filename := <guarantee-extension(|"type.aterm")> path
|
||||
; result := <get-type> sel
|
||||
|
@ -1,15 +1,25 @@
|
||||
module haskell
|
||||
imports libstrategolib signatures/- util
|
||||
imports libstrategolib signatures/- signature/TYPE util analysis
|
||||
rules
|
||||
/* Approach: Generate code from the bottom up.
|
||||
At every node, we create a pair of the implementation and
|
||||
necessary preamble of IO actions.
|
||||
We concatenate preambles as we go up.
|
||||
Finally, at the toplevel we emit the preamble before returning the
|
||||
final value.
|
||||
/* Approach:
|
||||
A) We will define a local transformation taking a term with value strings
|
||||
at each child to a value string for the node.
|
||||
B) We will append IO actions needed to set up for the value progressively
|
||||
to a Preactions rule (mapping () to the list of actions). There will
|
||||
be a utility `add-preaction` to append a new clause to value of this
|
||||
rule.
|
||||
C) We will use bottomup-para to traverse the full AST with the
|
||||
transformation from A so that we have access to the original expression
|
||||
(and get get the Statix-associated type when we need to).
|
||||
Hence the transformation in (A) must actually take a pair of
|
||||
an (original) term and a term with value strings at each child,
|
||||
and be certain to return a value string.
|
||||
|
||||
Finally, at the toplevel we emit the result of <Preactions>() before
|
||||
returning the final value.
|
||||
*/
|
||||
|
||||
hs: TopLevel((c,p)) -> $[import System.IO
|
||||
hs: (_, TopLevel(val)) -> $[import System.IO
|
||||
data IOStream = StdIO
|
||||
|
||||
gets :: Show b => a -> b -> IO a
|
||||
@ -17,27 +27,61 @@ rules
|
||||
putStr(show d)
|
||||
return s
|
||||
|
||||
getsStr :: a -> String -> IO a
|
||||
getsStr s d = do
|
||||
putStr(d)
|
||||
return s
|
||||
|
||||
main = do
|
||||
[p]return [c]]
|
||||
[<Preactions>()]return [val]]
|
||||
|
||||
hs: Stream() -> ("StdIO", "")
|
||||
hs: Int(x) -> (x, "")
|
||||
hs: Sum( (c, p), (d, q)) -> ($[([c] + [d])], <conc-strings>(p,q))
|
||||
hs: (_, Stream()) -> "StdIO"
|
||||
hs: (_, Int(x)) -> x
|
||||
hs: (_, LitString(x)) -> <haskLitString>x
|
||||
hs: (_, Sum(x, y)) -> $[([x] + [y])]
|
||||
|
||||
hs: Gets((c, p), (d, q)) -> <hsget>(c,d,<conc-strings>(p,q),<newname>"fosgt")
|
||||
hsget: (s, x, p, v) -> (v, <concat-strings>[p, $[[v] <- [s] `gets` [x]],
|
||||
"\n"])
|
||||
hs: (Gets(_, xn), Gets(s, x)) -> v
|
||||
with v := <newname>"_fostr_get"
|
||||
; <add-preactions>[$[[v] <- [<hs_gets>(s, xn, x)]]]
|
||||
hs: (To(xn, _), To(x, s)) -> v
|
||||
with v := <newname>"_fostr_to"
|
||||
; <add-preactions>[$[let [v] = [x]], <hs_gets>(s, xn, v)]
|
||||
|
||||
hs: To( (c, p), (d, q)) -> <hsto>(c,d,<conc-strings>(p,q),<newname>"fosto")
|
||||
hsto: (x, s, p, v) -> (v, <concat-strings>[p, $[let [v] = [x]], "\n",
|
||||
$[[s] `gets` [v]], "\n"])
|
||||
hs_gets: (s, xn, x ) -> $[[s] [<hs_getOp>xn] [x]]
|
||||
hs_getOp = get-type; (?STRING() < !"`getsStr`" + !"`gets`")
|
||||
|
||||
hs: Terminate((c,p)) -> ($[[c];;], p)
|
||||
hs: Sequence(l) -> (<last; Fst>l, <map(Snd); concat-strings>l)
|
||||
hs: (_, Terminate(x)) -> $[[x];;]
|
||||
hs: (_, Sequence(l)) -> <last>l
|
||||
