dyna3/engine-proto/engine.jl
2024-01-27 12:28:29 -05:00

142 lines
3.8 KiB
Julia

module Engine
export Construction, mprod
import Subscripts
using LinearAlgebra
using AbstractAlgebra
using Groebner
# --- primitve elements ---
abstract type Element{T} end
mutable struct Point{T} <: Element{T}
coords::Union{Vector{MPolyRingElem{T}}, Nothing}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
rel::Nothing
## [to do] constructor argument never needed?
Point{T}(
coords::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing
) where T = new(coords, vec, nothing)
end
coordnames(_::Point) = [:xₚ, :yₚ, :zₚ]
function buildvec(pt::Point, coordqueue)
coordring = parent(coordqueue[1])
pt.coords = splice!(coordqueue, 1:3)
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
end
mutable struct Sphere{T} <: Element{T}
coords::Union{Vector{MPolyRingElem{T}}, Nothing}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
rel::Union{MPolyRingElem{T}, Nothing}
Sphere{T}(
coords::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
rel::Union{MPolyRingElem{T}, Nothing} = nothing
) where T = new(coords, vec, rel)
end
coordnames(_::Sphere) = [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
function buildvec(sph::Sphere, coordqueue)
coordring = parent(coordqueue[1])
sph.coords = splice!(coordqueue, 1:5)
sph.vec = sph.coords
sph.rel = mprod(sph.coords, sph.coords) + one(coordring)
end
# --- primitive relations ---
abstract type Relation{T} end
mprod(v, w) = v[1]*w[2] + w[1]*v[2] - dot(v[3:end], w[3:end])
# elements: point, sphere
struct LiesOn{T} <: Relation{T}
elements::Vector{Element{T}}
LiesOn{T}(pt::Point{T}, sph::Sphere{T}) where T = new{T}([pt, sph])
end
equation(rel::LiesOn) = dot(rel.elements[1].vec, rel.elements[2].vec)
# elements: sphere, sphere
struct AlignsWithBy{T} <: Relation{T}
elements::Vector{Element{T}}
cos_angle::T
LiesOn{T}(sph1::Point{T}, sph2::Sphere{T}, cos_angle::T) where T = new{T}([sph1, sph2], cos_angle)
end
equation(rel::AlignsWithBy) = dot(rel.elements[1].vec, rel.elements[2].vec) - rel.cos_angle
# --- constructions ---
mutable struct Construction{T}
elements::Set{Element{T}}
relations::Set{Relation{T}}
function Construction{T}(; elements = Set{Element{T}}(), relations = Set{Relation{T}}()) where T
allelements = union(elements, (rel.elements for rel in relations)...)
new{T}(allelements, relations)
end
end
function Base.push!(ctx::Construction{T}, elem::Element{T}) where T
push!(ctx.elements, elem)
end
function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
push!(ctx.relations, rel)
union!(ctx.elements, rel.elements)
end
function realize(ctx::Construction{T}) where T
# collect variable names
coordnamelist = Symbol[]
elemenum = enumerate(ctx.elements)
for (index, elem) in elemenum
subscript = Subscripts.sub(string(index))
append!(coordnamelist,
[Symbol(name, subscript) for name in coordnames(elem)]
)
end
# construct coordinate ring
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
# construct coordinate vectors
for (_, elem) in elemenum
buildvec(elem, coordqueue)
end
# turn relations into equations
vcat(
equation.(ctx.relations),
[elem.rel for elem in ctx.elements if !isnothing(elem.rel)]
)
end
end
# ~~~ sandbox setup ~~~
a = Engine.Point{Rational{Int64}}()
s = Engine.Sphere{Rational{Int64}}()
a_on_s = Engine.LiesOn{Rational{Int64}}(a, s)
ctx = Engine.Construction{Rational{Int64}}(elements = Set([a]), relations= Set([a_on_s]))
eqns_a_s = Engine.realize(ctx)
b = Engine.Point{Rational{Int64}}()
b_on_s = Engine.LiesOn{Rational{Int64}}(b, s)
Engine.push!(ctx, b)
Engine.push!(ctx, s)
Engine.push!(ctx, b_on_s)
eqns_ab_s = Engine.realize(ctx)