85 lines
2.1 KiB
Julia
85 lines
2.1 KiB
Julia
using LinearAlgebra
|
|
using AbstractAlgebra
|
|
|
|
function printgood(msg)
|
|
printstyled("✓", color = :green)
|
|
println(" ", msg)
|
|
end
|
|
|
|
function printbad(msg)
|
|
printstyled("✗", color = :red)
|
|
println(" ", msg)
|
|
end
|
|
|
|
F, gens = rational_function_field(AbstractAlgebra.Rationals{BigInt}(), ["a₁", "a₂", "b₁", "b₂", "c₁", "c₂"])
|
|
a = gens[1:2]
|
|
b = gens[3:4]
|
|
c = gens[5:6]
|
|
|
|
# three mutually tangent spheres which are all perpendicular to the x, y plane
|
|
gram = [
|
|
-1 1 1;
|
|
1 -1 1;
|
|
1 1 -1
|
|
]
|
|
|
|
eig = eigen(gram)
|
|
n_pos = count(eig.values .> 0.5)
|
|
n_neg = count(eig.values .< -0.5)
|
|
if n_pos + n_neg == size(gram, 1)
|
|
printgood("Non-degenerate subspace")
|
|
else
|
|
printbad("Degenerate subspace")
|
|
end
|
|
sig_rem = Int64[ones(1-n_pos); -ones(4-n_neg)]
|
|
unk = hcat(a, b, c)
|
|
M = matrix_space(F, 5, 5)
|
|
big_gram = M(F.([
|
|
diagm(sig_rem) unk;
|
|
transpose(unk) gram
|
|
]))
|
|
|
|
r, p, L, U = lu(big_gram)
|
|
if isone(p)
|
|
printgood("Found a solution")
|
|
else
|
|
printbad("Didn't find a solution")
|
|
end
|
|
solution = transpose(L)
|
|
mform = U * inv(solution)
|
|
|
|
vals = [0, 0, 0, 1, 0, -3//4]
|
|
solution_ex = [evaluate(entry, vals) for entry in solution]
|
|
mform_ex = [evaluate(entry, vals) for entry in mform]
|
|
|
|
std_basis = [
|
|
0 0 0 1 1;
|
|
0 0 0 1 -1;
|
|
1 0 0 0 0;
|
|
0 1 0 0 0;
|
|
0 0 1 0 0
|
|
]
|
|
std_solution = M(F.(std_basis)) * solution
|
|
std_solution_ex = std_basis * solution_ex
|
|
|
|
println("Minkowski form:")
|
|
display(mform_ex)
|
|
|
|
big_gram_recovered = transpose(solution_ex) * mform_ex * solution_ex
|
|
valid = all(iszero.(
|
|
[evaluate(entry, vals) for entry in big_gram] - big_gram_recovered
|
|
))
|
|
if valid
|
|
printgood("Recovered Gram matrix:")
|
|
else
|
|
printbad("Didn't recover Gram matrix. Instead, got:")
|
|
end
|
|
display(big_gram_recovered)
|
|
|
|
# this should be a solution
|
|
hand_solution = [0 0 1 0 0; 0 0 -1 2 2; 0 0 0 1 -1; 1 0 0 0 0; 0 1 0 0 0]
|
|
unmix = Rational{Int64}[[1//2 1//2; 1//2 -1//2] zeros(Int64, 2, 3); zeros(Int64, 3, 2) Matrix{Int64}(I, 3, 3)]
|
|
hand_solution_diag = unmix * hand_solution
|
|
big_gram_hand_recovered = transpose(hand_solution_diag) * diagm([1; -ones(Int64, 4)]) * hand_solution_diag
|
|
println("Gram matrix from hand-written solution:")
|
|
display(big_gram_hand_recovered) |