/* One drawback of using paramorphism is we have to handle lists
|
||||
explicitly:
|
||||
*/
|
||||
hs: (_, []) -> []
|
||||
hs: (_, [x | xs]) -> [x | xs]
|
||||
|
||||
/* Another drawback of using paramorphism is at the very leaves we have
|
||||
to undouble the tuple:
|
||||
*/
|
||||
hs: (x, x) -> x where <is-string>x
|
||||
|
||||
/* Characters we need to escape in Haskell string constants */
|
||||
Hascape: ['\t' | cs ] -> ['\', 't' | cs ]
|
||||
/* I think I can just use ASCII constants for characters... */
|
||||
Hascape: [ 0 | cs ] -> ['\', '0' | cs ]
|
||||
Hascape: [ 7 | cs ] -> ['\', 'a' | cs ] // Alert
|
||||
Hascape: [ 8 | cs ] -> ['\', 'b' | cs ] // Backspace
|
||||
Hascape: [ 11 | cs ] -> ['\', 'v' | cs ] // Vertical tab
|
||||
Hascape: [ 12 | cs ] -> ['\', 'f' | cs ] // Form feed
|
||||
|
||||
strategies
|
||||
haskLitString = un-single-quote
|
||||
; string-as-chars(escape-chars(Escape <+ Hascape))
|
||||
; double-quote
|
||||
|
||||
haskell = bottomup(try(hs))
|
||||
haskell = rules(Preactions: () -> ""); bottomup-para(try(hs))
|
||||
|
||||
/* See "Approach" at top of file */
|
||||
add-preactions = newp := <conc-strings>(<Preactions>(), <lines>)
|
||||
; rules(Preactions: () -> newp)
|
||||
|
||||
// Interface haskell code generation with editor services and file system
|
||||
to-haskell: (selected, _, _, path, project-path) -> (filename, result)
|
||||
|
@ -13,13 +13,25 @@ rules
|
||||
|
||||
js: Stream() -> $[Stdio]
|
||||
js: Int(x) -> x
|
||||
js: LitString(x) -> <javaLitString>x
|
||||
js: Sum(x,y) -> $[[x] + [y]]
|
||||
js: Gets(x, y) -> $[[x].gets([y])]
|
||||
js: To(x, y) -> $[to([x],[y])]
|
||||
js: Terminate(x) -> x
|
||||
js: Sequence(l) -> <join(|";\n")>l
|
||||
|
||||
/* Characters we need to escape in Javascript string constants */
|
||||
Jscape: ['\t' | cs ] -> ['\', 't' | cs ]
|
||||
/* I think I can just use ASCII constants for characters... */
|
||||
Jscape: [ 0 | cs ] -> ['\', '0' | cs ]
|
||||
Jscape: [ 8 | cs ] -> ['\', 'b' | cs ] // Backspace
|
||||
Jscape: [ 11 | cs ] -> ['\', 'v' | cs ] // Vertical tab
|
||||
Jscape: [ 12 | cs ] -> ['\', 'f' | cs ] // Form feed
|
||||
|
||||
strategies
|
||||
javaLitString = un-single-quote
|
||||
; string-as-chars(escape-chars(Escape <+ Jscape))
|
||||
; single-quote
|
||||
|
||||
javascript = bottomup(try(js))
|
||||
|
||||
|
@ -15,6 +15,7 @@ rules
|
||||
|
||||
py: Stream() -> $[Stdio]
|
||||
py: Int(x) -> x
|
||||
py: LitString(x) -> $[r[x]]
|
||||
py: Sum(x,y) -> $[[x] + [y]]
|
||||
py: Gets(x, y) -> $[[x].gets([y])]
|
||||
py: To(x, y) -> $[to([x],[y])]
|
||||
|
@ -1,14 +1,257 @@
|
||||
module statics
|
||||
|
||||
imports signatures/fostr-sig
|
||||
imports signature/TYPE
|
||||
imports statics/util
|
||||
|
||||
// see docs/implementation.md for details on how to switch to multi-file analysis
|
||||
/** md
|
||||
Title: Adding Program Analysis with Statix
|
||||
|
||||
## Development of fostr static analysis
|
||||
|
||||
This section is more documentation of Spoofax in general and Statix
|
||||
in particular than of fostr itself, but is being maintained here in case
|
||||
it could be either helpful to someone getting started with Statix or
|
||||
helpful in understanding how the static characteristics of fostr were designed.
