76 lines
2.3 KiB
Julia
76 lines
2.3 KiB
Julia
include("Engine.jl")
|
|
|
|
using SparseArrays
|
|
using Random
|
|
|
|
# initialize the partial gram matrix for a sphere inscribed in a regular
|
|
# tetrahedron
|
|
J = Int64[]
|
|
K = Int64[]
|
|
values = BigFloat[]
|
|
for j in 1:9
|
|
for k in 1:9
|
|
filled = false
|
|
if j == 9
|
|
if k <= 5 && k != 2
|
|
push!(values, 0)
|
|
filled = true
|
|
end
|
|
elseif k == 9
|
|
if j <= 5 && j != 2
|
|
push!(values, 0)
|
|
filled = true
|
|
end
|
|
elseif j == k
|
|
push!(values, 1)
|
|
filled = true
|
|
elseif j == 1 || k == 1
|
|
push!(values, 0)
|
|
filled = true
|
|
elseif j == 2 || k == 2
|
|
push!(values, -1)
|
|
filled = true
|
|
end
|
|
if filled
|
|
push!(J, j)
|
|
push!(K, k)
|
|
end
|
|
end
|
|
end
|
|
append!(J, [6, 4, 6, 5, 7, 5, 7, 3, 8, 3, 8, 4])
|
|
append!(K, [4, 6, 5, 6, 5, 7, 3, 7, 3, 8, 4, 8])
|
|
append!(values, fill(-1, 12))
|
|
#= make construction rigid
|
|
append!(J, [3, 4, 4, 5])
|
|
append!(K, [4, 3, 5, 4])
|
|
append!(values, fill(-0.5, 4))
|
|
=#
|
|
gram = sparse(J, K, values)
|
|
|
|
# set initial guess
|
|
Random.seed!(58271)
|
|
guess = hcat(
|
|
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
|
|
Engine.sphere(BigFloat[0, 0, 0], BigFloat(1//2)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
|
|
Engine.plane(-BigFloat[1, 0, 0], BigFloat(-1)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
|
|
Engine.plane(-BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(-1)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
|
|
Engine.plane(-BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(-1)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
|
|
Engine.sphere(BigFloat[-1, 0, 0], BigFloat(1//5)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
|
|
Engine.sphere(BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//5)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
|
|
Engine.sphere(BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//5)) + 0.1*Engine.rand_on_shell([BigFloat(-1)]),
|
|
BigFloat[0, 0, 0, 0, 1]
|
|
)
|
|
frozen = [CartesianIndex(j, 9) for j in 1:5]
|
|
|
|
# complete the gram matrix using Newton's method with backtracking
|
|
L, success, history = Engine.realize_gram(gram, guess, frozen)
|
|
completed_gram = L'*Engine.Q*L
|
|
println("Completed Gram matrix:\n")
|
|
display(completed_gram)
|
|
if success
|
|
println("\nTarget accuracy achieved!")
|
|
else
|
|
println("\nFailed to reach target accuracy")
|
|
end
|
|
println("Steps: ", size(history.scaled_loss, 1))
|
|
println("Loss: ", history.scaled_loss[end], "\n") |