Observe that the Gram matrix represents the pullback of the Lorentz form
parent
a11bd8f190
commit
b12d117dfd
@ -6,6 +6,11 @@ In [inversive coordinates](https://code.studioinfinity.org/glen/dyna3/src/branch
|
||||
|
||||
### Constraints as Gram matrix entries
|
||||
|
||||
The vectors $v_1, \ldots, v_n \in \mathbb{R}^{1,4}$ representing the elements of our construction can be encoded in a linear map $\mathbb{R}^n \to \mathbb{R}^{1,4}$, whose matrix is
|
||||
\[ V = \left[\begin{array}{cccc} \rule{0.5pt}{16pt} & \rule{0.5pt}{16pt} & & \rule{0.5pt}{16pt} \\ v_1 & v_2 & \ldots & v_n \\ \rule{0.5pt}{16pt} & \rule{0.5pt}{16pt} & & \rule{0.5pt}{16pt} \end{array}\right] \]
|
||||
We can then express constraints by fixing elements of the Gram matrix $G = V^\top V$. The transpose is taken with respect to the Lorentz product $\langle \;\; , \;\; \rangle$, so $G_{jk} = \langle v_j, v_k \rangle$.
|
||||
The vectors $a_1, \ldots, a_n \in \mathbb{R}^{1,4}$ representing the elements of our construction can be encoded in a linear map $A \colon \mathbb{R}^n \to \mathbb{R}^{1,4}$, whose matrix is
|
||||
\[ \left[\begin{array}{cccc} \rule{0.5pt}{16pt} & \rule{0.5pt}{16pt} & & \rule{0.5pt}{16pt} \\ a_1 & a_2 & \cdots & a_n \\ \rule{0.5pt}{16pt} & \rule{0.5pt}{16pt} & & \rule{0.5pt}{16pt} \end{array}\right] \]
|
||||
We can then express constraints by fixing elements of the Gram matrix $G = A^\top A$, where $\top$ is the adjoint with respect to the inner product $\langle\_\!\_, \_\!\_\rangle$ on $\mathbb{R}^n$ and the Lorentz product $(\_\!\_, \_\!\_)$ on $\mathbb{R}^{1,4}$. The bilinear form $\langle\_\!\_, G\_\!\_\rangle$ is the pullback of the Lorentz form along $A$:
|
||||
\[\begin{align*} \langle\_\!\_, G\_\!\_\rangle & = \langle\_\!\_, A^\top A\_\!\_\rangle \\ & = (A\_\!\_, A\_\!\_). \end{align*}\]
|
||||
To confirm that $G$ is the Gram matrix of $a_1, \ldots, a_n$, observe that
|
||||
\[\begin{align*} G_{jk} & = \langle e_j, G e_k \rangle \\ & = (A e_j, A e_k) \\ & = (a_j, a_k), \end{align*}\]
|
||||
where $e_1, \ldots, e_n$ is the standard basis for $\mathbb{R}^n$.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user