|
||||
|
||||
As mentioned in the [Overview](../README.md), I don't like to program and a
|
||||
corollary of that is never to use a facility unless/until there's a need for
|
||||
it. So the first few rudimentary passes at fostr simply declared every program
|
||||
to be "OK" from the point of view of Statix:
|
||||
```statix
|
||||
{! "\git docs/statix_start:trans/statics.stx" extract:
|
||||
start: programOk
|
||||
stop: (.*TopLevel.*)
|
||||
!}
|
||||
```
|
||||
|
||||
Then I reached the point at which the grammar was basically just
|
||||
```SDF3
|
||||
// Start.TopLevel = <Seq>
|
||||
// Seq = <Ex>
|
||||
// Seq.Sequence = sq:Ex+ {layout(align-list sq)}
|
||||
// Ex.Terminated = <<Ex>;>
|
||||
{! "\git docs/statix_start:syntax/fostr.sdf3" extract:
|
||||
start: TermEx.Terminate
|
||||
stop: (.*bracket.*)
|
||||
!}
|
||||
```
|
||||
(The first four clauses are in comments because they approximate fostr's
|
||||
grammar; it actually uses a few more sorts for sequences of
|
||||
expressions, to achieve fostr's exact layout rules. Also note that the parsing
|
||||
of literal strings later evolved to include the surrounding single quotes,
|
||||
because the rule above implicitly allows layout between the quotes and the
|
||||
string contents, creating ambiguity.)
|
||||
|
||||
This was the first point at which there were two different types that might
|
||||
need to be written to standard output (Int and String), and although of course
|
||||
the dynamically-typed Python and Javascript code generated dealt with both fine,
|
||||
the Haskell code needed to differ depending on the
|
||||
type of the item written (and I hadn't even started OCaml code generation at
|
||||
that point since I knew it would be hopeless without statically typing fostr
|
||||
programs).
|
||||
|
||||
So it was time to bite the bullet and add type checking via Statix to fostr.
|
||||
The first step was to replace the simple assertion that any TopLevel
|
||||
is OK with a constraint that its Seq must type properly, and an assignment of
|
||||
that type to the top level node:
|
||||
```statix
|
||||
programOk(tl@TopLevel(seq)) :- {T}
|
||||
type_Seq(seq) == T,
|
||||
@tl.type := T.
|
||||
```
|
||||
Of course, for this to even parse, we must have a definition of `type_Seq`:
|
||||
```statix
|
||||
{! ../signature/TYPE.stx extract: {start: module, stop: rules} !}
|
||||
**/
|
||||
|
||||
// see docs/implementation.md for detail on how to switch to multi-file analysis
|
||||
|
||||
rules // single-file entry point
|
||||
|
||||
programOk : Start
|
||||
|
||||
programOk(TopLevel(_)).
