dyna3/engine-proto/gram-test/Engine.jl
Aaron Fenyes 53d8c38047 Preserve explicit zeros in Gram matrix conversion
In previous commits, the `circles-in-triangle` example converged much
more slowly in BigFloat precision than in Float64 precision. This
turned out to be a sign of a bug in the Float64 computation: converting
the Gram matrix using `Float64.()` dropped the explicit zeros, removing
many constraints and making the problem much easier to solve. This
commit corrects the Gram matrix conversion. The Float64 search now
solves the same problem as the BigFloat search, with comparable
performance.
2024-07-15 14:08:57 -07:00

418 lines
12 KiB
Julia

module Engine
using LinearAlgebra
using GenericLinearAlgebra
using SparseArrays
using Random
using Optim
export
rand_on_shell, Q, DescentHistory,
realize_gram_gradient, realize_gram_newton, realize_gram_optim, realize_gram
# === guessing ===
sconh(t, u) = 0.5*(exp(t) + u*exp(-t))
function rand_on_sphere(rng::AbstractRNG, ::Type{T}, n) where T
out = randn(rng, T, n)
tries_left = 2
while dot(out, out) < 1e-6 && tries_left > 0
out = randn(rng, T, n)
tries_left -= 1
end
normalize(out)
end
##[TO DO] write a test to confirm that the outputs are on the correct shells
function rand_on_shell(rng::AbstractRNG, shell::T) where T <: Number
space_part = rand_on_sphere(rng, T, 4)
rapidity = randn(rng, T)
sig = sign(shell)
[sconh(rapidity, sig)*space_part; sconh(rapidity, -sig)]
end
rand_on_shell(rng::AbstractRNG, shells::Array{T}) where T <: Number =
hcat([rand_on_shell(rng, sh) for sh in shells]...)
rand_on_shell(shells::Array{<:Number}) = rand_on_shell(Random.default_rng(), shells)
# === elements ===
plane(normal, offset) = [normal; offset; offset]
function sphere(center, radius)
dist_sq = dot(center, center)
return [
center / radius;
0.5 * ((dist_sq - 1) / radius - radius);
0.5 * ((dist_sq + 1) / radius - radius)
]
end
# === Gram matrix realization ===
# the Lorentz form
Q = diagm([1, 1, 1, 1, -1])
# project a matrix onto the subspace of matrices whose entries vanish at the
# given indices
function proj_to_entries(mat, indices)
result = zeros(size(mat))
for (j, k) in indices
result[j, k] = mat[j, k]
end
result
end
# the difference between the matrices `target` and `attempt`, projected onto the
# subspace of matrices whose entries vanish at each empty index of `target`
function proj_diff(target::SparseMatrixCSC{T, <:Any}, attempt::Matrix{T}) where T
J, K, values = findnz(target)
result = zeros(size(target))
for (j, k, val) in zip(J, K, values)
result[j, k] = val - attempt[j, k]
end
result
end
# a type for keeping track of gradient descent history
struct DescentHistory{T}
scaled_loss::Array{T}
neg_grad::Array{Matrix{T}}
base_step::Array{Matrix{T}}
hess::Array{Hermitian{T, Matrix{T}}}
slope::Array{T}
stepsize::Array{T}
positive::Array{Bool}
backoff_steps::Array{Int64}
last_line_L::Array{Matrix{T}}
last_line_loss::Array{T}
function DescentHistory{T}(
scaled_loss = Array{T}(undef, 0),
neg_grad = Array{Matrix{T}}(undef, 0),
hess = Array{Hermitian{T, Matrix{T}}}(undef, 0),
base_step = Array{Matrix{T}}(undef, 0),
slope = Array{T}(undef, 0),
stepsize = Array{T}(undef, 0),
positive = Bool[],
backoff_steps = Int64[],
last_line_L = Array{Matrix{T}}(undef, 0),
last_line_loss = Array{T}(undef, 0)
) where T
new(scaled_loss, neg_grad, hess, base_step, slope, stepsize, positive, backoff_steps, last_line_L, last_line_loss)
end
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`
function realize_gram_gradient(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T};
scaled_tol = 1e-30,
min_efficiency = 0.5,
init_stepsize = 1.0,
backoff = 0.9,
max_descent_steps = 600,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# scale tolerance
scale_adjustment = sqrt(T(nnz(gram)))
tol = scale_adjustment * scaled_tol
# initialize variables
stepsize = init_stepsize
L = copy(guess)
# do gradient descent
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
for _ in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
slope = norm(neg_grad)
dir = neg_grad / slope
# store current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, slope)
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = stepsize
L = L_last + stepsize * dir
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * stepsize * slope
history.backoff_steps[end] = backoff_steps
break
end
stepsize *= backoff
end
# [DEBUG] if we've hit a wall, quit
if history.backoff_steps[end] == max_backoff_steps
break
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, history
end
function basis_matrix(::Type{T}, j, k, dims) where T
result = zeros(T, dims)
result[j, k] = one(T)
result
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use Newton's method starting from `guess`
function realize_gram_newton(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T};
scaled_tol = 1e-30,
rate = 1,
max_steps = 100
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# use Newton's method
L = copy(guess)
for step in 0:max_steps
# evaluate the loss function
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# store the current loss
push!(history.scaled_loss, loss / scale_adjustment)
# stop if the loss is tolerably low
if loss < tol || step > max_steps
break
end
# find the negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess = Hermitian(hess)
push!(history.hess, hess)
# compute the Newton step
step = hess \ reshape(neg_grad, total_dim)
L += rate * reshape(step, dims)
end
# return the factorization and its history
L, history
end
LinearAlgebra.eigen!(A::Symmetric{BigFloat, Matrix{BigFloat}}; sortby::Nothing) =
eigen!(Hermitian(A))
function convertnz(type, mat)
J, K, values = findnz(mat)
sparse(J, K, type.(values))
end
function realize_gram_optim(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T}
) where T <: Number
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the loss function
scale_adjustment = length(constrained)
function loss(L_vec)
L = reshape(L_vec, dims)
Δ_proj = proj_diff(gram, L'*Q*L)
dot(Δ_proj, Δ_proj) / scale_adjustment
end
function loss_grad!(storage, L_vec)
L = reshape(L_vec, dims)
Δ_proj = proj_diff(gram, L'*Q*L)
storage .= reshape(-4*Q*L*Δ_proj, total_dim) / scale_adjustment
end
function loss_hess!(storage, L_vec)
L = reshape(L_vec, dims)
Δ_proj = proj_diff(gram, L'*Q*L)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj) / scale_adjustment
storage[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
end
optimize(
loss, loss_grad!, loss_hess!,
reshape(guess, total_dim),
NewtonTrustRegion()
)
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`
function realize_gram(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T};
scaled_tol = 1e-16,
min_efficiency = 0.5,
init_rate = 1.0,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# initialize variables
grad_rate = init_rate
L = copy(guess)
# use Newton's method with backtracking and gradient descent backup
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess = Hermitian(hess)
push!(history.hess, hess)
# regularize the Hessian
min_eigval = minimum(eigvals(hess))
push!(history.positive, min_eigval > 0)
if min_eigval <= 0
hess -= reg_scale * min_eigval * I
end
base_step = reshape(hess \ reshape(neg_grad, total_dim), dims)
push!(history.base_step, base_step)
# store the current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, norm(neg_grad))
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
rate = one(T)
step_success = false
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * dot(neg_grad, base_step)
history.backoff_steps[end] = backoff_steps
step_success = true
break
end
rate *= backoff
end
# if we've hit a wall, quit
if !step_success
return L_last, false, history
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, true, history
end
end