|
||||
/** md
|
||||
rules
|
||||
type_Seq : Seq -> TYPE
|
||||
```
|
||||
**/
|
||||
|
||||
type_LineSeq : LineSeq -> TYPE
|
||||
|
||||
programOk(tl@TopLevel(seq)) :- {T}
|
||||
type_LineSeq(seq) == T,
|
||||
@tl.type := T.
|
||||
|
||||
/** md
|
||||
Now to type a Seq, we look to the syntax, and see that there are two
|
||||
possibilities for what it might be: just an Ex, or a Sequence(_) of a
|
||||
list of 'Ex's. For the first, Statix does not allow one sort to simply
|
||||
"become" another, but the Spoofax infrastructure automatically inserts
|
||||
"injection" constructors for us, in this case one named Ex2Seq. So the
|
||||
first rule for `type_Seq` is straightforward:
|
||||
|
||||
```statix
|
||||
type_Seq(s@Ex2Seq(e)) = T : -
|
||||
type_Ex(e) == T,
|
||||
@s.type := T.
|
||||
```
|
||||
where of course type_Ex needs its own declaration analogous to the above.
|
||||
**/
|
||||
|
||||
type_Line : Line -> TYPE
|
||||
|
||||
type_LineSeq(ls@Line2LineSeq(l)) = T :-
|
||||
type_Line(l) == T,
|
||||
@ls.type := T.
|
||||
|
||||
/** md
|
||||
|
||||
The other (and in fact more typical) rule for `type_Seq`, when it actually
|
||||
consists of a sequence of expressions, is a bit more involved. Fortunately
|
||||
Statix provides a primitive for mapping over a list, so we can proceed as
|
||||
follows:
|
||||
```statix
|
||||
types_Exs maps type_Ex(list(*)) = list(*)
|
||||
type_Seq(s@Sequence(l)) = T :- {lt}
|
||||
types_Exs(l) == lt,
|
||||
lastTYPE(lt) == T,
|
||||
@s.type := T.
|
||||
```
|
||||
Here `lastTYPE` is a function that extracts the last TYPE from a list.
|
||||
Unless/until Statix develops some sort of standard library, it must be
|
||||
hand-defined, as done in "statics/util.stx" like so:
|
||||
```statix
|
||||
{! ../statics/util.stx extract: {start: lastTYPE} !}
|
||||
```
|
||||
**/
|
||||
|
||||
types_Lines maps type_Line(list(*)) = list(*)
|
||||
|
||||
type_LineSeq(ls@Sequence(l)) = T :- {lt}
|
||||
types_Lines(l) == lt,
|
||||
lastTYPE(lt) == T,
|
||||
@ls.type := T.
|
||||
|
||||
type_OptTermEx : OptTermEx -> TYPE
|
||||
|
||||
type_Line(l@OptTermEx2Line(ote)) = T :-
|
||||
type_OptTermEx(ote) == T,
|
||||
@l.type := T.
|
||||
|
||||
type_Ex : Ex -> TYPE
|
||||
type_TermEx : TermEx -> TYPE
|
||||
|
||||
type_OptTermEx(ote@Ex2OptTermEx(e)) = T :-
|
||||
type_Ex(e) == T,
|
||||
@ote.type := T.
|
||||
|
||||
type_OptTermEx(ote@TermEx2OptTermEx(te)) = T :-
|
||||
type_TermEx(te) == T,
|
||||
@ote.type := T.
|
||||
|
||||
/** md
|
||||
|
||||
This brings us to the syntax rules for the basic expressions themselves,
|
||||
which comprise almost all of the remaining fostr language constructs.
|
||||
But first a mechanism suggested by Ivo Wilms to avoid repeating the node
|
||||
type annotation in every rule:
|
||||
```statix
|
||||
**/
|
||||
|
||||
/** md */
|
||||
ty_Ex : Ex -> TYPE
|
||||
|
||||
type_Ex(e) = ty@ty_Ex(e) :-
|
||||
@e.type := ty.
|
||||
/* **/
|
||||
|
||||
/** md
|
||||
```
|
||||
At this stage in fostr's development, there was no difference between a
|
||||
terminated and unterminated expression, so the typing rule for that
|
||||
constructor was trivial:
|
||||
```statix
|
||||
ty_Ex(Terminated(e)) = ty_Ex(e).
|
||||
```
|
||||
**/
|
||||
|
||||
type_TermEx(te@Terminate(e)) = T :-
|
||||
type_Ex(e) == T,
|
||||
@te.type := T.
|
||||
|
||||
/** md
|
||||
|
||||
Now typing literals is straightforward:
|
||||
```statix
|
||||
**/
|
||||
|
||||
/** md */
|
||||
ty_Ex(Int(_)) = INT().
|
||||
ty_Ex(LitString(_)) = STRING().
|
||||
ty_Ex(e@Stream()) = STREAM().
|
||||
/* **/
|
||||
|
||||
/** md
|
||||
```
|
||||
|
||||
Finally we get to the binary operators, and here we use the pattern found in
|
||||
recent versions of the
|
||||
"[chicago](https://github.com/MetaBorgCube/statix-sandbox/tree/master/chicago)"
|
||||
example language and in the Fall 2020 TU-Delft class lecture on
|
||||
[Name Binding and Name Resolution](https://tudelft-cs4200-2020.github.io/lectures/2020/09/24/lecture5/).
|
||||
This pattern lets us specify error messages.
|
||||
|
||||
```statix
|
||||
**/
|
||||
|
||||
/** md */
|
||||
ty_Ex(Sum(e1, e2)) = INT() :-
|
||||
type_Ex(e1) == INT() | error $[Expression [e1] not an Int in sum.]@e1,
|
||||
type_Ex(e2) == INT() | error $[Expression [e2] not an Int in sum.]@e2.
|
||||
|
||||
ty_Ex(Gets(e1, e2)) = STREAM() :- {T}
|
||||
type_Ex(e1) == STREAM() | error $[Only Streams may receive items.]@e1,
|
||||
type_Ex(e2) == T.
|
||||
|
||||
ty_Ex(To(e1, e2)) = T :-
|
||||
type_Ex(e1) == T,
|
||||
type_Ex(e2) == STREAM() | error $[Items may only be sent to Streams.]@e2.
|
||||
/* **/
|
||||
|
||||
/** md
|
||||
```
|
||||
|
||||
### Using type annotations in transformation
|
||||
|
||||
At this point, Statix properly types all of the valid programs of the very
|
||||
rudimentary language defined by the grammar above. But the proximate purpose
|
||||
for implementing this typing was to aid Haskell code generation. So how
|
||||
do we actually use the assigned types in a Stratego transformation?
|
||||
|
||||
Statix provides a Stratego api that includes, among other items, strategies
|
||||
`stx-get-ast-analysis` and `stx-get-ast-type(|analysis)` that provide access
|
||||
to the assigned types. However, it's easiest to use the information via
|
||||
a wrapper like this, essentially lifted from the "chicago" language project:
|
||||
```stratego
|
||||
{! analysis.str extract:
|
||||
start: Extract.the.type
|
||||
terminate: Prints.the.analyzed.type
|
||||
!}
|
||||
```
|
||||
|
||||
Now `get_type` run on a node of the analyzed AST produces the assigned `TYPE`
|
||||
(as an ATerm in the constructors of sort TYPE in Statix).
|
||||
|
||||
Thus, you can select on the assigned type, as in the strategy to select
|
||||
the correct Haskell operator to use to send an item to standard output:
|
||||
```stratego
|
||||
{! haskell.str extract:
|
||||
start: '(.*hs_getOp.=.*)'
|
||||
stop: \s
|
||||
!}
|
||||
```
|
||||
**/
|
||||
|
||||
rules // multi-file entry point
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user